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Symbolic execution uses various algorithms (matching, (anti)unification), whose executions are pa-
rameters for proof object generation. This paper proposes a generic method for generating proof
objects for such parameters. We present in detail how our method works for the case of antiuni-
fication. The approach is accompanied by an implementation prototype, including a proof object
generator and a proof object checker. In order to investigate the size of the proof objects, we generate
and check proof objects for inputs inspired from the K definitions of C and Java.

1 Introduction

K (https://kframework.org) is a well established framework for programming languages, which
brings a different perspective of what such a framework should be. K provides means to give formal
definitions for programming languages and aims to automatically derive a series of practical tools for
those languages: a parser, an interpreter, a debugger, a symbolic execution tool, a deductive verifier, a
model-checker, and others. A formal semantics of a language defined in K consists of syntax decla-
rations, a language configuration, and a set of rewriting rules. The configuration is a constructor term
which holds the semantical information needed to execute programs (e.g., the code, environment, stack,
program counter, etc). The rewriting rules are pairs ϕ ⇒ ϕ ′ of program configurations with variables
which specify how program configurations transit to other program configurations. An example of a tool
automatically generated by K is the interpreter, which works as follows: the user provides a concrete
configuration (which includes the program and an initial state of that program) and K applies rewrit-
ing rules as much as possible to this configuration. Another tool is the K prover, which uses symbolic
execution to prove reachability properties.

The theoretical foundation of K is Matching Logic [20, 8] (hereafter shorthanded as ML), a log-
ical framework where the formal definitions of program languages [12, 13, 17] and program reason-
ing [11, 23, 22, 15, 4] can be done in a uniform way. ML formulas are called patterns and they are used
to uniformly specify syntax and semantics of programming languages, and the properties of program
executions. ML has a pattern matching semantics: a pattern is interpreted as the set of elements that
match it. For example, if a pattern t encodes a symbolic program configuration (with variables), then t is
interpreted as the set of concrete program configurations that match it.

ML has a minimal, but expressive, syntax. For example, if one wants to specify configurations t that
satisfy a first-order constraint φ , then t∧φ is the pattern that captures this intent. Not only constraints can
be attached to patterns. Conjunctions t1 ∧ t2 (and disjunctions t1 ∨ t2) are interpreted as the intersection
(and union, respectively) of the elements that match t1 and t2. Moreover, it is easy to explain K rules
ϕ ⇒ ϕ ′ as implications of patterns ϕ → •ϕ ′: the program configurations that match ϕ can transit in
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2 Antiunification in matching logic

one step to program configurations that match ϕ ′, where • is a special symbol used to specify one step
transitions.

ML is equipped with a sound proof system which can derive sequents of the form Γ ` ϕ , where ϕ is
a pattern and Γ is an ML theory (i.e., a set of axiom patterns). The ML proof system is the key ingredient
of another tool that K aims to generate: a deductive verifier.

Motivation. A fair question that needs to be posed is how can we trust the proofs produced by the de-
ductive verifier generated by K? Given the size of the K codebase (about half a million lines of code [6])
and its dynamics (new code committed every week), the formal verification of the implementation of K
is out of question. The solution here is to do what other formal verification tools do: instrument K so that
its automatically generated tools produce proof objects that can be independently checked by a trusted
kernel. In our context, proof objects are just proofs that use the ML proof system.

It turns out that all these tools that K aims to generate share several components. For example,
matching algorithms are useful for concrete execution (interpreter), while unification and antiunification
algorithms are needed for symbolic execution and program verification. Therefore, we can have a uni-
form approach: if we can find proof object generation mechanisms for each component, then we can
simply instantiate those mechanisms whenever needed.

Symbolic execution is a key component in program verification and it has been used in K as well
(e.g., [1, 14, 11]). Generating proof objects for symbolic execution is difficult because the parameters of
an execution step must carry more proof information than in the concrete executions case. First, instead
of matching, proof parameters must include unification information. Second, path conditions need to be
carried along the execution.

In ML, there is a natural way to deal with symbolic execution. ML patterns ϕ have a normal form
t ∧φ , where t is a term pattern and φ is a predicate pattern, expressing a constraint on variables in t. In
particular, t can be the program configuration and φ the path condition. Patterns t ∧ φ are evaluated to
the set of values that match t and satisfy φ . To compute the symbolic successors of a pattern, say t ∧φ ,
with respect to a rule, say t1 ∧ φ1 ⇒ t2 ∧ φ2, we need to unify the patterns t ∧ φ and t1 ∧ φ1. Because
unification can be expressed as a conjunction in ML [2, 20], we can say that only the states matched
by (t ∧φ)∧ (t1∧φ1) ≡ (t ∧ t1)∧ (φ ∧φ1) transit to states matched by t2∧φ2. Expressing unification as
a conjunction (t ∧ t1) is a nice feature of ML, but, in practice, unification algorithms are still needed to
compute the general unifying substitution since it is used in symbolic successor patterns. The symbolic
successors are obtained by applying the unifying substitution to the right-hand side of a rule (e.g., t2∧φ2)
and adding the substitution (as an ML formula) to the path condition. Also, unification algorithms are
being used to normalise conjunctions of the form t ∧ t1, so that they consist of only one term and a
constraint, t ′∧φ ′. Therefore, unification algorithms are parameters of the symbolic execution steps and
they must be used to generate the corresponding proof objects.

It is often the case when more than one rule can be applied during symbolic execution. For instance,
if an additional rule t ′1 ∧φ ′1⇒ (t ′2 ∧φ ′2) can be applied to t ∧φ , then the set of target states must match
t2∧φ2 or t ′2∧φ ′2. This set of states is matched by the disjunction (t2∧φ2)∨ (t ′2∧φ ′2). For the case when
φ2∧φ ′2 holds, the disjunction reduces to t2∨ t ′2, which is not a normal form but it can be normalised using
antiunification.

Related work. The literature on (anti)unification is vast. Due to the space limit, we recall here the
closest related work which addresses proof object generation for concrete and symbolic executions, to
understand the context of our work. In [6], the authors propose a method to generate proof objects for
program executions ϕinit ⇒ ϕfinal, where ϕinit is the formula that specifies the initial state of the execu-
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tion, ϕfinal specifies the final state, and “⇒” states the rewriting/reachability relation between states. The
correctness of an execution,

Γ ` ϕinit⇒ ϕfinal,

is witnessed by a formal proof, which uses the ML proof system. The K interpreter computes the
parameters (e.g., execution traces, matching info) needed to generate the proof object.

In [20], the author shows that unification in ML can be represented as a conjunction of ML patterns.
A first step into generating proof objects for unification was done in [2]. We proposed a method to nor-
malise conjunctions of patterns t1∧ t2. The K implementation works with patterns in normal form t ∧φ ,
which are more efficient: matching/unification algorithms are executed only once on normalised patterns,
rather than multiple times on patterns having multiple structural components (e.g., t1∧ t2). In [2], we use
the syntactic unification algorithm [16] to (1) find an equivalent normal form t∧φ for conjunctions t1∧t2,
and (2) to generate proof objects for the equivalence between t ∧φ and t1∧ t2. The unification algorithm
provides the needed parameters (e.g., unifying substitutions) for proof generation.

Contributions. A lesson that we learned from [2] and [6] is that the algorithms implemented in var-
ious components of K can be used to compute the parameters needed to generate proof objects. In this
paper we address the problem of generating proof objects for antiunification, which is used, e.g., in sym-
bolic execution and verification. In ML, the least general generalisation of two term patterns t1 and t2 is
given by their disjunction t1∨ t2. We use Plotkin’s antiunification algorihm [18, 19] to find normal forms
t ∧φ for disjunctions t1∨ t2, and to generate proof objects for the equivalences between t ∧φ and t1∨ t2.
The execution of the antiunification algorithm provides the parameters (intermediate generalisations and
substitutions computed at each step) to generate the proof objects. Our contributions are:

1. We express Plotkin’s antiunification algorithm in ML terms and we show that its steps produce
equivalent patterns (Lemma 1 and Theorem 2).

2. We propose a proof object generation mechanism for the equivalences computed by the algorithms
used in symbolic execution and verification, and we show how it works in the case of antiunifica-
tion (Section 4).

3. We provide a prototype implementation of our proof object generation mechanism and a proof
checker (Section 5);

4. We test our prototype on interesting examples, including inputs inspired from the K definitions of
C [12, 13] and Java [5].

Indeed, the most challenging part of this work is the proof object generation mechanism. The main
difficulty was to find the right proof object schema generation that precisely captures one step of the
antiunification algorithm. Another tricky part was to design the proof object schema so that the proofs
generated for each step can be easily composed. The size of the resulted proofs depends on the number
of steps performed by the antiunification algorithm.

Paper organisation. Section 2 presents ML, its proof system and the ML theory for many-sorted
term algebras. In Section 3 we present antiunification in a ML setting, and we prove that Plotkin’s
antiunification can be safely used to normalise disjunctions of term patterns. Our proof object generation
methodology is presented in Section 4. The prototype implementation is described in Section 5 and we
conclude in Section 6.
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2 Matching Logic

Matching logic (ML) [20, 9, 8] started as a logic over a particular case of constrained terms [21, 23, 4,
15], but now it is developed as a full logical framework. We recall from [8] the definitions and notions
that we use in this paper.

A matching logic signature is a triple (EVar,SVar,Σ), where EVar is a set of element variables
x,y, . . ., SVar is a set of set variables X ,Y, . . ., and Σ is a set of constant symbols (or constants). The set
PATTERN of Σ-patterns is generated by the grammar below, where x ∈ EVar, X ∈ SVar, and σ ∈ Σ:

ϕ ::= x | X | σ | ϕ1 ϕ2 | ⊥ | dϕe | ϕ1→ ϕ2 | ∃x.ϕ | µX .ϕ if ϕ is positive in X

A pattern ϕ is positive in X if all free occurrences of X in ϕ are under an even number of negations. The
patterns below are derived constructs:

>≡ ¬⊥ bϕc ≡ ¬d¬ϕe ϕ1∨ϕ2 ≡ ¬ϕ1→ ϕ2

¬ϕ ≡ ϕ →⊥ ϕ1 = ϕ2 ≡ bϕ1↔ ϕ2c ϕ1∧ϕ2 ≡ ¬(¬ϕ1∨¬ϕ2)

∀x.ϕ ≡ ¬∃x.¬ϕ ϕ1 6= ϕ2 ≡ ¬(ϕ1 = ϕ2) ϕ1↔ ϕ2 ≡ (ϕ1→ ϕ2)∧ (ϕ2→ ϕ1)

Example 1. Let Σ= {zero,succ,nil,cons} be an ML signature. Then x, zero, succzero, succx, ∃x.zero=
x, µX .zero∨ (succX) are examples of ML patterns1.

ML has a pattern matching semantics where patterns are interpreted on a given carrier set, say M.
Each pattern is interpreted as the set of elements that match it. Element variables x are matched by a
singleton set, while set variables X are matched by a subset of M. The pattern⊥ is matched by the empty
set (and hence > by M). The implication pattern ϕ1→ ϕ2 is matched by the elements that do not match
ϕ1 or match ϕ2. A pattern ∃x.ϕ is matched by the instances of ϕ when x ranges over M. In particular,
∃x.x is matched by M. Note that ∃ binds only element variables. Symbols σ (e.g. zero, succ) are
interpreted as subsets σM ⊆M, and, usually, the needed interpretation for them is obtained using axioms.
For instance, the pattern ∃x.zero = x is matched by M if zeroM is a singleton, and by ⊥ otherwise. This
type of pattern is often used as axiom to restrict the interpretation of symbols to singletons. The pattern
ϕ1 ϕ2 is an application and its interpretation is given by means of a function M×M→P(M), which
is pointwise extended to a function P(M)×P(M)→P(M). Applications are useful to build various
structures or relations. For instance, ∀x.∃y.succx= y says that succ has a functional interpretation (recall
that the element variable y is matched by a singleton set). Applications are left associative. The pattern
µX .ϕ is matched by the least fixpoint of the functional defined by ϕ when X ranges P(M). An example
is µX .(zero∨ succX), which is matched by the natural numbers N (up to a surjection), when both zero
and succ have a functional interpretation (as above). Note that µ binds only set variables in positive
patterns. The pattern dϕe is called definedness2 and it is matched by M if ϕ is matched at least by one
element, and by /0 otherwise. Such patterns are called predicate patterns.

The syntax priorities of the ML constructs is given by this ordered list:
¬_,d_e,b_c,_ = _,_∧_,_∨_,_→ _,_↔ _,∃_._,∀_._,µ_._,

where ¬ has the highest priority and µ_._ has the lowest priority. By convention, the scope of the binders
extends as much as possible to the right, and parentheses can be used to restrict the scope of the binders.
We often write ϕ[ψ/x] and ϕ[ψ/X ] to denote the pattern obtained by substituting all free occurrences
of x and X , respectively, in ϕ for ψ . In order to avoid variable capturing, we consider that α-renaming
happens implicitly.

1Of course, succnil or consnil zero are also ML patterns but these can be handled properly using sorts (see Section 2.1).
2For convenience, we introduce it directly in the syntax of patterns but it can be axiomatised as in [20].
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Hilbert-style proof system
PROPOSITIONAL ϕ , if ϕ is a propositional tautology over patterns

MODUS PONENS
ϕ1 ϕ1→ ϕ2

ϕ2

∃-QUANTIFIER ϕ[y/x]→∃x.ϕ

∃-GENERALISATION
ϕ1→ ϕ2

(∃x.ϕ1)→ ϕ2
if x 6∈ free(ϕ2)

PROPAGATION⊥ C[⊥]→⊥
PROPAGATION∨ C[ϕ1∨ϕ2]→C[ϕ1]∨C[ϕ2]

PROPAGATION∃ C[∃x.ϕ]→∃x.C[ϕ] if x 6∈ free(C)

FRAMING

ϕ1→ ϕ2

C[ϕ1]→C[ϕ2]

SET VARIABLE SUBSTITUTION

ϕ

ϕ[ψ/X ]

PRE-FIXPOINT ϕ[µX .ϕ/X ]→ µX .ϕ

KNASTER-TARSKI

ϕ[ψ/X ]→ ψ

µX .ϕ → ψ

EXISTENCE ∃x.x
SINGLETON ¬(C1[x∧ϕ]∧C2[x∧¬ϕ])

Figure 1: The Hilbert-style ML proof system.

The ML proof system [8] is shown in Figure 1. It contains four categories of rules: propositional
tautologies, frame reasoning over application contexts, standard fixpoint reasoning, and two rules needed
for completeness. An application context C is a pattern with a distinguished placeholder variable � s.t.
the path from the root of C to � has only applications. C[ϕ/�] is a shorthand for C[ϕ] and free(ϕ)
denotes the set of free variables in ϕ .

2.1 ML Specification of the Term Algebra

A complete ML axiomatization of the many-sorted term algebra is given in [7] and we briefly recall
it in Figure 2. The specification SORTS introduces symbols for sorts and their inhabitant sets, and
some usual notations for them. The specification MSA includes the axioms corresponding to a given
algebraic signature. Finally, TERM(S,F) includes the properties "no confusion" and "no junk" (inductive
domains) that characterizes the (initial) term algebra."No confusion" says that the function symbols F
are constructors:

• two different constructors will define different terms (NOCONFUSION I);
• a constructor is injective (i.e., the same constructors with different arguments will define different

terms), and this is captured by (NOCONFUSION II).
The "no junk" property says that all inhabitants of a sort are generated using the constructors F , and this
is captured by the axiom (INDUCT. DOMAIN). For the sake of presentation, this axiom does not include
the case of the mutual recursive sorts3.

Theorem 1 ([7]). The specification MSA(S,F) captures the many-sorted (S,F)-algebras in the following
sense:

3See [8] for a complete definition.
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spec SORTS
Symbol: inh,Sort
Notation:
[[s]]≡ inh s
∀x:s.ϕ ≡ ∀x.x ∈ [[s]]→ ϕ

∃x:s.ϕ ≡ ∃x.x ∈ [[s]]∧ϕ

ϕ:s≡ ∃z:s.ϕ = z
∀x1, . . .,xn:s.ϕ ≡ ∀x1:s. . .∀xn:s.ϕ
∃x1, . . .,xn:s.ϕ ≡ ∃x1:s. . .∃xn:s.ϕ

endspec

spec MSA(S,F)
Import: SORTS
Symbol: s ∈ S , f ∈ F
Notation:

f (ϕ1, . . . ,ϕn)≡ f ϕ1 . . . ϕn
Axiom:
(SORT) s:Sort for each s ∈ S
(NONEMPTY) JsK 6=⊥ for each s ∈ S
(FUNCTION) ∀x1:s1. . .∀xn:sn.( f x1 . . .xn):s

for each f ∈ Fs1...sn,s

endspec

SORTS MSA

spec TERM(S,F)
Import: MSA(S,F)
Axiom:

(NOCONFUSION I) f 6= f ′→∀x1:s1...∀xn:sn.∀x′1:s′1...∀x′m:s′m. f x1 ..xn 6= f ′ x′1 .. x′m
(NOCONFUSION II) ∀x1,x′1:s1. . . .∀xn,x′n:sn.( f x1 · · ·xn) = ( f x′1 · · ·x′n)→

(x1=x′1)∧·· ·∧ (xn=x′n)

(INDUCT. DOMAIN) JsK = µX .
∨

f :s1...sn,s

f Y1 · · ·Yn, where Yi =

{
X , if si = s
JsiK, otherwise

endspec
TERM(S,F)

Specification 2: ML specifications for sorts, many-sorted algebras, and term algebra

• from each MSA(S,F)-model M we may extract an (S,F)-algebra α(M), and

• for each (S,F)-algebra A there is an MSA(S,F)-model M s.t. α(M) = A.
If M is a TERM(S,F)-model, then α(M) is the term (S,F)-algebra (up to isomorphism).
Proposition 1. The next patterns are semantical consequences of TERM(S,F):

∃z.t ∧ (z = u)↔ t[u/z] if z 6∈ var(u)

z = ( f t)↔∃y.z = ( f y)∧ y = t if y 6∈ var
(
( f t)

)
∪{z}

The equivalences in Proposition 1 are later used as macro rules for proof object generation. The notation
( f t) means ( f t1 . . . tn). We also use ∃y or ∃{y1, . . . ,yn} instead of ∃y1. . . .∃yn. The equality y = t is sugar
syntax for

∧n
i=1 yi = ti.

3 Antiunification in ML
Antiunification is a process dual to unification [16] that computes a generalisation t of two input terms t1
and t2. A term t is an antiunifier of t1 and t2 if there are two substitutions σ1 and σ2 such that tσ1 = t1 and
tσ2 = t2. There is at least one antiunifier for any t1 and t2: we can always choose a variable x 6∈ var(t1, t2)
and substitutions σ1 = {x 7→ t1} and σ2 = {x 7→ t2} s.t. xσ1 = t1 and xσ2 = t2.

A term t ′ is more general than a term t if there is a substitution σ such that t ′σ = t. Given t1 and t2,
their least general antiunifier t satisfies: for any antiunifier t ′ of t1 and t2 we have that t is less general
than t ′ (a.k.a., least general generalisation, shorthanded as lgg).
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Remark 1. In other words, t is less general than t ′ iff the set of ground instances of t is included in
that of t ′. In terms of matching logic, this can be expressed by ∃var(t).t ⊆ ∃var(t ′).t ′, where ϕ1 ⊆ ϕ2 is
defined as bϕ1→ ϕ2c.

Now we present Plotkin’s antiunification algorithm [19] for computing the lgg over ML term pat-
terns. First, we define antiunification problems:

Definition 1. An antiunification problem is a pair 〈t,P〉 consisting of a term pattern t and a non-empty
set P of elements of the form z 7→ ut v, where z is a variable, and u and v are term patterns.

Plotkin’s algorithm [19] for computing the lgg consists in applying a decomposition rule over antiu-
nification problems as much as possible:

〈t,P∪{z 7→ ( f u1 . . . un)t ( f v1 . . . vn)}〉 〈t[( f z1 . . . zn)/z],P∪{z1 7→ u1t v1, . . . ,zn 7→ unt vn}〉,

where z1, . . . ,zn are fresh variables. If we want to compute the lgg of t1 and t2, we build the initial
antiunification problem 〈z,{z 7→ t1tt2}〉with z 6∈ var(t1)∪var(t2) and we apply Plotkin’s rule repeatedly.
When this rule cannot be applied anymore, we say that the obtained antiunification problem 〈t ′,P′〉 is in
solved form. The obtained t ′ is the lgg of t1 and t2, while P′ defines the two substitutions σ1 = {z 7→ u |
z 7→ ut v ∈ P′} and σ2 = {z 7→ v | z 7→ ut v ∈ P′} such that t ′σ1 = t1 and t ′σ2 = t2. Note that the pairs
ut v are not commutative.

Example 2. Let t1 = (cons(succx1)(conszero l1)) and t2 = (consx2 (cons(succx2) l2)). Using Plotkin’s
algorithm on the input 〈z,{z 7→ t1t t2}〉 (note that z is fresh w.r.t. var(t1)∪ var(t2)) we obtain:

〈z,{z 7→ t1t t2}〉=
〈z,{z 7→ (cons(succx1)(conszero l1))t (consx2 (cons(succx2) l2))}〉 

〈z[(consz1 z2)/z],{z1 7→ (succx1)t x2,z2 7→ (conszero l1)t (cons(succx2) l2)}〉=
〈(consz1 z2),{z1 7→ (succx1)t x2,z2 7→ (conszero l1)t (cons(succx2) l2)}〉 

〈(consz1 z2)[(consz3 z4)/z2],{z1 7→(succx1)t x2,z3 7→zerot(succx2),z4 7→ l1t l2}〉=
〈(consz1 (consz3 z4)),{z1 7→ (succx1)t x2,z3 7→ zerot (succx2),z4 7→ l1t l2}〉 6 

The lgg of the term patterns t1 and t2 is the term pattern t , (consz1 (consz3 z4)) while the substi-
tutions σ1 = {z1 7→ (succx1),z3 7→ zero,z4 7→ l1} and σ2 = {z1 7→ x2,z3 7→ (succx2),z4 7→ l2} satisfy
tσ1 = t1 and tσ2 = t2. The generated variables z1,z2,z3,z4 occur at most once in the computed lgg, and
var(t) = dom(σ1) = dom(σ2).

The ! in Example 2 means that has been applied repeatedly until 〈t,P〉 is in solved form.

Antiunification problems are encoded as ML patterns as below:

Definition 2 (Antiunification problem). For each antiunification problem 〈t,P〉 we define an ML pattern

φ
〈t,P〉 , ∃z.t ∧

(
φ

σ1 ∨φ
σ2
)
,

where σ1 = {z 7→ u | z 7→ utv∈ P}, σ2 = {z 7→ v | z 7→ utv∈ P}, and var(t) = dom(σ1) = dom(σ2) = z.

Example 3. Here are the corresponding encodings for the intermediate antiunification problems that
are generated during the execution shown in Example 2:

1. 〈z,{z 7→ (cons(succx1)(conszero l1))t (consx2 (cons(succx2) l2))}〉 is encoded as
∃z.z∧

(
z = (cons(succx1)(conszero l1))∨ z = (consx2 (cons(succx2) l2))

)
;
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2. 〈(consz1 z2),{z1 7→ (succx1)t x2,z2 7→ (conszero l1)t (cons(succx2) l2)}〉 is encoded as:

∃{z1,z2}.(consz1 z2)∧
((

z1 =(succx1)∧z2 =(conszero l1)
)
∨
(
z1 = x2∧z2 =(cons(succx2) l2)

))
;

3. 〈(consz1 (consz3 z4)),{z1 7→ (succx1)t x2,z3 7→ zerot (succx2),z4 7→ l1t l2}〉 is encoded as:

∃{z1,z3,z4}.(consz1 (consz3 z4))∧((
z1 = (succx1)∧ z3 = zero∧ z4 = l1

)
∨
(
z1 = x2∧ z3 = (succx2)∧ z4 = l2

))
.

Note that the encodings shown in Example 3 are all equivalent. Also, remember that the scope of the
quantifiers extends as much as possible to the right.

Lemma 1. If 〈ti,Pi〉 〈ti+1,Pi+1〉 is a step performed using Plotkin’s antiunification rule, then

TERM(S,F) |= φ
〈ti,Pi〉↔ φ

〈ti+1,Pi+1〉.

The soundness theorem shown below is a direct consequence of Lemma 1:

Theorem 2. (Soundness) Let t1 and t2 be two term patterns and z a variable such that z 6∈ var(t1)∪
var(t2). If 〈z,{z 7→ t1t t2}〉 ! 〈t,P〉, then TERM(S,F) |= (t1∨ t2)↔ φ 〈t,P〉.

The above results are proved using the semantical ML satisfaction relation (|=). Recall that our goal
is to generate proof objects, and thus, we want to prove the above results using the ML proof system.
We address this challenge in the following section.

4 Generating Proof Objects

Our method for generating proof objects is generic in the sense that it can be used for a larger class of
term-algebra-based algorithms (e.g., unification, antiunification).

A proof object is represented by a sequence of lines of the form:

k derived pattern justification

where k is the step index and the justification mentions the applied inference rule and the step index
of the premises of the rule (if any). The step index of the premises should be smaller than k, i.e., the
premises are justified by the previous lines.

Our method is sketched as follows:

1. We consider algorithms that transform a pattern ϕ into an equivalent one ϕ ′. So, a proof object
proofObj has to be generated for ϕ ↔ ϕ ′.

2. The execution of such algorithms for an input ϕ produces a sequence of intermediate patterns
ϕ1, . . . ,ϕn−1 such that ϕ i−1 ↔ ϕ i, 0 < i ≤ n, where ϕ0 , ϕ and ϕn , ϕ ′. So, a proof object for
each ϕ i−1↔ ϕ i has to be generated in order to build proofObj.

3. Assuming that ϕ i is obtained from ϕ i−1 by applying a generic step of the algorithm, we design a
proof schema for this step s.t. the instance of this schema for ϕ i−1 and ϕ i produces a proof object
proofObji for ϕ i−1↔ ϕ i.
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4. The proof object proofObj for the equivalence ϕ ↔ ϕ ′ is obtained by the composition

proofObj1; . . . ;proofObjn;proofObjn+1,

where proofObjn+1 connects the other proofs objects by transitivity so that the result is a proof
object.

The approach from [2] for unification can be formalised now as an instance of this method.

4.1 Generating proof objects for antiunification

The goal is to generate proof objects for the equivalence TERM(S,F) |= (t1 ∨ t2)↔ φ 〈t,P〉 (cf. Theo-
rem 2). For an input antiunification problem 〈t0,P0〉 , 〈z,z 7→ t1 t t2〉, Plotkin’s algorithm generates a
sequence of antiunification problems until it reaches the final pair 〈tk,Pk〉, 〈t,P〉 which contains the lgg:

〈t0,P0〉 · · · 〈ti,Pi〉 · · · 〈tk,Pk〉.
The key observation is that the ML encodings of the antiunification problems from the above sequence
are all equivalent (cf. Lemma 1):

φ 〈t0,P0〉↔ ··· ↔ φ 〈ti,Pi〉↔ ··· ↔ φ 〈tk,Pk〉.

The proof object for t1∨ t2↔ φ 〈t,P〉 is obtained by instantiating the next schema:

∨gen;( step)k;(↔tranz)k,

where:
• k is the number of applications of Plotkin’s rule;

• ∨gen is the proof schema which corresponds to the initial equivalence t1∨ t2↔ φ 〈t0,P0〉. Recall that
φ 〈t0,P0〉 = φ 〈z,z7→t1tt2〉 , ∃z.z∧ (z = t1∨ z = t2);

•  step is the proof schema corresponding to the equivalences φ 〈ti,Pi〉↔ φ 〈ti+1,Pi+1〉, with i∈{0, . . . ,k−
1}. All these equivalences are obtained by applying a generic step of the algorithm. The schema
 step corresponds to this generic step.

• Finally, using the transitivity of↔ k times we obtain a proof object for t1∨ t2↔ φ 〈tk,Pk〉.

The proof schema for ∨gen and  step are presented in Sections 4.3 and 4.4.3. Both use the proof
rules in Figure 1 and the macro rules in Section 4.2. The proof schema for  step uses two additional
(sub)schema ∃-GEN’ (shown in Section 4.4.1) and DEC (shown in Section 4.4.2).

Example 4 shows a high-level proof object where we apply ∨gen once, step and↔tranz twice. This
is because the antiunification rule has been applied two times to obtain the lgg. The exact (low-level)
proof object corresponding to this example is obtained by instantiating the proof schemata for ∨gen and
 step (presented later in Sections 4.3 and 4.4.3).

Example 4. We show here the proof object corresponding to the execution from Example 2, where we use
the encodings in Example 3. The structure of the proof object follows the schema ∨gen;( step)k;(↔tranz)k,
where k = 2:



10 Antiunification in matching logic

(1) t1∨ t2↔
∃z.z∧

(
z = (cons(succx1)(conszero l1))∨ z = (consx2 (cons(succx2) l2))

)
∨gen

(2.1) ∃z.z∧(
z = (cons(succx1)(conszero l1))∨ z = (consx2 (cons(succx2) l2))

)
↔

∃{z1,z2}.(consz1 z2)∧((
z1 = (succx1)∧ z2 = (conszero l1)

)
∨
(
z1 = x2∧ z2 = (cons(succx2) l2)

))
 step

(2.2) ∃{z1,z2}.(consz1 z2)∧((
z1=(succx1)∧ z2=(conszero l1)

)
∨
(
z1=x2∧ z2=(cons(succx2) l2)

))
↔

∃{z1,z3,z4}.(consz1 (consz3 z4))∧((
z1 = (succx1)∧ z3 = zero∧ z4 = l1

)
∨
(
z1 = x2∧ z3 = (succx2)∧ z4 = l2

))
 step

(3.1) t1∨ t2↔
∃{z1,z2}.(consz1 z2)∧ ↔tranz:((

z1 = (succx1)∧ z2 = (conszero l1)
)
∨
(
z1 = x2∧ z2 = (cons(succx2) l2)

))
1,2.1

(3.2) t1∨ t2↔ ↔tranz:
∃{z1,z3,z4}.(consz1 (consz3 z4))∧ 3.1,2.2((

z1 = (succx1)∧ z3 = zero∧ z4 = l1
)
∨
(
z1 = x2∧ z3 = (succx2)∧ z4 = l2

))
Generating proof objects for antiunification turns out to be more complex than in the unification case

from [2]. Plotkin’s algorithm generates fresh variables at each step. These variables are existentially
quantified in the corresponding ML encodings and handling these quantifiers in proofs is difficult. The
main difficulty comes from the fact that most of the times the application of a ML proof rule requires a
lot of preparation work: you have to isolate the goal that can be proved using a particular ML proof rule,
and then find a way to put back the existential quantifiers. Also, you have to make sure that the proof
objects generated by step remain composable, so that↔tranz can be applied. This is why we use several
macro rules in addition to the ML proof system.

4.2 The Macro Rules

Our approach uses the additional rules shown in Figure 34. The first part includes three macro rules.
∃-CTX enables the replacement of a formula with an equivalent one under the ∃ quantifier. ∃-SCOPE

extends the scope of ∃ over formulas that do not contain variables that can be captured. ∃-COLLAPSE is
useful when existentially quantified formulas can be collapsed under a single quantifier.

The second part includes two macro rules which are consequences of the specification TERM(S,F)
(cf. Proposition 1). ∃-SUBST states that t ∧ (z = u) is equivalent to t[u/z] under the existential quantifier
which binds z. ∃-GEN allows one to replace subterms t , t1 . . . tn of a term with existentially quantified
fresh variables y, y1 . . .yn. To obtain an equivalent formula, the constraints y = t are added.

4.3 Proof object schema ∨gen

The first step of our method is to establish the equivalence between the disjunction t1∨t2 and the encoding
of the initial unification problem 〈z,z 7→ t1t t2〉, that is

(
∃z.z∧ (z = t1)

)
∨
(
∃z.z∧ (z = t2)

)
. This is done

via the proof object schema ∨gen, which is shown below.

4Proving these rules using the proof system in Figure 1 is out of scope of this paper.
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Additional proof rules

∃-CTX

ϕ2↔ ϕ ′2(
∃x.ϕ1∧ϕ2

)
↔∃x.(ϕ1∧ϕ ′2)

∃-SCOPE
((
∃x.ϕ1

)
�ϕ2

)
↔∃x.(ϕ1�ϕ2), if x 6∈ free(ϕ2)

∃-COLLAPSE
(
(∃x.ϕ1)∨ (∃x.ϕ2)

)
↔∃x.(ϕ1∨ϕ2)

Term algebra specific proof rules
∃-SUBST ∃z.t ∧ (z = u)↔ t[u/z], if z 6∈ var(u)

∃-GEN z = ( f t)↔∃y.z = ( f y)∧ y = t, if y 6∈ var
(
( f t)

)
∪{z}

Figure 3: The macro rules used to generate proof objects for antiunification. The � is a placeholder for
one logical operator in the set {∧,↔}. Also, unless explicitly delimited using parentheses, the scope of
the quantifiers extends as much as possible to the right.

To shorten our presentation, the MODUSPONENS rule from Figure 1 is applied here directly over a
double implication ↔ (instead of →). For the steps k+6 and k+8 we use PROPOSITIONAL to justify
two trivial equivalences: the first says that φ1∨φ2↔ φ ′1∨φ ′2 if φ1↔ φ ′1 and φ2↔ φ ′2; the second is just
a well-known distributivity property.

(k)
(
∃z.t1↔ z∧ (z = t1)

)
∃-SUBST (note: z[t1/z] = t1)

(k+1)
(
∃z.t1↔ z∧ (z = t1)

)
↔
(
t1↔∃z.z∧ (z = t1)

)
∃-SCOPE

(k+2) t1↔∃z.z∧ (z = t1) MODUSPONENS: k, k+1
(k+3)

(
∃z.t2↔ z∧ (z = t2)

)
∃-SUBST (note: z[t2/z] = t2)

(k+4)
(
∃z.t2↔ z∧ (z = t2)

)
↔
(
t2↔∃z.z∧ (z = t2)

)
∃-SCOPE

(k+5) t2↔∃z.z∧ (z = t2) MODUSPONENS: k+3, k+4
(k+6) t1∨ t2↔

(
∃z.z∧ (z = t1)

)
∨
(
∃z.z∧ (z = t2)

)
PROPOSITIONAL: k+2, k+5

(k+7)
((
∃z.z∧ (z = t1)

)
∨
(
∃z.z∧ (z = t2)

))
↔

∃z.
(
z∧ (z = t1)

)
∨
(
z∧ (z = t2)

)
∃-COLLAPSE

(k+8)
(
z∧ (z = t1)

)
∨
(
z∧ (z = t2)

)
↔

z∧
(
(z = t1)∨ (z = t2)

)
PROPOSITIONAL

(k+9) ∃z.
(
z∧ (z = t1)

)
∨
(
z∧ (z = t2)

)
↔

∃z.z∧
(
(z = t1)∨ (z = t2)

)
∃-CTX: k+8

(k+10) t1∨ t2↔∃z.
(
z∧ (z = t1)

)
∨
(
z∧ (z = t2)

)
↔tranz: k+6, k+7

(k+11) t1∨ t2↔∃z.z∧
(
(z = t1)∨ (z = t2)

)
↔tranz: k+10, k+9

4.4 Proof schema step

The proof schema of step used two other (sub)schemata ∃-GEN’ and DEC. We explain these first, and
them we present the proof schema for step.

4.4.1 Proof object schema ∃-GEN’

Recall that ∃-GEN (Figure 3 – term algebra specific rule) establishes an equivalence between z=( f t) and
∃y.z = ( f y)∧y = t, if y 6∈ var

(
( f t)

)
∪{z}, which basically describes a generalisation of ( f t). However,

most of the times ∃-GEN is applied under a conjunction. The proof schema ∃-GEN′ generalises the
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∃-GEN macro rule as follows: (
ϕ ∧ z = ( f t)

)
↔∃z.ϕ ∧ z = ( f z)∧ z = t,

where ( f t) denotes ( f t1 . . . tn), ( f z) stands for ( f z1 . . . zn), and z= t denotes the conjunction
∧n

i=1 zi = ti.
Note that ϕ is safely introduced under the existential quantifier. The proof schema ∃-GEN’ is shown
below:

(k) z = ( f t)↔∃z.z = ( f y)∧ y = t ∃-GEN

(k+1)
(
ϕ ∧ z = ( f t)

)
↔

ϕ ∧∃z.z = ( f z)∧ z = t PROPOSITIONAL:k
(k+2)

(
ϕ ∧∃z.z = ( f z)∧ z = t

)
↔

∃z.ϕ ∧ z = ( f z)∧ z = t ∃-SCOPE, var(ϕ)∩{z1, . . . ,zn}= /0
(k+3)

(
ϕ ∧ z = ( f t)

)
↔

∃z.ϕ ∧ z = ( f z)∧ z = t ↔tranz: k+1, k+2

At step k+1 we use PROPOSITIONAL, in particular, we use this property: if ϕ1 ↔ ϕ2 then ϕ ∧ϕ1 ↔
ϕ ∧ϕ2. This schema is applied in a certain context, where var(ϕ)∩{z1, . . . ,zn} = /0, because z1, . . . ,zn

are always fresh variables introduced by Plotkin’s antiunification algorithm.

4.4.2 Proof schema DEC

Once we have equivalent forms for z = ( f t) (i.e., ∃y.z = ( f y)∧ y = t, cf. ∃-GEN′), we are now ready
to tackle disjunctions ( f u)∨ ( f v). DEC captures a decomposition: ( f u)∨ ( f v) is equivalent to a con-
junction between ( f z) and (z = u)∨ (z = v), where again z = {z1 . . . zn} are existentially quantified. In
addition, DEC performs the decomposition under a conjunction:(

(ϕ ∧ z = ( f u))∨ (ϕ ′∧ z = ( f v))
)
↔∃z.z = ( f z)∧

(
(ϕ ∧ z = u)∨ (ϕ ′∧ z = v)

)
,

where ( f u) means ( f u1 . . . un), ( f z) stands for ( f z1 . . . zn), and the equality z = u denotes
∧n

i=1 zi = ui.
Similarly, ( f v) denotes ( f v1 . . . vn) and z = v is

∧n
i=1 zi = vi. The schema for DEC uses ∃-GEN’:

(k)
(
ϕ ∧ z=( f u)

)
↔∃z.ϕ ∧ z=( f z)∧ z=u ∃-GEN’

(k+1)
(
ϕ ′∧ z=( f v)

)
↔∃z.ϕ ′∧ z=( f z)∧ z=v ∃-GEN’

(k+2)
(
ϕ ∧ z=( f u)

)
∨
(
ϕ ′∧ z=( f v)

)
↔ PROPOSITIONAL:(

∃z.ϕ ∧ z=( f z)∧ z=u
)
∨∃z.ϕ ′∧ z=( f z)∧ z=v k+1, k+2

(k+3)
(
∃z.ϕ ∧ z=( f z)∧ z=u

)
∨∃z.ϕ ′∧ z=( f z)∧ z=v↔

∃z.
(
ϕ ∧ z=( f z)∧ z=u

)
∨ϕ ′∧ z=( f z)∧ z=v ∃-COLLAPSE

(k+4)
(
ϕ ∧ z=( f u)

)
∨
(
ϕ ′∧ z=( f v)

)
↔

∃z.
(
ϕ ∧ z=( f z)∧ z=u

)
∨ϕ ′∧ z=( f z)∧ z=v ↔tranz: k+2, k+3

(k+5)
(
ϕ ∧ z=( f z)∧ z=u

)
∨ϕ ′∧ z=( f z)∧ z=v↔

z=( f z)∧
(
(ϕ ∧ z=u)∨ (ϕ ′∧ z=v)

)
PROPOSITIONAL

(k+6) ∃z.
(
ϕ ∧ z=( f z)∧ z=u

)
∨ϕ ′∧ z=( f z)∧ z=v↔

∃z.z=( f z)∧
(
(ϕ ∧ z=u)∨ (ϕ ′∧ z=v)

)
∃-CTX: k+5

(k+7)
(
ϕ ∧ z=( f u)

)
∨
(
ϕ ′∧ z=( f v)

)
↔

∃z.z=( f z)∧
(
(ϕ ∧ z=u)∨ (ϕ ′∧ z=v)

)
↔tranz: k+4, k+6
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4.4.3 Proof schema step

Recall that in each step 〈ti,Pi〉 〈ti+1,Pi+1〉, ti+1 is a generalisation of ti, and both ti and ti+1 are general-
isations of the initial term patterns. Also, recall that both φ 〈ti,Pi〉 and φ 〈ti+1,Pi+1〉 are existentially quantified
conjunctions between a term pattern (e.g., the generalisations ti, ti+1) and a predicate (cf. Definition 2).
Our final step is to add the missing existential quantifiers and the missing term patterns (generalisations)
to the equivalences obtained using DEC. The schema which does all the above is summarised below:

(k+1)
(
ϕ ∧ z=(f u)

)
∨
(
ϕ ′∧ z=(f v)

)
↔

∃z.z=( f z)∧
(
(ϕ ∧ z=u)∨ (ϕ ′∧ z=v)

)
DEC

(k+2) ∃x.t ∧
(
ϕ ∧ z=(f u)

)
∨
(
ϕ ′∧ z=(f v)

)
↔ z ∈ x=var(t)

∃x.t ∧∃z.z=( f z)∧
(
(ϕ ∧ z=u)∨ (ϕ ′∧ z=v)

)
∃-CTX: k+1

(k+3) t ∧∃z.z=( f z)∧
(
(ϕ ∧ z=u)∨ (ϕ ′∧ z=v)

)
↔ z fresh

∃z.t ∧ z=( f z)∧
(
(ϕ ∧ z=u)∨ (ϕ ′∧ z=v)

)
∃-SCOPE

(k+4) ∃x.t ∧∃z.z=( f z)∧
(
(ϕ ∧ z=u)∨ (ϕ ′∧ z=v)

)
↔ x ∈ var(t)

∃x.∃z.t ∧ z=( f z)∧
(
(ϕ ∧ z=u)∨ (ϕ ′∧ z=v)

)
∃-CTX: k+3

(k+5) ∃x.t ∧
(
ϕ ∧ z=(f u)

)
∨
(
ϕ ′∧ z=(f v)

)
↔ ↔tranz:

∃x.∃z.t ∧ z=( f z)∧
(
(ϕ ∧ z=u)∨ (ϕ ′∧ z=v)

)
k+2, k+4

(k+6) ∃z.t ∧ z=(f z)∧
(
(ϕ ∧ z=u)∨ (ϕ ′∧ z=v)

)
↔(

∃z.t ∧ z=(f z)
)
∧
(
(ϕ ∧ z=u)∨ (ϕ ′∧ z=v)

)
∃-SCOPE

(k+7) ∃{x,z}.t ∧ z=(f z)∧
(
(ϕ ∧ z=u)∨ (ϕ ′∧ z=v)

)
↔

∃{x,z}\{z}.
(
∃z.t ∧ z=(f z)

)
∧
(
(ϕ ∧ z=u)∨ (ϕ ′∧ z=v)

)
∃-CTX: k+6

(k+8) ∃x.t ∧
(
ϕ ∧ z=(f u)

)
∨
(
ϕ ′∧ z=(f v)

)
↔ ↔tranz:

∃{x,z}\{z}.
(
∃z.t ∧ z=(f z)

)
∧
(
(ϕ ∧ z=u)∨ (ϕ ′∧ z=v)

)
k+5, k+7

(k+9) ∃z.t ∧ z=(f z)↔ t[(f z)/z] ∃-SUBST

(k+10)
(
∃z.t ∧ z=(f z)↔ t[(f z)/z]

)
↔
(
∃z.t ∧ z=(f z)

)
↔ t[(f z)/z] ∃-SCOPE

MODUSPON.:
(k+11)

(
∃z.t ∧ z=(f z)

)
↔ t[(f z)/z] k+9, k+10

(k+12)
(
∃{x,z}.t ∧ z=(f z)

)
∧
(
ϕ ∧ z=(f u)

)
∨
(
ϕ ′∧ z=(f v)

)
↔

∃{x,z}\{z}.t[(f z)/z]∧
(
ϕ ∧ z=(f u)

)
∨
(
ϕ ′∧ z=(f v)

)
∃-CTX: k+11

(k+13) ∃x.t ∧
(
ϕ ∧ z=(f u)

)
∨
(
ϕ ′∧ z=(f v)

)
↔ ↔tranz:

∃{x,z}\{z}.t[(f z)/z]∧
(
ϕ ∧ z=(f u)

)
∨
(
ϕ ′∧ z=(f v)

)
k+8, k+12

This schema uses the fact that Plotkin’s algorithm generates fresh variables at each antiunification step.
Here, x = {x1, . . . ,xn} = var(t) and ∃{x,z} stands for ∃{x1, . . . ,xn,z1, . . . ,zm}. At k+7, we directly use
∃{x,z} instead of ∃{x,z}\{z}.∃z.

5 A tool for certifying antiunification

We implement a prototype [3] for our proof object generation mechanism and a checker for the generated
proof objects. The proof generator and the proof checker are implemented in Maude [10]. Both tools
can be used directly in Maude, but we also created a Python interface in order to facilitate the interaction
of the user with the Maude tools.

The Python script takes easy-to-write specifications as inputs, it automatically calls the Maude proof
generator and the proof checker behind the scenes, and outputs a proof and a checking status.
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Table 1: The results obtained when generating proof objects for large inputs inspired from K definitions
of real-life languages (C and Java).

Language File File size proof object size
name (kb) (no. of lines)

list of nats 13_paper_cons_succ.in 0.122 84
C 18_c_declare_local.in 14 5052
Java 19_java_method_invoke.in 6 2352

The specifications are minimally specified in an input file whose content is self-explanatory. For
example, the antiunification problem from Example 2 is specified as:
v a r i a b l e s : x1 , x2 , l1 , l 2
symbols : cons , succ , z e r o
problem : cons ( succ ( x1 ) , cons ( zero , l 1 ) ) = ? cons ( x2 , cons ( succ ( x2 ) , l 2 ) )

The Python script parses the input and extracts the variables, the symbols, and the antiunification
problem. It infers automatically the arities of the symbols and throws errors when the inputs are not
well-formed or arities are inconsistent (e.g., same symbol used with different number of arguments).
Then it calls the Maude proof generator and checker in the background. The output from Maude is
postprocessed in Python and the user can inspect the proof and the checking status (true or false):
> python3 ml− a n t i u n i f y . py t e s t s / s amples / 1 3 _ p a p e r _ c o n s _ s u c c . i n
P r o o f o f : / / goa l : . . .
/ / g e n e r a t e d p r o o f . . .
Checked : true

For this particular example, the generated proof has 84 proof lines as shown in the first line of Table 1.
We tested our prototype on larger inputs as well. Our goal was to see if the size of the generated proof

objects for real-life language configurations is indeed manageable (e.g., the size should increase linearly,
not exponentially). Also, we wanted to check whether our proof-generation schemas are correctly instan-
tiated and they compose as expected to obtain the final proof objects. The inputs that we use are inspired
from the K definitions of several languages, including the K definitions of C [12] and Java [5]. In these
K definitions, the configurations are quite big (i.e., ∼130 nodes for C, ∼65 nodes for Java). From these
definitions we extracted some large term patterns which we use as inputs for antiunification.

Table 1 shows some of the results that we obtained5. The input terms in our specifications represent
C and Java symbolic configurations converted into our input format. We use the specification file size
to measure the input size and we use the number of proof lines to measure the size of proof object. As
expected, the size of the generated proof objects depends on the input size. For language definitions that
have larger configurations the generated proofs are big (e.g., 5000 lines for C, and 2300 lines for Java).

For each step of the antiunification algorithm, the proof generator (which implements the schemas
discussed in Section 4) produces a fixed number of proof lines. Therefore, the size of the proof ob-
ject is directly proportional with the number of execution steps of the antiunification algorithm. In the
worst-case scenario, when executed on an input 〈z,z 7→ t1t t2〉 the number of execution steps of the an-
tiunification algorithm is given by the size of the smallest term pattern between t1 and t2. An example of
worst-case scenario is when one term is an instance of the other, i.e., the lgg t1 and t2 is ti with i ∈ {1,2}.

5Details can be found here: https://github.com/andreiarusoaie/certifying-unification-in-aml/tree/
master/tests/samples#readme

https://github.com/andreiarusoaie/certifying-unification-in-aml/tree/master/tests/samples#readme
https://github.com/andreiarusoaie/certifying-unification-in-aml/tree/master/tests/samples#readme
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The tests that we performed on large inputs show that our proof object generation method can be
implemented and used in practice. Our prototype is able to produce a correct output (i.e., the proof
objects are successfully checked by the checker) and thus, it shows that there are no corner cases that we
missed in our approach.

6 Conclusions
In order to obtain a certified symbolic execution, the parameters of an execution step have to carry
the proof object of their actions. Two examples of such parameters are unification and antiunification
algorithms. In this paper we proposed a generic method for generating proof objects for the tasks that the
K tool performs. We showed how this method works for the case of antiunification by providing schemas
for generating proof objects. More precisely, we used Plotkin’s antiunification to normalise disjunctions
and to generate the corresponding proof objects. We also provided a prototype implementation of our
proof object generation technique and a checker for the generated proof objects.

The prototype generates proof objects whose size depends on the number of steps performed by the
antiunification algorithm. However, the number of steps is limited by the size of the inputs. We success-
fully used our prototype on complex inputs inspired from the K semantics of C and Java. This indicates
that our approach is practical even for large inputs.

Future work In order to obtain a proof object that uses only the Hilbert-style proof rules, the next
step is to find proof schemata for the macro rules in Figure 3. This will allow us to use the newest proof
checker for ML implemented in Metamath [24]. Both checkers (the existing Metamath and our Maude
implementations) have the same functionality w.r.t. ML proof system. So far, we preferred our Maude
implementation because it was easier to handle macro rules. Also, we reused only the ML syntax module
written in Maude for both the checker and the proof generator. However, the short term goal is to use the
Metamath checker so that the proof object generator and the checker are completely independent.
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