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Many universities have courses and projects revolving around compiler or interpreter implementation

as part of their degree programmes in computer science. In such teaching activities, tool support can

be highly beneficial. While there are already several tools for assisting with development of the

front end of compilers, tool support tapers off towards the back end, or requires more background

experience than is expected of undergraduate students.

Structural operational semantics is a useful and mathematically simple formalism for specifying

the behaviour of programs and a specification lends itself well to implementation; in particular big-

step or natural semantics is often a useful and simple approach. However, many students struggle

with learning the notation and often come up with ill-defined and meaningless attempts at defining

a structural operational semantics. A survey shows that students working on programming language

projects feel that tool support is lacking and would be useful.

Many of these problems encountered when developing a semantic definition are similar to prob-

lems encountered in programming, in particular ones that are essentially the result of type errors.

We present a pedagogical metalanguage based on natural semantics, and its implementation,

as an attempt to marry two notions: a syntax similar to textbook notation for natural semantics on

the one hand, and automatic verification of some correctness properties on the other by means of a

strong type discipline. The metalanguage and the tool provide the facilities for writing and executing

specifications as a form of programming. The user can check that the specification is not meaningless

as well as execute programs, if the specification makes sense.

1 Introduction

Many degree programmes in computer science have a substantial activity devoted to programming lan-

guage design and implementation, both of which may be aided by structural operational semantics. As

a motivating example, both undergraduate degree programmes in computing at Aalborg University in-

volve such a project in the 4th semester, where the learning goals involve relating the definition and

implementation.

Providing tool support for students carrying out such projects is an important challenge. There are

several tools for parser generation such as ANTLR [13], Happy[1], Menhir[16], or Yacc [9], that support

the definition of programming language syntax, with students using them extensively, to the point of

becoming a central part of their project work. However, experience shows that many students struggle

with writing a meaningful definition of a structural operational semantics, where some students even

attempt to use parser generators as a surrogate for enforcing semantics. In addition, project supervisors

often come from backgrounds outside the area of programming languages and are consequently often

unfamiliar with the topic.

http://dx.doi.org/10.4204/EPTCS.369.4
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Moreover, tools that use operational semantics are few and far between. Early attempts include

RML [14] and Letos [6]. The most ambitious of its kind is PLT Redex[3] which uses the approach to

reduction semantics advocated by Felleisen et al. In PLT Redex, specifications are given in the Racket

language. The advantage of this approach is clear: writing a definition of the semantics of a programming

language becomes similar to programming in a Lisp-like language. The disadvantage is that learners of

formal semantics have to balance both the mathematical notation and the syntax of the Racket language

– and must learn both. The K Framework [17] and its implementation in Maude [18] give an alternative

computational model for operational semantic definitions. While the K Framework is general in nature,

it is not yet widely used in teaching, and the focus of this framework is not that of structural operational

semantics, but a new setting based on Rewriting Logic; its major concerns differ from that of our work,

instead focusing on modularity within operational semantics.

Natural semantics is a useful entry point for learning about the formal semantics of programming

languages, and in the present work we focus on this style of semantics. In our experience many of the

commonly encountered obstacles stem from misunderstandings that are really programming errors in

the setting of the notation used. In particular, many such misunderstandings can best be viewed as type

errors.

In this paper we describe a tool in the form of a metalanguage based on natural semantics[8]. The

syntax of the metalanguage attempts to reflect usual textbook notation, better aligning a learner’s cur-

riculum and tool usage. This is supplemented by a type system that allows learners to quickly discover

inconsistencies in proposed definitions. To test its capabilities, the metalanguage has been used to im-

plement definitions in an existing textbook [7], uncovering several inconsistencies.

In Section 3 we outline the principles underlying structural operational semantics and use this account

to describe typical challenges in Section 4. This is followed by a metalanguage description in Section 5,

examples of how the tool has been used to discover flaws in structural operational semantics definitions

from a textbook in Section 6, and details on the implementation in Section 7. Conclusions and future

work are discussed in Section 8.

2 A survey of students’ experiences

We carried out a survey among students that had recently completed their undergraduate degrees in

computer science at Aalborg University to find out more about their experience with the programming

language project in the 4th semester. As previously noted, usage of structural operational semantics was

commonplace in the projects.

We asked four questions concerning the importance of tool support in this setting. Each of which

could be answered according to a 5-point Likert scale.

There were a total of 25 respondents. An overview of the reponses is shown in Figure 1.

The numbers indicate that students feel that tool support for building and checking definitions in

structural operational semantics was lacking and would have been desirable in a project setting.

We also asked for qualitative comments. The replies that we got support this impression. The general

observation was that a tool that can check for consistency of a semantic definition and allow one to get

an overview of it is important. Some students also mentioned that it would be useful to be able to typeset

transition rules in LATEX in a more structured fashion.

Below are two sample quotes (translated from Danish) that highlight the major issues:

• Our greatest challenges were those of checking if all the semantic rules were correctly

constructed (consistent) and of making the choice of which parts of the semantics would
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Strongly

agree

Somewhat

agree

Neither Somewhat

disagree

Strongly

disagree

The facilities for checking

if the semantic definition

of the programming lan-

guage of the project were

satisfactory.

13 17 29 38 4

It was easy to determine

exactly what the problems

in our attempt at a seman-

tic definition were.

8 4 38 38 13

The tool support for de-

vising a semantic defini-

tion was satisfactory.

4 13 21 29 33

It would be useful if one

could generate a proto-

type interpreter based on a

semantic definition.

42 50 4 4 0

Figure 1: Results of the survey. Numbers represent the percentage of respondents

be responsible for what.

• When I followed the course back in 2018, there were no tools that we used. You had to

go through the semantics yourself to spot mistakes or go through the semantics together

with someone else. This walkthrough was indeed helpful (until the rules became too

long) but one could easily end up staring blindly at the rules.

3 Structural Operational Semantics

Structural operational semantics (SOS) is a formalism for describing programming language semantics,

others being denotational semantics[5] and attribute grammars. The approach originates with the work

by Plotkin [15] and differs from the others in that a semantic definition describes the computation steps

of a program by means of a syntax-directed definition using inference rules. SOS comes in two variants:

small-step and big-step (natural) semantics. What follows is an overview of SOS, with the focus being

on natural semantics, its components, and the usual textbook notation, which comes into play when

describing the metalanguage.

3.1 Overview

SOS revolves around defining transition systems, relating execution states of a program, also known as

configurations. A transition typically involves the syntactic element to be evaluated, and the current

bindings. In a small-step semantics, a transition represents a single evaluation step, with successive

iterations leading to a final evaluation, whereas in a natural semantics, transitions represent complete

evaluations.
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The formal definition of a transition system in a natural semantics is as a triple, (I,→,F), where →
expresses a relation between initial and final configurations, represented by sets I and F , respectively.

Intuitively, for some i ∈ I and f ∈ F , if transition i → f holds, then i evaluates to f . The relation between

configurations is inferred via a transition system, the rules of which are defined according to the following

template:

[RULE NAME]:
i1 → f1 ... in → fn

i → f
optional side conditions (1)

The conclusion, denoted by judgement i → f , holds if all premises, ii → fi, for 1 ≤ i ≤ n, hold. An

inference rule with no premises is an axiom, and holds as long as all side conditions hold. A rule may

have side conditions, typically describing predicates on configurations in the rule. By generalisation, any

i → f holds if a closed derivation tree may be inferred through the transition rules. For any derivation

tree we have that:

• The tree is rooted at the conclusion of a rule,

• Successfully applying a rule generates a sub-tree for each premise e.g., each ii → fi in (1) may

produce a corresponding sub-tree,

• Satisfied axioms are leaves in the tree.

A derivation tree is defined inductively as closed if it is a satisfied axiom, or all of its sub-trees are

closed. If a closed derivation tree is produced for some transition, i → f , then the transition satisfies the

semantics of the language.

Transitions may involve an antecedent, denoted as α ⊢ i → f , read as given α , we have that i → f .

An SOS is syntax-directed, where transition rules are (typically) exhaustively defined over all syn-

tactical members of the language. This entwines the semantics of the language with its abstract syntax,

making the formation rules of the abstract grammar an important component of a semantics definition.

3.2 An example specification

Consider a small language, Imp, in conventional textbook notation, consisting of sequences of arithmetic

expressions and variable declarations. The syntactic categories are Stm, Exp, Var and Num for state-

ments, expressions, variable names and integer literals, respectively. The grammar is presented in Figure

2 (a), where S ∈ Stm, e ∈ Exp, x ∈ Var, and n ∈ Num. A natural semantics that matches the informal

description of this language can be expressed through transition systems for expressions and statements,

respectively, given in Figures 2 (b) and (c).

We define the transition system of expressions as (Exp,→e,Z). An example axiom is VAR, denoting

variable lookup, where metavariable s is the current environment, binding variables to values. We define

s ∈ E, where E is Var ⇀ Z. Axiom VAR can be applied for all s and x as long as s(x) is defined.

Evaluating a binary operation requires a rule instead, as it depends on the results of the operands obtained

from evaluating each sub-expression. One such example is the ADD rule, where the sum of the results v1

and v2, produced by the premises (the respective evaluations of sub-expressions e1 and e2), is the result

of evaluating an addition operation in Imp.

The transition system for statements, (Stm × E,→S,E), involves updating variables in the envi-

ronment. The axiom is DECL, showing how a declaration leads to updating x to v in environment s.

Compared to the transition system of expressions, s is now part of the configuration, as opposed to the

antecedent. The transition system of expressions is referenced by using →e in the side conditions of

DECL and EXP. The only rule, COMP, expresses statement composition. It shows how the environment
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S ::= S1 ; S2 | x = e

e ::= n | x | e1 + e2

(a) Grammar

[CONST]: s ⊢ n →e v where n denotes v

[VAR]: s ⊢ x →e v where s(x) = v

[ADD]:
s ⊢ e1 →e v1 s ⊢ e2 →e v2

s ⊢ e1 + e2 →e v
where v = v1 + v2

(b) Transition rules for expressions

[DECL]: 〈x = e, s〉 →S s[x 7→ v] where s ⊢ e →e v

[COMP]:
〈S1,s〉 →S s′ 〈S2,s

′〉 →S s′′

〈S1; S2,s〉 →S s′′

(c) Transition rules for statements

Figure 2: Subset of the syntax and semantics of Imp

is updated between statements S1 and S2, where s′, produced by S1 is used in the initial configuration of

S2.

4 Challenges with mastering the notation

While the mathematical machinery underlying structural operational semantics is fairly modest, learning

the notation and using it correctly can be challenging for students. The following reflections arise from

our teaching experience.

By far the most common problem is not realising that all transitions within the rules of a transition

system must follow the same format. This appears to be what Meyer and Land call a threshold concept

[10] – a central concept that transforms how one perceives a given subject once understood, but might

initially present a steep learning curve.

Consider the declaration of functions in an imperative programming language with static scope rules.

The binding model for variables uses a mapping envV , binding variables to addresses, and a store sto,

binding addresses to values. The binding model for functions is a function environment envF , a finite

mapping that binds function names f to triples 〈S,envV ,envF 〉. If FNames, Stm, EnvV and EnvF denote

the types of function names, statements, variable environments and function environments, respectively,

then we define all envF ∈ EnvF as functions binding function names in the language to closures at run-
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[DECL]:
envV ⊢ 〈DF ,envF [ f 7→ 〈S,envV ,envF 〉]〉 → env′F

envV ⊢ 〈fun f is S; DF ,envF 〉 → env′F

[EMPTY]: envV ⊢ 〈ε ,envF 〉 → envF

(a) Correct function definition rules

[DECL]:
〈DF ,envF [ f 7→ S]〉 → env′F

envV ⊢ 〈fun f is S,sto,envF 〉 → 〈sto,env′F 〉

(b) Incorrect, student-defined rule

Figure 3: Operational semantics of function definitions in an imperative language with static scoping

rules

time. All envF have the following signature:

envF : FNames⇀ Stm×EnvV×EnvF

For any closure, we have that S is the body of the function and envV ∈ EnvV and envF are the variable

and function environments captured during the definition of f , binding its free-variables.

The semantics is modelled as a transition system, where function declarations, denoted by DF , return

an updated function environment. The grammar of DF is:

DF = fun f is S; DF | ε

and transitions over DF should follow the format:

envV ⊢ 〈DF ,envF 〉 → env′F

Figure 3 showcases both the correct rules (a), and the erroneous definition given by one student (b).

The latter highlights many common mistakes made when using the notation:

1. The formation rules of DF are not properly represented in the initial configuration of the conclu-

sion. While the individual function declaration is present, the trailing DF is not.

2. In the premise, the function environment is updated as envF [ f 7→ S], where the function is only

bound to its body while omitting the function and variable environments required by the closure.

3. The transitions in the premise and the conclusion have different formats. The transition in the

premise is not relative to a variable environment, unlike the one in the conclusion.

4. The final configurations differ. For the premise, the final configuration is a function environment

env′F , whereas in the conclusion, the terminal configuration is a pair (sto,env′F ). The purpose of

including the store at all is not entirely clear.

All of these issues are often encountered in ill-defined transition rules proposed by students, and have

counterparts in programming. Fortunately, all of these errors can be captured statically:
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• All issues can be thought of in part as type errors, e. g., the omission of DF in issue 1 as a

malformed constructor call, or transitions and configurations with different formats.

• Due to the omission of DF , highlighted in issue 1, its usage is also an inadvertent instance of using

an undeclared variable.

Since the students that make these kinds of mistakes are in their second year of an undergraduate

degree programme in computing, they already have experience in dealing with such issues in the setting

of programming. This suggests they would benefit from a dedicated programming language with a static

semantics (including a type system) capable of capturing these kinds of errors and displaying them in a

more familiar format.

5 Metalanguage

The metalanguage was inspired by one of the key notions used by most lexer and parser generators,

specifically the usage of a domain-specific language. In the case of lexer and parser generators, their

respective domain-specific languages codify regular expressions and context-free grammars, using the

corresponding pen-and-paper formalism as a basis. The metalanguage follows this idea, but opts for

modelling language semantics, instead, using structural operational semantics, namely the big-step vari-

ant, as a basis. This choice of formalism follows naturally, given the stated pedagogical goals and

aforementioned utility of structural operational semantics when used by students for language design.

As such, it is tailored towards expressing the essential elements found in natural semantics specifications

of languages, namely transition systems and abstract syntax definitions.

Syntactically, the metalanguage is modelled for writing specifications close to textbook notation.

Since SOS notation is better accommodated by rich text editors, some compromises are made to keep

a balance between visual fidelity and writability. Specifications are checked for type safety, achieved

through a strong typing discipline (sections 5.1 and 5.2). Students may also specify concrete expressions

to evaluate, for which to inspect the results.

A specification in the metalanguage is a sequence of definitions, optionally followed by evaluations.

The following subsections describe each type of definition, along with related concepts and examples

based on Imp, defined in section 3.2.

5.1 Domains

The metalanguage provides a monomorphic type system, where types are represented as domains. Basic

domains are one of Int, String, Bool, or Symbol, where the former three are typical of other languages,

while the latter is specifically introduced to represent variables in the specified language. String values

are enclosed in double quotes, while symbols are enclosed in back-ticks. In practice, symbols are strings

defined over an alphabet idiomatic to variable naming (alphanumerics, underscore, etc.).

Domain composition is achieved similarly to strongly typed functional languages[2, 11]. Composed

domains can be one of product, arrow, or disjoint unions, the latter of which can be used to declare

algebraic data types. An example would be defining a domain for lists of integers:

domain List = { nil + cons : Int * List };

Users can use the two constructors nil and cons to construct lists inductively.

Product and arrow types can be aliased, or inlined whenever type annotations are required, but dis-

allow inductive definitions, whereas disjoint unions cannot be aliased or inlined, but may be inductive,

like the List example.
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The metalanguage interpreter has limited type inference capabilities, requiring type annotations only

on some expressions, such as formal parameters in functions, and headers of transition systems. In Imp,

the domain of environments can be defined as an arrow type from symbols to integers:

domain Env = Symbol -> Int;

5.2 Syntax

Syntax definitions are functionally identical to union domains, but use special syntax, by combining

domain definitions with symbols, enclosed in single quotes and denoting purely syntactical elements

(e.g. keywords). This allows expressing abstract syntax in a way that approximates textbook grammar

definitions using BNF notation. A syntax constructor is derived based on the sequence of symbols

and domain placements, where domains are replaced by holes (denoted as ). Syntax constructors in

a specification must be unique in a specification, and may omit symbols entirely as long as no other

production rule with no symbols has the same number of domains. The metalanguage interpreter adapts

its output based on this distinction (e. g. for reporting errors or pretty printing).

The syntax of Imp can be defined as:

syntax Stm = Symbol ’=’ Exp

| Stm ’;’ Stm;

syntax Exp = ’#’ Int

| Symbol

| Exp ’+’ Exp;

Note that for Exp, integer constants are defined as an integer value preceded by ’#’, whereas variables

are denoted as simply a symbol value without any additional decoration. Binary addition expressions

consist of two sub-expressions and the ’+’ symbol in infix notation.

5.3 Data and expressions

Data can be defined similarly to most functional languages by binding variables to expressions, given

as an extended simply-typed λ -calculus. Expression are also used at various points in the specification,

such as side conditions in transition systems, making specifications a natural semantics interpolated with

λ - calculus.

Extension to the λ -calculus include function updates and the bottom element. For Imp, one could

define an empty environment as:

let empty = \x : Symbol . -|In|;

This definition makes empty a mapping from symbols to integers. The body of the λ -expression is the

bottom element, annotated with type Int, so as to determine its expected type. The bottom element allows

users to define partial functions, and generates an exception when evaluated at run-time. One can express

binding updates throughout a specification (e. g. in rules). An example of an update expression would be

empty[‘x‘ -> 0], evaluating to a closure which yields 0 when applied to symbol ‘x‘ while the other

bindings are unaffected. Currently, only functions with formal parameters inhabiting basic domains can

be updated.

Syntax expressions are defined as values enclosed between braces, ({, }). For a syntax expression

to be valid, it must be a sequence of syntactical symbols and metavariable placements that matches one

of the defined syntax constructors: e.g., {e1 ’+’ e2} is a syntax expression denoting addition for Imp,

where e1 and e2 are metavariables representing the sub-expressions.
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5.4 Transition systems

The final definition construct involves transition systems. We can now define the semantics of Imp,

starting with the transition system for expressions, named e. An example subset of the transition system

may be given as:

system e : Env |- Exp ==> Int =

...

[[ CONST ]]: s |- {’#’ n} ==> n;

[[ VAR ]]: s |- {x} ==> s(x);

[[ ADD ]]: s |- {e1 ’+’ e2} ==> v1 + v2 \\

s |- e1 ==> v1,

s |- e2 ==> v2;

...

end

The definition is prefixed by a specially formatted type annotation, expressing the domains of the an-

tecedent (optional), initial and final configurations. Transition system e accepts members of Exp as its

initial configurations, and evaluates to integers. Since the antecedent type is Env, only functions from

symbols to integers are valid antecedents.

The components of a transition rule are:

1. The label, in double brackets, which names a rule. Labels are purely cosmetic, and help with

pretty-printing.

2. The conclusion, represented by the first transition in a rule. Conclusions have patterns on the left-

hand side of the arrow, for the antecedent and initial configuration, and an expression on the right-

hand side. Patterns may be formed from variables, constants, pairs, and union/syntax constructors.

When applying a rule, pattern matching is attempted first, followed by evaluating the premises,

and concluding with evaluating the final configuration.

3. The premises, if present, are separated from the conclusion through \\, and from each other

through commas. For homogeneity, transitions, side conditions, and local declarations are all

considered premises, and are interpreted in order of declaration. Premise transitions flip the oc-

currence of patterns and expressions, where the left-hand side is given as an expression to be

evaluated, and the final configuration is a pattern that the resulting value must match.

The transition system for statements would be given as:

system S : Stm * Env ==> Env =

[[ DECL ]]: ({x ’=’ e}, s) ==> s[x -> v] \\

s |- e =e=> v;

[[ COMP ]]: ({S1 ’;’ S2}, s) ==> s’’ \\

(S1, s) ==> s’,

(S2, s’) ==> s’’;

end

As in the definition proper, the antecedent is absent, and configurations are given as pairs between state-

ment syntax and states. If premise transitions refer to the same system they are defined in, it suffices to
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use ==>. If referring to another transition system, the notation used is =System name=>. The DECL rule

for Imp statements references transition system e to denote the evaluation of the right-hand side of the

variable declaration.

5.5 Evaluations

Following definitions, a specification may include evaluations. The metalanguage interpreter evaluates

expressions by simulating interpretations using definitions in the specification, and print their results.

Consider the following transition:

[x 7→ 5] ⊢ 3 + x →e 8

An evaluation for it would be written as

evaluate empty[‘x‘ -> 5] |- {{’#’ 3} ’+’ {‘x‘}} in e

Since the root of the syntax tree is a ( ’+’ ) node, an application of the ADD rule is attempted. This

is followed by successive applications of the CONST and VAR rules for each respective child. The result

is the expected value, 8.

6 Flawed definitions in textbooks

Pen-and-paper SOS specifications get increasingly difficult to keep consistent the more complex they

become, with subtle errors sneaking into otherwise sound specifications, even for experienced users.

Below are some examples of errors in the specifications languages from a textbook on SOS [7], and how

the metalanguage interpreter captured them:

• For Bur, an imperative language with records and procedure calls, the side-conditions of WHILE

rules contain ill-formed transitions for evaluating guards. Since Bur contains records, variables

and procedures, there is a corresponding environment for each. The former two are required in

the antecedent for boolean expression evaluations, but the side conditions omit the record environ-

ment:

if eV ,sto ⊢ b →b true.

Transcribing the specification of Bur will result in the side conditions emitting a type error, where

the type of boolean expression transitions is defined as:

system b : EnvR * EnvV * Sto |- Bexp ==> Bool

• The semantics of block statements in Bur is defined as:

[BLOCK]:

eR ⊢ 〈DV ,eV ,sto〉 →DV (e′V ,sto
′′)

e′V ⊢ 〈DR,eR〉 →DR (e′R,e
′′
V )

e′′V ⊢ 〈DP,eP〉 →DP e′P
e′R,e

′′
V ,e

′
P ⊢ 〈S,sto′′〉 → sto′

eR,eV ,eP ⊢ 〈begin DV DP DR S end,sto〉 → sto′

consisting of variable, procedure and record declarations, followed by statement execution. The

rule breaks the previously established format for transitions in →DR, for record declarations. The

type of transitions in →DR would be defined as:
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system dR : DR * EnvR * EnvV ==> EnvR * EnvV

but the block rule shifts the variable environment to the antecedent, as opposed to the initial con-

figuration. The procedure declaration premise, denoted by →DP, has a similar issue, where the

type would be defined as:

system dP : EnvV * EnvR |- DP * EnvP ==> EnvP

but, in the above rule, the record environment, denoted by EnvR, is missing in the antecedent. Both

discrepancies result in type errors.

• In the language Flan[7], a simple functional language modelled after the λ -calculus, values used as

final configurations in the semantics definition, are either constants, closures or recursive closure.

The formal definition for this set is given as:

Values= Fcon∪ (Var×Fexp×Env)∪ (Var×Var×Fexp×Env)

This set may expressed as a grammar, with each member of the union as a formation rule1:

syntax Values = Fcon

| ’λ ’ Symbol ’.’ Fexp ’,’ Env

| ’λ ’ Symbol Symbol ’.’ Fexp ’,’ Env;

Constants are simply represented as set FCon, while closures are λ terms with symbols denoting

the formal parameters (one symbol for non-recursive closures, and two symbols for recursive clo-

sures) and expressions as bodies, and the captured environment. The type of transitions of Flan

could be given as:

system Flan : Env |- Exp ==> Values

However, the textbook rules of Flan also include the following rule for pairs:

[PAIR]:
env ⊢ e1 → v1 env ⊢ e2 → v2

env ⊢ (e1,e2)→ (v1,v2)

Pairs are not covered under Values. When attempting to transcribe the rule for pairs, this issue

will become apparent, and it can be easily fixed by extending the set of values with the formation

rule ’(’ Values ’,’ Values ’)’.

7 Implementation

The metalanguage interpreter was implemented in Haskell[2]. As an executable it can either be used as

a rudimentary REPL, or by targetting a specification in a separate file.

7.1 Checking the specification

At run-time, the tool performs several traversals over the specification syntax tree. In order, the traversals

involve:

• Domain analysis, such as checking for free domain variables and that domains are well-formed.

1Syntax symbols may use UTF-8 code points.
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Exp ::= # Z

| χ∗

| Exp + Exp

[VAR]: s ⊢ x ⇓ s(x)

[CONST]: s ⊢ # n ⇓ n

[ADD]:

s ⊢ e1 ⇓ v1

s ⊢ e2 ⇓ v2

s ⊢ e1 + e2 ⇓ v1 + v2

Figure 4: Example LATEX output for the expression grammar and transition rules

• Type analysis, such as type checking expressions and transition systems, and inferring types.

• Evaluation of all data definitions in order of declaration, followed by simulating interpretations for

each evaluate construct. Section 7.2 covers the evaluation strategy.

• Code generation, targeting LATEX for the back-end. Compared to a dedicated tool like LETOS[6],

the generated LATEX is not publication quality, but is reasonable enough to expedite a report writing

process for students. A subset of the generated code for Imp expressions is given in Figure 42.

7.2 Executing a specification

Evaluations are carried out by attempting to build a derivation for a given transition. This is achieved by

successively applying the rules in a transition system until one that matches the pattern is found. This is

followed by recursively evaluating each premise, in the order of declaration. If no rules are successfully

applied, e. g. no pattern was matched successfully or no rules satisfy all premises, the interpretation is

abandoned, displaying an error message tracing all attempted rule applications.

Multiple rules may have the same initial configuration pattern in the conclusion. Consider extending

the grammar of Imp with conditional statements as in Figure 5.

At run-time, the tool applies IF-TRUE first. If the initial match succeeds, this is followed by evaluat-

ing b =e=> v. If the result is not 0, the interpreter proceeds with evaluating S1, concluding with s’ if

successful. If v is 0, the application of IF-TRUE is abandoned, and the interpreter proceeds to look for

the next matching rule, namely IF-FALSE.

Rules need not be exhaustive: some syntactic constructs may not have transition rules at all or some

side conditions may not be covered. This can be a deliberate decision on the language designer’s part, an

example being:

S ::= · · · | abort

where abort is a construct with no defined rule that causes the evaluation to terminate prematurely.

2Transitions in generated code are denoted as ⇓ as opposed to →. The set χ∗ is the domain of symbols.
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S ::= · · · | if e then S1 else S2

[IF-TRUE]:
〈S1, s〉 →S s′

〈if e then S1 else S2,s〉 →S s′
if e →e v, where v 6= 0

[IF-FALSE]:
〈S2, s〉 →S s′

〈if e then S1 else S2,s〉 →S s′
if e →e 0

(a) Conditional statements syntax and natural semantics

syntax Stm = ... | ’if’ Exp ’then ’ Stm ’else ’ Stm;

system S : Stm * Env ==> Env =

...

[[ IF-TRUE ]]: ({’if’ b ’then ’ S1 ’else ’ S2}, s) ==> s’ \\

b =e=> v,

if v != 0,

(S1, s) ==> s’;

[[ IF-FALSE ]]: ({’if’ b ’then ’ S1 ’else ’ S2}, s) ==> s’ \\

b =e=> 0,

(S2, s) ==> s’;

...

(b) Metalanguage definition for conditional statements in Imp

Figure 5: Extending Imp syntax and semantics with conditional statements
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e ::= ... | stop

[CIRCULAR]:
e → v
e → v

[STOP]: stop→ 0

Figure 6: Example of non-compositionality and non-determinism in transition rules

7.3 Limitations

Due to the chosen evaluation strategy, declaration order matters for rules. Take as an example the rule

CIRCULAR in Figure 6. This rule is not compositional: the syntactic constructs in the premise are not

immediate constituents of the construct in the conclusion. While non-compositionality is useful, if not

necessary, in some cases, e.g. loop constructs, it can still give rise to unexpected scenarios, one particular

case being rules with overlapping patterns.

From the standpoint of the definition of a specification, rule application is non-deterministic for rules

with overlapping patterns, and the evaluation satisfies the semantics if at least one derived tree is closed.

As an example, consider the formation rules of e also include the terminal stop, the semantics of which

are given by rule STOP in Figure 6. Evaluating the stop construct is therefore non-deterministically

defined as either diverging via rule CIRCULAR or eventually converging to 0, via rule STOP. However,

when transcribing the specification as-is and evaluating stop, the metalanguage interpreter will always

diverge, owed to matching CIRCULAR first, and fail to consider rule STOP, terminating the evaluation.

8 Conclusions and future work

We have presented a metalanguage and its interpreter that provide a lightweight method for expressing

natural semantics specifications of small programming languages of the kind usually designed by under-

graduates in their projects. Our central observation is that learners of natural semantics very often make

mistakes that are type errors wrt. the notation used. Notably, the uniformity of transitions appears to be

a threshold concept for learners.

Our metalanguage is therefore equipped with a type system that captures such errors. Moreover, the

syntax is kept reasonably similar to textbook notation preventing students from having to learn separate

notations. The type checker helps weed out inconsistencies in transition rules. Although experimental

and not publication-quality, generated LATEXcode can ease the process of writing reports, as an added

benefit.

Regardless, there is room for many improvements e.g., investigating the viability of a polymorphic

type system without affecting other features of the language e. g., partial function support. Evaluations

and rule definitions could also benefit from improvements, notably in terms of warnings. As outlined in

section 7.2, rules may be non-exhaustive. Warning the user of such cases, similarly to typed functional

languages such as Haskell, would increase usability. Additionally, a termination checker similar to the

one used in languages such as Agda [12] could be employed to give warnings about non-compositional

rules.

Other useful features include support for code generation of interpreters targeting other implementa-
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tion languages as back-ends. The current iteration supports experimental generation of Haskell code, but

not all use cases are properly handled yet, e. g. overlapping patterns in transition rule conclusions. For

undergraduate students, a better choice for the back-end would be Java, to better integrate with tools like

ANTLR[13] or SableCC[4].

An important next step is to introduce the tool into the setting of future teaching activities. Con-

cretely, we plan to use the tool in forthcoming courses on programming language design and semantics.

This will involve devising teaching activities that introduce students to the metalanguage. It is our opin-

ion that such activities should emphasise the relationship between designing specifications and general

purpose programming in order to facilitate the understanding of threshold concepts such as the unifor-

mity of transitions.

Another topic for further work is to consider small-step semantics and the challenges that students

face when learning this style of operational semantics. As for natural semantics, some of the problems

with writing meaningful specifications can be seen as type safety violations.
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