
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2012
EPTCS 105, 2012, pp. 69–84, doi:10.4204/EPTCS.105.6

c© Mingyu Park & Taejoon Byun & Yunja Choi
This work is licensed under the
Creative Commons Attribution License.

Property-based Code Slicing for Efficient Verification of
OSEK/VDX Operating Systems∗

Mingyu Park Taejoon Byun Yunja Choi
School of Computer Science and Engineering

Kyungpook National University
Deagu, Korea

pqrk8805@gmail.com bntejn@gmail.com yuchoi76@knu.ac.kr†

Testing is a de-facto verification technique in industry, but insufficient for identifying subtle issues
due to its optimistic incompleteness. On the other hand, model checking is a powerful technique that
supports comprehensiveness, and is thus suitable for the verification of safety-critical systems. How-
ever, it generally requires more knowledge and cost more than testing. This work attempts to take
advantage of both techniques to achieve integrated and efficient verification of OSEK/VDX-based
automotive operating systems. We propose property-based environment generation and model ex-
traction techniques using static code analysis, which can be applied to both model checking and test-
ing. The technique is automated and applied to an OSEK/VDX-based automotive operating system,
Trampoline. Comparative experiments using random testing and model checking for the verification
of assertions in the Trampoline kernel code show how our environment generation and abstraction
approach can be utilized for efficient fault-detection.

1 Introduction

The operating system is the core part of automotive control software; any malfunction can cause critical
errors in the automotive system, which in turn may result in loss of lives and assets. Testing has been
widely used as a systematic and cost-effective safety analysis/assurance method [6, 18], but its optimistic
incompleteness often misses critical problems and cannot guarantee the “absence of wrong behavior”.
As an alternative and complimentary technique, model checking [10, 16] has been drawing attention
from both academia and industry.

Model checking is a comprehensive formal verification technique, suitable for functional safety anal-
ysis. It can effectively identify subtle issues, such as process dead lock, illegal behavior, and starvation,
but may require more resources and domain knowledge. In particular, the use of model checking faces
the following challenges:

1. The size of model/code to be verified needs to be minimized to avoid state-space explosion.

2. Modeling of the environment, such as user tasks and hardware environment, is necessary and
critical for embedded software.

Since an operating system is a reactive system responding to environmental stimuli, the correctness
of its behavior needs to be analyzed with respect to the behavior of its environments. A non-deterministic
environment is typically used to over-approximate actual behavior, but it is often too expensive in model

∗This work was partially supported by the Engineering Research Center of Excellence Program of Korea Ministry of Educa-
tion, Science and Technology(MEST)/National Research Foundataion of Korea(NRF) (Grant 2012-0000473) and the National
Research Foundation of Korea Grant funded by Korean Government (2012R1A1A4A01011788).

†correspondence

http://dx.doi.org/10.4204/EPTCS.105.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

70 Property-based Code Slicing

checking. The difficulty and importance of defining a good environment model has been addressed in a
number of previous works [22, 23, 12, 25, 17, 20].

We note that these two problems apply to both model checking and testing. Though the level of
comprehensiveness differs, both techniques rely on automated search techniques that are initiated by en-
vironmental stimuli. This is called environment model in model checking and test scenario in testing.
This work anticipates that the efficiency of automated verification techniques depends on the modeling
of the environment and proposes an application of property-based code slicing [24] for automatically
generating an environment model using the data/function dependency analyzed from the operating sys-
tem kernels. The goal is to construct a valid and comprehensive usage model of the operating system
with minimal dependency on the kernel code.

Our approach extracts functions that have a direct dependency on a given property to be verified
and generates non-deterministic function-call sequences by imposing (1) external constraints from the
OSEK/VDX standard [1] for automotive operating systems, and (2) internal constraints identified from
the function call structure of the operating system kernel. The external constraints are manually identified
from the specifications of the standard and are imposed on the initially random sequence of function calls.
The internal constraints are imposed by identifying the top-level functions using backward slicing from
a given property and by computing the cone-of-influence from each top-level function using forward
slicing. The Environment model is defined as an arbitrary sequence of calls of those extracted functions.
The operating system kernel is also abstracted as a collection of extracted functions and its relevant code
required for pre-processing them. This procedure reduces the size of the verification target and minimizes
the behavior of the environment model. The extraction and model construction process is automated with
the aid of the static analysis tool Understand [4].

The approach and the tool are applied to the verification of safety properties of the Trampoline op-
erating system [3], which is an open source automotive operating system compliant with OSEK/VDX.
Environment models are generated using the assertions identified from the kernel code, and the kernel
code itself is reduced by including only those extracted functions and their relevant code. The envi-
ronment model is used to model-check/test the abstract code using CBMC [9] and random testing. We
compare their fault-detection capability, their comprehensiveness in terms of code coverage, and their
efficiency in terms of resource consumption.

The remainder of this paper is organized as follows. Section 2 briefly discusses related work and
Section 3 provides the motivation for our work. Section 4 provides an overview of our approach and
Section 5 presents the methods and the process for the automated environment generation technique.
Section 6 explains the environment settings for the collaborative verification, followed by experimental
results and the evaluation using Trampoline OS as a case example in Section 7. We conclude in Section 8.

2 Related Work

Environment modeling for efficient model checking has been an active research issue [22, 23, 12, 25,
17, 20]. Reference [20] is one of the earliest works concerning environment assumptions in verification.
It introduced the observer concept to represent assumptions about the environment. The approaches for
assumption generation were developed further in [12, 23, 13, 19]. Reference [23] automatically generates
the environment of Java programs from the specifications written by a user. [19, 13] are concerned about
automatic partitioning, learning, or minimizing assumptions for compositional verification. None of
them considers environment generation for both model checking and testing.

Several specification-based environment generation methods exist: [21] uses ADL to define pro-

Mingyu Park & Taejoon Byun & Yunja Choi 71

tocols of Java components and constructs an environment for the ADL specification. [11] describes
environmental assumptions in LTL and uses them to filter a universal environment, which is adopted in
our approach to constrain the non-deterministic initial task model. Reference [25] automatically gen-
erates scripts in PROMELA from environment models for OSEK/VDX-based operating systems that are
modeled in UML diagrams. Their approach, however, models all basic objects in OSEK/VDX using
UML class diagrams and state diagrams, from which all combinations of deterministic environments
are generated and verified individually. The models are then used to automatically generate exhaustive
test cases for the conformance testing of OSEK/VDX-compliant operating systems [8]. Their approach
assures the exhaustiveness of test cases, but the scalability issue remains, as the number of test cases may
increase exponentially.

Program slicing [24] has been a popular technique for reducing verification complexity for both
model checking and testing. References [5] and [14] use slicing algorithms to explicitly detect de f −
use associations that are affected by a program change for efficient regression testing. Reference [7]
performs program slicing for C programs with respect to the alarms generated from value analysis.
[15] integrates aggressive program slicing and a proof-based abstraction-refinement strategy for wireless
cognitive radio systems. It is a representative example of using program slicing and bounded model
checking for embedded software, but the slicing is integrated into the model checking process, and is
thus not suitable for application in testing.

3 Background

3.1 OSEK/VDX

OSEK/VDX is a joint project of the automotive industry, which aims at establishing an industry standard
for an open-ended architecture for distributed control units in vehicles [1]. The aim of OSEK/VDX is
to provide standard interfaces independent of application, hardware, and network, and ultimately, to
save the development costs for non-application related aspects of control software. It is specialized for
automotive control systems, removing all undesired complexities such as dynamic memory allocation,
circular waiting for resources, multi-threading, and so on. Since its target system is safety-critical, it
strictly prohibits uncontrolled dynamic behavior of the system.

Conformation testing is a standard verification method for the certification of OSEK/VDX-based
operating systems. However, conformation testing suites are typically insufficient to identify safety
problems. As OSEK/VDX explicitly specifies more than 26 basic APIs, thorough conformation testing
would require at least 26×2×3 test cases even if we assume two arguments per API and only boundary
values for the arguments are chosen. The possible number of execution sequences for these 26× 2× 3
test cases would rise to 156 factorials, a large number to be tested in practice.

3.2 Trampoline

Trampoline [3] is an open source, real-time operating system compliant with OSEK/VDX version 2.2.3.
It is developed in ANSI C and can be ported to various hardware platforms such as Arm, POSIX, PPC,
AVR, HCS12, C166, etc. Since it also supports POSIX, it can be test-run on a UNIX/Linux environment
before being ported to an actual operational environment. As its target platform varies, its platform-
dependent part is clearly structured in a separate module that combines with the kernel module at com-
pile time. Access to the hardware-specific part is abstracted using extern variables and macros so that
the main control logic does not need to be aware of the specific hardware feature. As illustrated in

72 Property-based Code Slicing

Figure 1: Components of Trampoline

Figure 1, development of an automotive software using Trampoline requires four components; (1) ap-
plication source code, (2) kernel configuration generated from configuration description written in OIL
(OSEK Implementation Language) using the Goil compiler, (3) generic OS kernel code compliant with
the OSEK/VDX standard, and (4) platform-dependent kernel code. The generic OS kernel code imple-
ments services for task management, resource management, interrupt handling, and event/counter/alarm
management, providing corresponding APIs.

3.3 Model checking using CBMC

Formal verification methods based on model checking [10] are an effective technique for identifying sub-
tle issues in software safety which is particulary important for embedded systems. Current technological
advances in model checking enable engineers to directly apply the technique to program source code, re-
moving the manual model construction process. CBMC [9] is one of these model checking tools, which
is capable of verifying almost full ANSI C. It can be used to verify buffer overflows, pointer safety, ex-
ceptions and user-specified assertions. Furthermore, it can check ANSI C and C++ for consistency with
other languages, such as Verilog. The main advantage is that it is completely automated and generates
counterexample traces when a property in question is refuted.

As with any other model checking tool, CBMC also suffers from the problem of scalability. When
applied to the Trampoline kernel as a whole with an arbitrary sequence of API calls, for example, it ran
out of memory for checking one assertion on a PC with 3GB of memory.

4 Overall Approach

Comprehensive verification, required by functional safety analysis, is too costly to be applied in practice.
Reducing the cost while maintaining comprehensiveness is a challenging, but crucial task. Our approach
attempts to achieve this goal with the following three strategies:

1. Property-based environment generation: An environment of the operating system kernel is auto-
matically generated using static code analysis for a given safety property.

Mingyu Park & Taejoon Byun & Yunja Choi 73

Source Code
(Trampoline Kernel)

Safety Properties
(Assertions)

Property-based
Function

Extraction
Code Extraction

Function Call
Scenario

Generation
Algorithm

Extracted
Code

CBMC Model
Checking

Verified?

NO

Counter Example
Analysis

YES

End

Random Testing Pass?

YES

NO Code Analysis

Figure 2: Collaborative verification approach

2. Property-based abstraction: The operating system kernel is abstracted by extracting only the code
relevant to a given property.

3. Collaborative verification using model checking and testing: Both model checking and testing are
used complementarily for the verification of the abstract kernel code under the generated environ-
ment model.

Cost reduction is achieved through property-based environment generation and code abstraction.
The efficiency of verification is increased by taking advantage of both verification techniques. Figure 2
is an overview of the suggested collaborative verification approach. Our approach uses both model
checking and testing to complimentarily utilize their different capabilities when only limited resources
are available.

5 Environment Generation

A straightforward way to include all possible task interactions with the operating system is to model
the task with strongly connected states, where each state represents an API call to the kernel and each
transition between states is not guarded. However, this includes too many spurious and/or impossible
behaviors and increases the cost for verification as well as counterexample analysis; if 26 APIs are
provided by the operating system, the task model would have at least 26 strongly connected states. Our
approach tries to minimize unnecessary verification cost by using property-based extraction of dependent
functions.

5.1 Abstraction through static code analysis

Given a property, we first extract the variables specified in the property, which is called Verification Tar-
get Variables, and identify all the variables that are used to define the Verification Target Variable, called
Extended Verification Target Variable. Then, functions modifying those Extended Verification Target
Variables, called End Level Functions, are extracted. The prototypes of the End Level Functions are

74 Property-based Code Slicing

Target
variables

Root_Level_
Functions

End_Level_Functions
Backward

Reachability
Analysis

Forward
Reachability

Analysis

Root_Level
Environment

Model

End_Level
Environment

Model
&&

Abstract kernel

Root_Level
abstract kernel

&&
End_Level

Constraints

Figure 3: Backward and forward reachability analysis for environment generation

used to construct an end-level environment model. The corresponding end-level abstract kernel code
consists of all the End Level Functions and their dependent code. The Root Level Functions are identi-
fied by performing backward reachability analysis from each End Level Function. The prototypes of the
Root Level Functions are used to construct a root-level environment model. Its corresponding abstract
kernel code is identified by performing forward reachability analysis from each Root Level Function.
The result of forward reachability analysis is also used to identify constraints for the end-level environ-
ment model.

Definition 1 Property-related variables:

1. A Verification Target Variable is a variable that appears in the property specification.

2. An Extended Verification Target Variable is a variable that a Verification Target Variable depends
on.

Definition 2 Classification of functions:

1. An End Level Function is a function that directly modifies, sets, or uses an Extended Verification
Target Variable.

2. A Root Level Function is an API that is a terminal node of the called-by graph of an
End Level Function.

From this process, we extract two types of functions for constructing different levels of environment
models: (1) functions for root-level environments, and (2) functions for end-level environments. Figure 3
shows the conceptual diagram for the whole process.

For a simple example, if a property in question is

Property1 : assert(t pl f i f o rw[t pl h prio].size > 0),

Mingyu Park & Taejoon Byun & Yunja Choi 75

then we first identify Extended Verification Target Variables and End Level Functions for tpl fifo rw
and tpl h prio. The identified set of End Level Functions for the variable t pl h prio is { t pl get proc,
t pl put preempted proc, t pl put new proc, t pl schedule f rom running } in the Trampoline kernel.
An end-level environment model is constructed as non-deterministic calls to those end-level functions
and its corresponding abstract kernel encompasses all the identified End Level Functions and their de-
pendent code. We then identify Root level Functions for each of the End Level Functions; For ex-
amples, {ReleaseResource, Schedule, ActivateTask, SetEvent, TerminateTask, ChainTask, WaitEvent,
StartOS} are Root Level Functions for t pl get proc, which are identified from its called-by graph. A
root-level environment model consists of non-deterministic calls to those API functions and its corre-
sponding abstract kernel encompasses all the identified root level functions and their dependent code.

5.2 Implementation

Safety

Properties

Target Variable

Extraction

Source Code

(in C)

Static

Analysis Tool

(Understand)

Root-Level

Function

Extraction

Root-Level

Function

Scenario

Generation

Constraint

Automata

End-Level

Function

Extraction

Internal

Constraint

Generation

End-Level

Function

Scenario

Generation

Environment

Model

External

Constraints

(OSEK/VDX)

Analyze Source

Code

Extract

Verification

Target Using

Structure

Dependency

Extract Source

Code

Verification

Target

Static

Analysis Tool

(Understand)

Safety

Property

Root-Level

Scenario

Entire System
Verification

Target

Figure 4: Environment Generation

The suggested approach was implemented and fully automated. Figure 4 shows the overall struc-
ture of the automation. The source code of the Trampoline OS is analyzed by the static analysis tool
Understand [4], which creates a data repository of the analysis results from which information on vari-
able/function dependencies can be extracted using a C plug-in. The environment generator first extracts
target variables from the properties and then extracts Extended Target Variables and End-Level Func-
tions by analyzing dependency relations among variables and functions. Root-Level Functions are then

76 Property-based Code Slicing

extracted from the called-by graph for each End-Level Function. A Root-Level Function Scenario is
generated as an arbitrary sequence of function calls of Root-Level Functions, which complies with the
external constraints from the OSEK/VDX standard. Finally, the environment model is generated as an ar-
bitrary sequence of End-Level Functions that complies with both the external and the internal constraints.
The internal constraints are partial-order relations among End-Level Functions, which are generated from
each Root-Level Function.

The last step is the property-based abstraction of the original code. Since the environment generation
step identifies all necessary End-Level Functions modifying the Verification Target Variables together
with the ordering relation among them in call sequences, verification requires only the source code
of those End-Level Functions plus codes for preprocessing them. Therefore, for each safety property,
verification is performed using the environment model generated with the tool and the property-based
abstract code.

6 Setting up Environments for Collaborative Verification

Target

initialization

Pick a function

randomly

Satisfies

constraints?
YES

Update system

variable &

execute

Constraints Target

Completed?NO YES

Execution

path

Root-Level

Scenario

NO

Figure 5: Scenario generation process for random testing

CBMC and testing require different settings for their verification environments even with the same set
of End Level Functions; CBMC requires only the algorithm of non-deterministic function calls. Ran-
dom testing (both root-level and end-level), however, requires explicit function call sequences generated
from a given environment model. Figure 5 shows the process for generating such function call sequences,
which can be applied to both End-Level and Root-Level environment models. It repeats the selection and
checking process by arbitrarily selecting a function and checking whether the selected function satisfied
the constraints or not. We have implemented an OSEK/VDX simulator to check the external constraints
in the process of root-level sequence generation. Internal constraints are identified by call graph analysis.
Details are described in the following two sub-sections.

We note that the checking the constraints is not necessary to ensure the correctness of the scenario
generation, but it is essential for making the verification efficient, since otherwise the verification pro-
duces too many false errors.

Mingyu Park & Taejoon Byun & Yunja Choi 77

6.1 Root-Level Scenario Generation

Application

description

(OIL)

Application

specific

code in C

Root-Level

Scenario

Generator

Goil

Kernel

configuration

(C)

Root-Level

Function list

Abstract kernel

Figure 6: Root-Level scenario and the testing environment

Root-Level scenario generation is based on the scenario generation process illustrated in Figure 5. A
Root-Level Function Scenario is an arbitrary sequence of function calls of Root-Level Functions, and it
complies with the external constraints from the OSEK/VDX standard. Figure 6 shows the Root-Level
test environment for the Trampoline OS. Since an OIL file is required for testing, an OIL file is specified
as an input, which is compiled with the extracted kernel code and the random sequence of Root-Level
Functions generated from our Root-Level scenario generator.

There are two things to be done before implementing a scenario generator. First, every constraint
specified in the OSEK/VDX standard should be identified. Second, an OSEK/VDX Simulator - an
abstract OSEK/VDX model - should be implemented in order to trace all the changes and fully observe
constraints.

6.1.1 Identification of external constraints

The OSEK/VDX standard explicitly specifies constraints among the APIs. The description column of
Figure 7 lists some of the constraints manually identified from the standard. These constraints are rep-
resented as pre-conditions with respect to other APIs. For example, the API function TerminateTask
can be called only if the task has been activated either by ActivateTask or ChainTask. Therefore, we set
{ActivateTask, ChainTask} as preconditions of TerminateTask. Figure 7 shows a couple of precondi-
tions of other API functions.

Identified constraints are then imposed in the Root-Level scenario generation process illustrated in
Figure 5. Figure 8 is an example algorithm of the constraint checking.

6.1.2 OSEK/VDX Simulator

To fully consider all the identified constraints, it is necessary to trace changes that previous function calls
have made. For example, if ActivateTask(t1) is chosen as the first Root-Level Function in a scenario, task
t1 should be marked as READY task, for further scenario validation. This process is fully automated by
implementing an OSEK/VDX simulator.

The OSEK/VDX simulator traces run-time information such as list of resources, list of events, list of
task models, reference to running task, ready queue (priority queue), and waiting queue. It provides Root-

78 Property-based Code Slicing

API function Pre-condition Description

StartOS !StartOS StartOS is executed only once at the beginning.

WaitEvent !WaitEvent ||
SetEvent

Since the state of calling task is set to WAITING after calling WaitEvent, it
cannot take any action until SetEvent is called. So WaitEvent can only be
called when it has first appeared, or every waiting task has been set by
SetEvent.

ReleaseResource GetResource ReleaseResource can be called when the resource is already held.

TerminateTask ActivateTask ||
ChainTask

TerminateTask can be called only when there is running task, which is
activated by ActivateTask or ChainTask.

Schedule !GetResource Schedule can be called only when there is held resources, which is held by
GetResource

ChainTask !GetResource ChainTask can be called only when there is held resources, which is held by
GetResource

Figure 7: Constrant list extrected from OSEK/VDX spec

bool canReleaseResource(Resource r1){

 if (running task doesn't exist)

 return false;

 else if (running task is not holding resource r1)

 return false;

 else // when running task is holding the resource r1

 return true;

}

Figure 33

2. OSEK/VDX Simulator

To fully consider all the constraints identified in step 1, it is necessary to trace changes that previous

function calls have made. For example, if ActivateTask(t1) is chosen as the first Root-Level Function in

scenario, task t1 should be marked as READY task, for further scenario validation. This process is fully

automated by implementing a modelled OSEK/VDX called OSEK/VDX Simulator. This acts as the ‘target’

in figure 88, on which randomly chosen functions are executed.

OSEK/VDX Simulator traces run-time information such as list of resources, list of event, list of Task

models, reference to running task, ready queue (priority queue), and waiting queue. It provides root-

level function calls just like OSEK/VDX APIs. When one of these procedure is called, it behaves like

OSEK/VDX, since this is written with regard to OSEK specification. Task, task scheduler, task status, etc.

are also modelled according to OSEK/VDX standard. Figure ? shows overall process of OSEK/VDX

Simulator.

Start

Has more
Function to

execute in the
body of running

task?

Wait for
generation

Execute &
update variables

Is scheduling
necessary?

Call Scheduler

Is generation
completed?

YES

NO

NO

YES

NO

YES

Scenario in
C

End

Randomly chosen function is added to the body of running task, by another module called Scenario

Generator. When there is a function in the body of running task which has not been executed by

Simulator, execute the function. If scheduling is necessary, call the scheduler, and execute all the

Figure 8: ReleaseResource constraint checker

Level Function calls just like OSEK/VDX APIs. When one of these procedures is called, it simulates
the behavior of OSEK/VDX. The simulator includes task model, task scheduler, event management, and
resource management. Figure 9 shows the overall process of the OSEK/VDX simulator.

A randomly chosen function is added to the body of the running task by a module called Scenario
Generator. When there is a function in the body of the running task that has not been executed by the
simulator, it executes the function. If scheduling is necessary, it calls the scheduler and executes all the
functions that already exist in the body of the preempted task, when preemption occurs. This process is
repeated until there is no function left to execute, and the Scenario Generator is requested to generate
another function randomly.

Whether scenario generation has been completed or not can be determined by checking all tasks
that are initially generated from the given OIL file. If every task has completed its execution with
TerminateTask or ChainTask, it can be determined that the scenario generation is completed.

6.2 End-Level Environment Model

The End-Level scenario generation process is also based on the scenario generation process illustrated
in Figure 5. It executes an arbitrary sequence of End Level Functions, which is chosen from among
the list of End Level Functions serving as an environment of CBMC model checking and End-Level
random testing.

This process considers internal constraints among End-Level functions; since End-Level functions

Mingyu Park & Taejoon Byun & Yunja Choi 79

Start

Has more
Functions to

execute in the
body of running

task?

Wait for
generation

Execute &
update variables

Is scheduling
necessary?

Call Scheduler

Is generation
completed?

YES

NO

NO

YES

NO

YES

Scenario in
C

End

Figure 9: OSEK/VDX simulator

can only be called by API-Level functions, the pre-conditional constraints of Root-Level functions iden-
tified from the OSEK/VDX constraints must be implicitly obeyed by the End-Level functions. These
implicit constraints can be identified by analyzing call-graphs of Root-Level functions and their pre-
conditional relations. We call such implicit constraints internal constraints.

API End-Level Function

StartOS tpl_put_new_proc, tpl_put_new_proc, tpl_get_proc

WaitEvent tpl_get_proc

SetEvent tpl_put_new_proc, tpl_schedule_from_running

ReleaseResource tpl_schedule_from_running

ActivateTask tpl_put_new_proc, tpl_schedule_from_running

TerminateTask tpl_get_proc

Schedule tpl_schedule_from_running

ChainTask tpl_put_new_proc, tpl_get_proc

Figure 10: End-Level Functions called by each API-Level Function

For example, if we consider the Root-Level APIs and their corresponding End-Level functions, the
external constraint WaitEvent can be called after SetEvent is called can be re-interpreted as t pl get proc
can be called after t pl put new proc and t pl schedule f rom running are called, which can be writ-
ten in a regular expression (t pl put new proc t pl schedule f rom running (End Level Function −
t pl get proc)∗ t pl get proc)∗.

Checking constraints of this kind cannot be done using the OSEK/VDX simulator because the End-
Level functions include implementation-specific function names that cannot be modeled from the stan-
dard. Instead, the internal constraints are simplified using the characteristic that a function cannot
be called more times than its preceding functions in the partial order relation. The example inter-
nal constraint can be simplified as The number of t pl get proc calls cannot exceed the one of either

80 Property-based Code Slicing

t pl put new proc or t pl schedule f rom running. The constraint checker keeps track of the number of
each End-Level functions calls and checks (# t pl get proc< # t pl put new proc) && (# t pl get proc<
t pl schedule f rom running).

7 Experiments

We have conducted a series of experiments to show the impact of our approach using CBMC model
checking, End-Level random testing, and Root-Level random testing. The target verification properties
are three functional safety properties from the Trampoline kernel:

assert(t pl h prio 6=−1) (1)

assert(t pl kern 6= NULL) (2)

assert(t pl kern→ state == RUNNING) (3)

t pl h prio is the value of the highest-priority task in the ready queue in the Trampoline kernel.
t pl h prio 6= −1 is supposed to be true whenever rescheduling is necessary. t pl kern stores the key in-
formation of the currently running task. t pl kern 6= NULL and t pl kern→ state == RUNNING checks
if the state of the running task is RUNNING when the scheduler is called.

We performed verification of these three assertions using the model checker CBMC, Root-Level ran-
dom testing, and End-Level random testing. The verification cost in terms of the number of verification
conditions and the resource requirements was measured for CBMC verification. Branch coverage was
measured using the Squish Coco code coverage tool [2] for random testing. All experiments were per-
formed on Linux Fedora 16 OS, with Intel Xeon 3.4GHz e3-1270 processor and 32GB of 1333MHz
DDR3 RAM.

Property

Unwind

tpl_h_prio != -1

code size : 437 lines

3 End-Level Functions / 19 Functions in total

tpl_kern != NULL

tpl_kern->state == RUNNING

code size : 787 lines

7 End-Level Functions / 32 Functions in total

VCC Time(s) Memory(MB) VCC Time(s) Memory(MB)

Unwind 3 15 2 55.72 53 15 200.94

Unwind 7 43 91 297.14 157 4,100 1288.90

Unwind 10 64 2,379 923.67 235 42,241 1942.54

Unwind 15 99 30,748 2693.75 365 > 6 days > 7366.89

Figure 11: Time and memory space to verify with CBMC

Figure 11 shows the time and memory space it took to verify the Trampoline operating system with
the End-Level Environment Model using the model checker CBMC. Time and memory space increase
exponentially as the length of the End-Level function calls (unwind value) increases. CBMC verifies the
assertions by searching through every possible scenario with the length of the unwind value, making it
a powerful method. With the given resources, CBMC reported no counter examples up to the unwind
value 10, but was not able to finish its verification process for the unwind value 15 after 6 days. We
do not report the result of CBMC model checking using Root-Level environment models since it is too
costly to perform even with the value of unwind option 10.

Mingyu Park & Taejoon Byun & Yunja Choi 81

Property tpl_h_prio != -1

code size : 1337 lines

(8 Root-Level, 3 End-Level Functions) / 50 Functions

tpl_kern != NULL

tpl_kern->state == RUNNING

code size : 1378 lines

(9 Root-Level, 7 End-Level Functions) / 52 Functions

Length of the Scenario 14 20 22 32 34 14 20 22 32 34

tpl_schedule_from_running 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3)

tpl_schedule_from_dying - - - - - 80%(4/5) 80%(4/5) 60%(3/5) 80%(4/5) 100%(5/5)

tpl_schedule_from_waiting - - - - - 0%(0/3) 100%(3/3) 66.67%(2/3) 66.67%(2/3) 66.67%(2/3)

tpl_start_scheduling - - - - - 100%(1/1) 100%(1/1) 100%(1/1) 100%(1/1) 100%(1/1)

tpl_wait_event_service - - - - - 0%(0/5) 60%(3/5) 60%(3/5) 60%(3/5) 60%(3/5)

tpl_activate_task - - - - - 100%(4/4) 100%(4/4) 100%(4/4) 100%(4/4) 100%(4/4)

tpl_set_event - - - - - 0%(0/5) 80%(4/5) 80%(4/5) 80%(4/5) 80%(4/5)

tpl_get_proc 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3) - - - - -

tpl_put_new_proc 66.67%(2/3) 66.67%(2/3) 66.67%(2/3) 66.67%(3/3) 66.67%(2/3) - - - - -

Time(s) - - - - - - - - - -

Memory(MB) 2.64 2.64 2.64 2.64 2.64 2.64 2.64 2.64 2.64 2.64

 Figure 12: Coverage, time, and memory space to verify with Root-Level Random Testing

Property tpl_h_prio != -1

code size : 437 lines

3 End-Level Functions / 19 Functions in total

tpl_kern != NULL

tpl_kern->state == RUNNING

code size : 787 lines

7 End-Level Functions / 32 Functions in total

Length of the Scenario 10 50 100 1000 10000 10 50 100 1000 10000

tpl_schedule_from_running 66.67%(2/3) 66.67%(2/3) 66.67%(2/3) 66.67%(2/3) 66.67%(2/3) 33.33%(1/3) 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3)

tpl_schedule_from_dying - - - - - 60%(3/5) 60%(3/5) 100%(5/5) 100%(5/5) 100%(5/5)

tpl_schedule_from_waiting - - - - - 0%(0/3) 66.67%(2/3) 66.67%(2/3) 66.67%(2/3) 66.67%(2/3)

tpl_start_scheduling - - - - - 100%(1/1) 100%(1/1) 100%(1/1) 100%(1/1) 100%(1/1)

tpl_wait_event_service - - - - - 0%(0/5) 60%(3/5) 60%(3/5) 60%(3/5) 60%(3/5)

tpl_activate_task - - - - - 100%(4/4) 100%(4/4) 100%(4/4) 100%(4/4) 100%(4/4)

tpl_set_event - - - - - 0%(0/5) 80%(4/5) 80%(4/5) 100%(5/5) 100%(5/5)

tpl_get_proc 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3) - - - - -

tpl_put_new_proc 66.67%(2/3) 66.67%(2/3) 100%(3/3) 100%(3/3) 100%(3/3) - - - - -

Time(s) - - - - 0.04 - - - - 0.07

Memory(MB) 1.06 1.06 1.06 1.06 1.06 1.07 1.07 1.07 1.07 1.07

 Figure 13: Coverage, time, and memory space to verify with End-Level Random Testing

There are a few dozens of extracted functions in random testing environments, including End-Level
Functions, as illustrated in Figures 12 and 13. Due to a lack of space, only the test results of End-Level
Functions are described. Root-Level Random Testing (Figure 12) is much faster (less than 1/100 sec-
onds), consumes little memory (up to 2.64MB of memory), and achieves a certain level of test coverage
quickly, but the coverage does not improve after test sequences of length 34. In End-Level Random Test-
ing (Figure 13), a test sequence of length 100 achieves a certain level of coverage both for t pl h prio and
t pl kern. The coverage stays the same afterwards. End-Level Random Testing required around 1.06 1.07
MBytes of memory.

For many cases, the coverage did not increase even with lengthier test cases. There can be two reasons
why some part of the code are unreachable. The first reason is exception handling; parts of the code for
exception handling are never reached unless an exceptional situation occurs. The second reason is that
some variables in conditional statements are not included in the Extended Verification Target Variable. So
the behavior of updating these variables might not be fully extracted, which can make some conditional
statements fixed. An example of this case is illustrated in Figure 14. This conditional statement is only

82 Property-based Code Slicing

void tpl_schedule_from_running(void){

 ……

 // READY_AND_NEW

 if (tpl_kern.running->state == READY_AND_NEW)

 {

 tpl_init_proc(tpl_kern.running_id);

 }

 ……

}

Figure 14: Example of uncovered conditional statement

tpl_get_proc -> tpl_h_prio : 2, taskNum : 4, activationCount(T1, T2, T3) : 1, 255, 2

tpl_put_new_proc -> tpl_h_prio : 2, taskNum : 5, activationCount(T1, T2, T3) : 1, 255, 1

---put_new_proc : 1

tpl_get_proc -> tpl_h_prio : 2, taskNum : 4, activationCount(T1, T2, T3) : 1, 0, 1

tpl_get_proc -> tpl_h_prio : 0, taskNum : 3, activationCount(T1, T2, T3) : 1, 0, 0

tpl_schedule_from_running -> tpl_h_prio : -1, taskNum : 3, activationCount(T1, T2, T3) : 0, 0, 0

RandomTest: RandomTest.c:505: tpl_schedule_from_running: Assertion `tpl_h_prio != -1' failed.

Figure 15: Error caused by overflow

executed when tpl schedule from dying or tpl activate task is executed before this code. But these two
functions are out of boundary in this model because the model is generated only with regard to the
property tpl h prio != 0. Thus coverage cannot be increased, and testing terminates.

In terms of comprehensiveness, CBMC is the most powerful method, verifying every possible sce-
nario within the same length, but it is limited by the length. As shown in Figure 11, the verification
cost increases exponentially as unwinding depth increases. Therefore, CBMC cannot detect potential
faults that can be identified only in long task scenarios. Unlike verification with CBMC, the length of
the scenarios is not limited in random testing since the cost is much cheaper than CBMC, as shown in
Figure 13. Though it cannot be comprehensive, it can be more effective in stress testing, since the length
of the test sequences can be sufficiently long.

End-Level Random Testing did in fact, catch some overflow errors in the Trampoline kernel as illus-
trated in Figure 15. These errors have occurred because the size of the variables saving the activation
count is limited to 8 bits; the second line of Figure 15 shows that Task2 has the activation count 255, but
adding another activation changed its value to 0. So Trampoline has changed the value of t pl h prio to
-1, meaning that the process table has no activated task available. The variable size is implementation-
specific and is not constrained to 8 bits, neither in the OIL specification nor in the OSEK/VDX specifi-
cation. This problem could be addressed by constraining the size to 8 bits in the OIL specification.

A Model checker could find this type of potential faults if we can set the value of the unwind option
larger than 255, but our experiments could not identify it due to resource limitations. End-Level Random
Testing is appropriate for finding this kind of errors because the cost does not increase much even with
lengthy test scenarios.

We could not identify the same fault using Root-Level Random Testing, either. The main reason
is that Root-Level Random Testing is coupled with a pre-defined OIL configuration file. The OIL file

Mingyu Park & Taejoon Byun & Yunja Choi 83

specifies the typical system configuration, and thus, activating a task over 255 times is not likely to
happen unless we specifically aim at stress testing. End-Level Random Testing is more effective in stress
testing, since it is not constrained by the system configuration and can test abnormal cases.

API-Level Random Testing, however, is beneficial in that it is not necessary to do additional API-
Level analysis when testing identifies faults, which is necessary in model checking and End-Level Ran-
dom Testing.

8 Conclusion

This paper presented methods and tools for environment generation and code abstraction to improve the
efficiency of verification using model checking and testing. The effect of using the suggested approach
was demonstrated through a series of experiments using the Trampoline operating system as a case
example. The benefit of property-based environment generation is two-fold: (1) it reduces verification
cost by reducing the target code and by limiting its environment to the task interaction scenario relevant
to the verification property, and (2) it simplifies the analysis process and localizes the verification activity
by focusing on the points of interest.

The experiments revealed relative pros and cons of the three verification methods and identified
potential safety faults, which suggests the following collaborative use of model checking and testing;

1. Apply End-Level Random Testing first for stress testing.

2. Apply Root-Level Random Testing to conform the errors identified through End-Level Random
Testing.

3. Apply model checking using CBMC last for comprehensive verification within a limited scope.

Our tool still needs some improvements. First, conditional dependencies need to be considered so
that test coverage can be improved. Second, Root-Level scenario generation currently assumes a fixed
OIL configuration. We would like to relax the condition so that an arbitrary OIL can be handled by the
tool.

References

[1] OSEK/VDX Portal. Http://portal.osek-vdx.org.

[2] Squish Coco Code Coverage. Http://www.froglogic.com/squish/coco/.

[3] Trampoline – OpenSource RTOS project. Http://trampoline.rts-software.org.

[4] Understand: Source Code Analysis and Metrics. Http://www.scitools.com/.

[5] David Binkley (1999): The Application of Program Slicing to Regression Testing. Information and Software
Technology, pp. 583–594, doi:10.1016/S0950-5849(98)00085-8.

[6] Manfred Broy (2006): Challenges in automotive software engineering. In: Proceedings of the 28th Interna-
tional Conference on Software Engineering, doi:10.1145/1134285.1134292.

[7] Omar Chebaro, Nikolai Kosmatov, Alain Giorgetti & Jacques Julliand (2012): Program slicing enhances
a verification technique combining static and dynamic analysis. In: Proceedings of the 27th Annual ACM
Symposium on Applied Computing, pp. 1284–1291, doi:10.1145/2245276.2231980.

[8] Jiang Chen & Toshiaki Aoki (2011): Conformance Testing for OSEK/VDX Operating System Using Model
Checking. In: 18th Asia-Pacific Software Engineering Conference, doi:10.1109/APSEC.2011.26.

http://dx.doi.org/10.1016/S0950-5849(98)00085-8
http://dx.doi.org/10.1145/1134285.1134292
http://dx.doi.org/10.1145/2245276.2231980
http://dx.doi.org/10.1109/APSEC.2011.26

84 Property-based Code Slicing

[9] Edmund Clarke, Daniel Kroening & Flavio Lerda (2004): A Tool for Checking ANSI-C Programs. In:
10th International Conference on Tools and Algorithms for the Construction and Analysis of Systems,
doi:10.1007/978-3-540-24730-2 15.

[10] Edmund M. Clarke, Orna Grumberg & Doron Peled (1999): Model Checking. MIT Press.
[11] Matthew Dwyer & Corina Pasareanu (1998): Filter-Based Model Checking of Partial Systems. In:

6th ACM SIGSOFT International symposium on Foundations of Software Engineering, pp. 189–202,
doi:10.1145/288195.288307.

[12] Dimitra Giannakopoulou, Corina S. Pasareanu & Howard Barringer (2002): Assumption Generation for Soft-
ware Component Verification. In: 17th IEEE International Conference on Automated Software Engineering,
pp. 3–12, doi:10.1109/ASE.2002.1114984.

[13] A. Gupta, K.L.McMillan & Z. Fu (2008): Automated Assumption Generation for Compositional Verification.
Formal Methods in System Design 32, pp. 285–301, doi:10.1007/978-3-540-73368-3 45.

[14] Rajiv Gupta, Mary Jean Harrold & Mary Lou Soffa (1992): An Approach to Regression Testing using Slicing.
In: Proceedings of the Conference on Software Maintenance, pp. 299–308, doi:10.1109/ICSM.1992.242531.

[15] Nannan He & Michael S. Hsiao (2007): Bounded Model Checking of Embedded Software in Wire-
less Cognitive Radio Systems. In: 25th International Conference on Computer Design, pp. 19–24,
doi:10.1109/ICCD.2007.4601875.

[16] Gerard J. Holzmann (2003): The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley
Publishing Company.

[17] Natalia Ioustinova & Natalia Sidorova (2002): Abstraction and Flow Analysis for Model Checking Open
Asynchronous Systems. In: Proceedings of the Ninth Asia-Pacific Software Engineering Conference,
doi:10.1109/APSEC.2002.1182992.

[18] Jürgen Mössinger (2010): Software in Automotive Systems. IEEE Software 27(2), pp. 92–94,
doi:10.1109/MS.2010.55.

[19] Wonhong Nam, P. Madhusudan & Rajeev Alur (2008): Automatic symbolic compositional verification by
learning assumptions. Formal Methods in System Design, doi:10.1007/s10703-008-0055-8.

[20] Pascal Raymond Nicolas Halbwachs, Fabienne Lagnier (1993): Synchronous Observers and the Verification
of Reactive Systems. In: Third International Conference on Algebraic Methodology and Software Technol-
ogy, AMAST’93.

[21] Pavel Parizek & Frantisek Plasil (2007): Partial Verification of Software Components: Heuristics for Envi-
ronment Construction. In: 33rd EUROMICRO Conference on Software Engineering and Advanced Appli-
cations, doi:10.1109/EUROMICRO.2007.46.

[22] John Penix, Willem Visser, Seungjoon Park, Corina Pasareanu, Eric Engstrom, Aaron Larson & Nicholas
Weininger (2005): Verifying Time Partitioning in the DEOS Scheduling Kernel. Formal Methods in Systems
Design Journal 26(2), pp. 103–135, doi:10.1007/s10703-005-1490-4.

[23] O. Tkachuk, M.B. Dwyer & C.S. Pasareanu (2003): Automated Environment Generation for Software Model
Checking. In: 18th IEEE International Conference on Automated Software Engineering, pp. 116–129,
doi:10.1109/ASE.2003.1240300.

[24] M. Weiser (1984): Program Slicing. IEEE Transactions on Software Engineering SE-10(4), pp. 352–357,
doi:10.1109/TSE.1984.5010248.

[25] Kenro Yatake & Toshiaki Aoki (2010): Automatic Generation of Model Checking Scripts based on Environ-
ment Modeling. In: 17th International SPIN Conference on Software Model Checking, doi:10.1007/978-3-
642-16164-3 5.

http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1145/288195.288307
http://dx.doi.org/10.1109/ASE.2002.1114984
http://dx.doi.org/10.1007/978-3-540-73368-3_45
http://dx.doi.org/10.1109/ICSM.1992.242531
http://dx.doi.org/10.1109/ICCD.2007.4601875
http://dx.doi.org/10.1109/APSEC.2002.1182992
http://dx.doi.org/10.1109/MS.2010.55
http://dx.doi.org/10.1007/s10703-008-0055-8
http://dx.doi.org/10.1109/EUROMICRO.2007.46
http://dx.doi.org/10.1007/s10703-005-1490-4
http://dx.doi.org/10.1109/ASE.2003.1240300
http://dx.doi.org/10.1109/TSE.1984.5010248
http://dx.doi.org/10.1007/978-3-642-16164-3_5
http://dx.doi.org/10.1007/978-3-642-16164-3_5

	1 Introduction
	2 Related Work
	3 Background
	3.1 OSEK/VDX
	3.2 Trampoline
	3.3 Model checking using CBMC

	4 Overall Approach
	5 Environment Generation
	5.1 Abstraction through static code analysis
	5.2 Implementation

	6 Setting up Environments for Collaborative Verification
	6.1 Root-Level Scenario Generation
	6.1.1 Identification of external constraints
	6.1.2 OSEK/VDX Simulator

	6.2 End-Level Environment Model

	7 Experiments
	8 Conclusion

