
H. Cheval, L. Leuştean, A. Sipoş (Eds.):
7th Symposium on Working Formal Methods (FROM 2023)
EPTCS 389, 2023, pp. 80–95, doi:10.4204/EPTCS.389.7

© M. J. D. Lima & F. L. C. de Moura
This work is licensed under the
Creative Commons Attribution License.

A Formalized Extension of the Substitution Lemma in Coq

Maria J. D. Lima
Departamento de Ciência da Computação
Universidade de Brasília, Brasília, Brazil

majuhdl@gmail.com

Flávio L. C. de Moura
Departamento de Ciência da Computação
Universidade de Brasília, Brasília, Brazil

flaviomoura@unb.br

The substitution lemma is a renowned theorem within the realm of λ -calculus theory and concerns the
interactional behaviour of the metasubstitution operation. In this work, we augment the λ -calculus’s
grammar with an uninterpreted explicit substitution operator, which allows the use of our frame-
work for different calculi with explicit substitutions. Our primary contribution lies in verifying that,
despite these modifications, the substitution lemma continues to remain valid. This confirmation
was achieved using the Coq proof assistant. Our formalization methodology employs a nominal ap-
proach, which provides a direct implementation of the α-equivalence concept. The strategy involved
in variable renaming within the proofs presents a challenge, specially on ensuring an exploration of
the implications of our extension to the grammar of the λ -calculus.

1 Introduction

In this work, we present a formalization of the substitution lemma [5] in a general framework that extends
the λ -calculus with an explicit substitution operator using the Coq proof assistant [24]. The source code
is publicly available at

https://flaviomoura.info/files/msubst.v

The substitution lemma is an important result concerning the composition of the substitution opera-
tion, and is usually presented as follows in the context of the λ -calculus:

Let t,u and v be λ -terms, x ̸= y and x /∈ FV (v), where FV (v) is the set of free variables of v.
Then {y := v}{x := u}t = {x := {y := v}u}{y := v}t.

This is a well known result already formalized in the context of the λ -calculus [7]. Nevertheless,
in the context of λ -calculi with explicit substitutions its formalization is not trivial due to the interac-
tion between the metasubstitution and the explicit substitution operator. Our formalization is done in
a nominal setting that uses the MetaLib1 package of Coq, but no particular explicit substitution calculi
is taken into account because the expected behaviour between the metasubstitution operation with the
explicit substitutition constructor is the same regardless the calculus. The formalization was done with
Coq (platform) version 8.15.2, which already comes with the Metalib package. The novel contributions
of this work are twofold:

1. The formalization is modular in the sense that no particular calculi with explicit substitutions
is taken into account. Therefore, we believe that this formalization could be seen as a generic
framework for proving properties of these calculi that uses the substitution lemma in the nominal
setting [16, 20, 21];

1https://github.com/plclub/metalib

http://dx.doi.org/10.4204/EPTCS.389.7
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://flaviomoura.info/files/msubst.v
https://github.com/plclub/metalib

M. J. D. Lima & F. L. C. de Moura 81

2. A solution to a circularity problem in the proofs is given. It adds an axiom to the formalization
that allow a rewrite step inside a let expression. Such a rewrite step is problematic and does not
seem to have a trivial solution.

2 A syntactic extension of the λ -calculus

In this section, we present the framework of the formalization, which is based on a nominal approach
[12] where variables use names. In the nominal setting, variables are represented by atoms that are
structureless entities with a decidable equality:

Parameter eq_dec : forall x y : atom, {x = y} + {x <> y}.

therefore different names mean different atoms and different variables. The nominal approach is close to
the usual paper and pencil notation used in λ -calculus, whose grammar of terms is given by:

t ::= x | λx.t | t t (1)

where x represents a variable which is taken from an enumerable set, λx.t is an abstraction, and t t is an
application. The abstraction is the only binding operator: in the expression λx.t, x binds in t, called the
scope of the abstraction. This means that all free occurrence of x in t is bound in λx.t. A variable that
is not in the scope of an abstraction is free. A variable in a term is either bound or free, but note that a
varible can occur both bound and free in a term, as in (λy.y) y.

The main rule of the λ -calculus, named β -reduction, is given by:

(λx.t) u →β {x := u}t (2)

where {x := u}t represents the result of substituting all free occurrences of variable x in t with u in
such a way that renaming of bound variable may be done in order to avoid the variable capture of free
variables. We call t the body of the metasubstitution, and u its argument. In other words, {x := u}t
is a metanotation for a capture free substitution. For instance, the λ -term (λxλy.x y) y has both bound
and free occurrences of the variable y, and in order to β -reduce it, one has to replace (or substitute) the
free variable y for all free occurrences of the variable x in the term (λy.x y). But a straight substitution
will capture the free variable y, i.e. this means that the free occurrence of y before the β -reduction will
become bound after the β -reduction step. A renaming of bound variables may be done to avoid such
a capture, so in this example, one can take an α-equivalent2 term, say (λz.x z), and perform the β -step
correctly as (λxλy.x y) y →β λz.y z. Renaming of variables in the nominal setting is done via a name-
swapping, which is formally defined as follows:

((x y))z :=

y, if z = x;
x, if z = y;
z, otherwise.

This notion can be extended to λ -terms in a straightfoward way:

(x y)t :=

((x y))z, if t = z;
λ((x y))z.(x y)t1, if t = λz.t1;
(x y)t1 (x y)t2, if t = t1 t2

(3)

2A formal definition of this notion will be given later in this section.

82 A Formalized Substitution Lemma in Coq

In the previous example, one could apply a swap to avoid the variable capture in a way that, a swap
is applied to the body of the abstraction before applying the metasubstitution to it: (λxλy.x y) y →β {x :=
y}((y z)(λy.x y)) = {x := y}(λz.x z) = λz.y z. Could we have used a variable substitution instead of a
swapping in the previous example? Absolutely. We could have done the reduction as (λxλy.x y) y →β

{x := y}({y := z}(λy.x y)) = {x := y}(λz.x z) = λz.y z, but as we will shortly see, variable substitution is
not stable modulo α-equivalence, while the swapping is, thereby rendering it a more fitting choice when
operating with α-classes.

In what follows, we will adopt a mixed-notation approach, intertwining metanotation with the equiv-
alent Coq notation. This strategy aids in elucidating the proof steps of the upcoming lemmas, enabling
a clearer and more detailed comprehension of each stage in the argumentation. The corresponding Coq
code for the swapping of variables, named vswap, is defined as follows:

Definition vswap (x:atom) (y:atom) (z:atom) := if (z == x) then y else if (z == y) then x else z.

therefore, the swap ((x y))z is written in Coq as vswap x y z. As a short example to acquaint ourselves
with the Coq notation, let us show how we will write the proofs:

Lemma vswap id: ∀ x y, vswap x x y = y.
Proof. The proof is by case analysis, and it is straightforward in both cases, when x = y and x ̸= y. □

2.1 An explicit substitution operator

The extension of the swap operation to terms require an additional comment because we will not work
with the grammar (1), but rather, we will extend it with an explicit substitution operator:

t ::= x | λx.t | t t | [x := u]t (4)

where [x := u]t represents a term with an operator that will be evaluated with specific rules of a sub-
stitution calculus. The intended meaning of the explicit substitution is that it will simulate the meta-
substitution. This formalization aims to be a generic framework applicable to any calculi with explicit
substitutions using a named notation for variables. Therefore, we will not specify rules about how one
can simulate the metasubstitution, but it is important to be aware that this is not a trivial task as one can
easily lose important properties of the original λ -calculus [18, 14].

Calculi with explicit substitutions are formalisms that deconstruct the metasubstitution operation
into finer-grained steps, thereby functioning as an intermediary between the λ -calculus and its practical
implementations. In other words, these calculi shed light on the execution models of higher-order lan-
guages. In fact, the development of a calculus with explicit substitutions faithful to the λ -calculus, in
the sense of the preservation of some desired properties were the main motivation for such a long list of
calculi with explicit substitutions invented in the last decades [1, 23, 6, 10, 19, 15, 8, 11, 17].

The following inductive definition corresponds to the grammar (4), where the explicit substitution
constructor, named n sub, has a special notation. Instead of writing n sub t x u, we will write [x := u] t
similarly to (4). Accordingly, n sexp denotes the set of nominal λ -expressions equipped with an explicit
substitution operator, which, for simplicity, we will refer to as just “terms”.

Inductive n sexp : Set :=
| n var (x:atom)
| n abs (x:atom) (t:n sexp)
| n app (t1:n sexp) (t2:n sexp)
| n sub (t1:n sexp) (x:atom) (t2:n sexp).

M. J. D. Lima & F. L. C. de Moura 83

The size of a term, also written as |t|, and the set fv nom of the free variables of a term are defined
as usual:

Fixpoint size (t : n sexp) : nat :=
match t with
| n var x ⇒ 1
| n abs x t ⇒ 1 + size t
| n app t1 t2 ⇒ 1 + size t1 + size t2
| n sub t1 x t2 ⇒ 1 + size t1 + size t2
end.

Fixpoint fv nom (t : n sexp) : atoms :=
match t with
| n var x ⇒ {{x}}
| n abs x t1 ⇒ remove x (fv nom t1)
| n app t1 t2 ⇒ fv nom t1 ‘union‘ fv nom t2
| n sub t1 x t2 ⇒ (remove x (fv nom t1)) ‘union‘ fv nom t2
end.

The action of a permutation on a term, written (x y)t, is inductively defined as in (3) with the addi-
tional case for the explicit substitution operator:

(x y)t :=

((x y))v, if t is the variable v;
λ((x y))z.(x y)t1, if t = λz.t1;
(x y)t1 (x y)t2, if t = t1 t2;
[((x y))z := (x y)t2](x y)t1, if t = [z := t2]t1.

The corresponding Coq definition is given by the following recursive function:

Fixpoint swap (x:atom) (y:atom) (t:n sexp) : n sexp :=
match t with
| n var z ⇒ n var (vswap x y z)
| n abs z t1 ⇒ n abs (vswap x y z) (swap x y t1)
| n app t1 t2 ⇒ n app (swap x y t1) (swap x y t2)
| n sub t1 z t2 ⇒ n sub (swap x y t1) (vswap x y z) (swap x y t2)
end.

The swap function has many interesting properties, but we will focus on the ones that are more
relevant to the proofs related to the substitution lemma. Nevertheless, all lemmas can be found in the
source code of the formalization3. The next lemmas are simple properties that are all proved by induction
on the structure of term t:

Lemma swap neq: ∀ x y z w, z ̸= w → vswap x y z ̸= vswap x y w.

Lemma swap size eq : ∀ x y t, size (swap x y t) = size t.

Lemma swap symmetric : ∀ t x y, swap x y t = swap y x t.

Lemma swap involutive : ∀ t x y, swap x y (swap x y t) = t.

3https://flaviomoura.info/files/msubst.v

https://flaviomoura.info/files/msubst.v

84 A Formalized Substitution Lemma in Coq

Lemma shuffle swap : ∀ w y z t, w ̸= z → y ̸= z → (swap w y (swap y z t)) = (swap w z (swap w y t)).

Lemma swap equivariance : ∀ t x y z w, swap x y (swap z w t) = swap (vswap x y z) (vswap x y w) (swap
x y t).

Lemma fv nom swap : ∀ z y t, z ‘notin‘ fv nom t → y ‘notin‘ fv nom (swap y z t).

The standard proof strategy used so far is induction on the structure of terms. Nevertheless, the
builtin induction principle automatically generated in Coq for the inductive definition n sexp is not strong
enough due to swappings:

forall P :n_sexp -> Prop,
(forall x:atom, P(n_var x)) ->
(forall (x:atom) (t:n_sexp), P t -> P(n_abs x t)) ->
(forall t1:n_sexp, P t1 -> forall t2:n_sexp, P t2 -> P(n_app t1 t2)) ->
(forall t1:n_sexp, P t1 -> forall (x:atom) (t2:n_sexp), P t2 -> P([x:=t2]t1)) ->

forall t:n_sexp, P t

In fact, in general, the induction hypothesis in the abstraction case (resp. explicit substitution case)
refers to the body t of the abstraction (resp. t1 of the explicit substitution), while the goal involves a swap
acting on the body of the abstraction (resp. explicit substitution). In order to circunvet this problem, we
defined a customized induction principle based on the size of terms:

Lemma n sexp induction: ∀ P : n sexp → Prop, (∀ x, P (n var x)) →
(∀ t1 z, (∀ t2 x y, size t2 = size t1 → P (swap x y t2)) → P (n abs z t1)) →
(∀ t1 t2, P t1 → P t2 → P (n app t1 t2)) →
(∀ t1 t3 z, P t3 → (∀ t2 x y, size t2 = size t1 → P (swap x y t2)) → P (n sub t1 z t3)) → (∀ t, P t).

which states that in order to conclude that a certain property P holds for all terms, we need to prove that:

1. P must hold for any variable;

2. If P holds for the term (x y)t2, where t1 and t2 have the same size, then it also holds for the
abstraction λz.t1,∀x,y,z, t1 and t2;

3. If P holds for the terms t1 and t2 the it also holds for the application t1 t2;

4. If P holds for the term t3 and for the term (x y)t2, where t1 and t2 have the same size, then it also
holds for the explicit substitution [z := t3]t1,∀x,y,z, t1, t2 and t3.

The following lemma is a first example of the use of the n sexp induction principle:

Lemma notin fv nom equivariance: ∀ t x’ x y, x’ ‘notin‘ fv nom t → vswap x y x’ ‘notin‘ fv nom (swap
x y t).
Proof. Note that in the paper and pencil notation, this lemma states that:

If x′ /∈ f v nom(t) then ((x y))x′ /∈ f v nom((x y)t).

The proof is by induction on the size of the term t.

1. If t is a variable, say z, then x′ ̸= z by hypothesis, and we need to prove that ((x y))x′ ̸= ((x y))z. We
conclude by lemma swap neq.

M. J. D. Lima & F. L. C. de Moura 85

2. If is an abstraction, say t = λz.t1, then we have by induction hypothesis that if x′ /∈ (x y)t2 then
((x0 y0))x′ /∈ (x0 y0)(x y)t2 for any term t2 with the same size as t1, and any variables x,y,x0 and
y0. At this point is important to notice that an structural induction would generate an induction
hypothesis with t1 only, which is not strong enough to prove the goal ((x y))x′ /∈ f v nom((x y)λz.t1)
that has (x y)t1 (and not t1 alone!) after the propagation of the swap. In addition, we have by
hypothesis that x′ /∈ f v nom(t1)\{z}. This means that either x′ = z or x′ /∈ f v nom(t1), and there
are two subcases:

(a) If x′ = z then the goal is ((x y))z /∈ f v nom((x y)λz.t1)⇔ ((x y))z /∈ f v nom(λ((x y))z.(x y)t1)⇔
((x y))z /∈ f v nom((x y)t1)\{((x y))z} we are done by lemma notin remove 3.4

(b) Otherwise, x′ /∈ f v nom(t1), and we conclude using the induction hypothesis taking x0 = x,
y0 = y and the universally quantified variables x and y of the internal swap as the same
variable (it does not matter which one).

3. The application case is straightforward from the induction hypothesis.

4. The case of the explicit substitution, i.e. when t = [z := t2]t1, we have to prove that ((x y))x′ /∈
f v nom((x y)([z := t2]t1)). We then propagate the swap over the explicit substitution operator and
show, by the definition of f v nom, we have to prove that both ((x y))x′ /∈ (f v nom((x y)t1))\{((x y))z}
and ((x y))x′ /∈ f v nom((x y)t2).

(a) In the former case, the hypothesis x′ /∈ f v nom(t1)\{z} generates two subcases, either x′ = z
or x′ /∈ f v nom(t1), and we conclude with the same strategy of the abstraction case.

(b) The later case is straightforward by the induction hypothesis. □

The other direction is also true, but we skip the proof that is also by induction on the size of term t:

Lemma notin fv nom remove swap: ∀ t x’ x y, vswap x y x’ ‘notin‘ fv nom (swap x y t) → x’ ‘notin‘
fv nom t.

2.2 α-equivalence

As usual in the standard presentations of the λ -calculus, we work with terms modulo α-equivalence.
This means that λ -terms are identified up to renaming of bound variables. For instance, all terms λx.x,
λy.y and λz.z are seen as the same term which corresponds to the identity function. Formally, the notion
of α-equivalence is defined by the following inference rules:

x =α x
(aeq var)

t1 =α t2
λx.t1 =α λx.t2

(aeq abs same)

x ̸= y x /∈ f v(t2) t1 =α (y x)t2
λx.t1 =α λy.t2

(aeq abs diff)

t1 =α t ′1 t2 =α t ′2
t1 t2 =α t ′1 t ′2

(aeq app)
t1 =α t ′1 t2 =α t ′2

[x := t2]t1 =α [x := t ′2]t
′
1

(aeq sub same)

4This is a lemma from Metalib library and it states that forall (x y : atom) (s : atoms), x = y -> y
‘notin‘ remove x s.

86 A Formalized Substitution Lemma in Coq

t2 =α t ′2 x ̸= y x /∈ f v(t ′1) t1 =α (y x)t ′1
[x := t2]t1 =α [y := t ′2]t

′
1

(aeq sub diff)

Each of these rules correspond to a constructor in the aeq inductive definition below:

Inductive aeq : n sexp → n sexp → Prop :=
| aeq var : ∀ x, aeq (n var x) (n var x)
| aeq abs same : ∀ x t1 t2, aeq t1 t2 → aeq (n abs x t1)(n abs x t2)
| aeq abs diff : ∀ x y t1 t2, x ̸= y → x ‘notin‘ fv nom t2 → aeq t1 (swap y x t2) →

aeq (n abs x t1) (n abs y t2)
| aeq app : ∀ t1 t2 t1’ t2’, aeq t1 t1’ → aeq t2 t2’ → aeq (n app t1 t2) (n app t1’ t2’)
| aeq sub same : ∀ t1 t2 t1’ t2’ x, aeq t1 t1’ → aeq t2 t2’ → aeq ([x := t2] t1) ([x := t2’] t1’)
| aeq sub diff : ∀ t1 t2 t1’ t2’ x y, aeq t2 t2’ → x ̸= y → x ‘notin‘ fv nom t1’ → aeq t1 (swap y x t1’) →

aeq ([x := t2] t1) ([y := t2’] t1’).

In what follows, we use a infix notation for α-equivalence in the Coq code. Therefore, we write t
=a u instead of aeq t u. The above notion defines an equivalence relation over the set n sexp of nominal
expressions with explicit substitutions, i.e. the aeq relation is reflexive, symmetric and transitive (proofs
in the source file5). In addition, α-equivalent terms have the same size, and the same set of free variables:

Lemma aeq size: ∀ t1 t2, t1 =a t2 → size t1 = size t2.

Lemma aeq fv nom : ∀ t1 t2, t1 =a t2 → fv nom t1 [=] fv nom t2.

The key point of the nominal approach is that the swap operation is stable under α-equivalence in
the sense that, t1 =α t2 if, and only if (x y)t1 =α (x y)t2,∀t1, t2,x,y. Note that this is not true for renaming
substitutions: in fact, λx.z =α λy.z, but {z := x}(λx.z) = λx.x ̸=α {z := x}λy.x(λy.z), assuming that x ̸= y.
This stability result is formalized as follows:

Corollary aeq swap: ∀ t1 t2 x y, t1 =a t2 ↔ (swap x y t1) =a (swap x y t2).

When both variables in a swap do not occur free in a term, it eventually renames only bound variables,
i.e. the action of this swap results in a term that is α-equivalent to the original term. This is the content
of the following lemma:

Lemma swap reduction: ∀ t x y, x ‘notin‘ fv nom t → y ‘notin‘ fv nom t → (swap x y t) =a t.

There are several other interesting auxiliary properties that need to be proved before achieving the
substitution lemma. In what follows, we refer only to the tricky or challenging ones, but the interested
reader can have a detailed look in the source file. Note that, swaps are introduced in proofs by the rules
aeq abs diff and aeq sub diff. As we will see, the proof steps involving these rules are trick because a
naïve strategy can easily get blocked in a branch without proof. We conclude this section, with a lemma
that gives the conditions for two swaps with a common variable to be merged:

Lemma aeq swap swap: ∀ t x y z, z ‘notin‘ fv nom t → x ‘notin‘ fv nom t → (swap z x (swap x y t)) =a
(swap z y t).
Proof. Before commenting this proof, we state the lemma with the pencil and paper (meta)notation:

5https://flaviomoura.info/files/msubst.v

https://flaviomoura.info/files/msubst.v

M. J. D. Lima & F. L. C. de Moura 87

If z /∈ f v nom(t) and x /∈ f v nom(t) then (z x)(x y)t =α (z y)t.

Initially, observe the similarity of the left hand side (LHS) of the α-equation with the lemma shuf-
fle swap:

∀w y z t,w ̸= z → y ̸= z → (w y)((y z)t) = (w z)((w y)t)

In order to use it, we need to have that both z ̸= y and x ̸= y. We start comparing z and y:

1. If z = y then the right hand side (RHS) reduces to t because the swap is trivial, and the LHS also
reduces to t since swap is involutive.

2. When z ̸= y then we proceed by comparing x and y:

(a) If x = y then both sides of the α-equation reduces to (z y)t, and we are done.

(b) Finally, when x ̸= y, we can apply the lemma shu f f le swap, and use lemma aeq swap to
reduce the current goal to (z x)t =α t, and we conclude by lemma swap reduction since both
z and x are not in the set of free variables of the term t. □

3 The metasubstitution operation of the λ -calculus

As presented in Section 2, the main operation of the λ -calculus is the β -reduction (2) that expresses how
to evaluate a function applied to an argument. The β -contractum {x := u}t represents a capture free in
the sense that no free variable becomes bound by the application of the metasubstitution. This operation
is in the meta level because it is outside the grammar of the λ -calculus (and hence its name). In [5],
Barendregt defines it as follows:

{x := u}t =

u, if t = x;
y, if t = y and x ̸= y;
{x := u}t1 {x := u}t2, if t = t1 t2;
λy.({x := u}t1), if t = λy.t1.

where it is assumed the so called “Barendregt’s variable convention”:

If t1, t2, . . . , tn occur in a certain mathematical context (e.g. definition, proof), then in these
terms all bound variables are chosen to be different from the free variables.

This means that we are assumming that both x ̸= y and y /∈ f v(u) in the case t = λy.t1. This approach
is very convenient in informal proofs because it avoids having to rename bound variables. In order to
formalize the capture free substitution, i.e. the metasubstitution, there are different possible approaches.
In our case, we perform a renaming of bound variables whenever the metasubstitution is propagated
inside a binder. In our case, there are two binders: abstractions and explicit substitutions.

Let t and u be terms, and x a variable. The result of substituting u for the free ocurrences of x in t,
written {x := u}t is defined as follows:

88 A Formalized Substitution Lemma in Coq

{x := u}t =

u, if t = x;
y, if t = y (x ̸= y);
{x := u}t1 {x := u}t2, if t = t1 t2;
λx.t1, if t = λx.t1;
λz.({x := u}((y z)t1)), if t = λy.t1,x ̸= y,z /∈ f v(t)∪ f v(u)∪{x};
[x := {x := u}t2]t1, if t = [x := t2]t1;
[z := {x := u}t2]{x := u}((y z)t1), if t = [y := t2]t1,x ̸= y,z /∈ f v(t)∪ f v(u)∪{x}.

(5)

and the corresponding Coq code is as follows:

Function subst rec fun (t:n sexp) (u :n sexp) (x:atom) {measure size t} : n sexp :=
match t with
| n var y ⇒ if (x == y) then u else t
| n abs y t1 ⇒ if (x == y) then t else let (z,) :=

atom fresh (fv nom u ‘union‘ fv nom t ‘union‘ {{x}}) in n abs z (subst rec fun (swap y z t1) u x)
| n app t1 t2 ⇒ n app (subst rec fun t1 u x) (subst rec fun t2 u x)
| n sub t1 y t2 ⇒ if (x == y) then n sub t1 y (subst rec fun t2 u x) else let (z,) :=

atom fresh (fv nom u ‘union‘ fv nom t ‘union‘ {{x}}) in
n sub (subst rec fun (swap y z t1) u x) z (subst rec fun t2 u x) end.

Note that this function is not structurally recursive due to the swaps in the recursive calls, and that’s
why we need to provide the size of the term t as the measure parameter. Alternatively, a structurally
recursive version of the function subst rec fun can be found in the file nominal.v of the Metalib library6.
It has the size of the term as an explicit parameter in which the substitution will be performed, and hence
one has to deal with the size of the term in each recursive call. We write {x:=u}t instead of subst rec fun
t u x, and refer to it just as “metasubstitution”.

The following lemma states that if x /∈ f v(t) then {x := u}t =α t. In informal proofs the conclusion
of this lemma is usually stated as a syntactic equality, ı.e. {x := u}t = t instead of the α-equivalence, but
the function subst rec fun renames bound variables whenever the metasubstitution is propagated inside
an abstraction or an explicit substitution, even in the case that the metasubstitution has no effect in the
subterm it is propagated, as long as the variables of the metasubstitution and the binder (abstraction or
explicit substitution) are different of each other. That’s why the syntactic equality does not hold here.

Lemma m subst notin: ∀ t u x, x ‘notin‘ fv nom t → {x := u}t =a t.
Proof. The proof is done by induction on the size of the term t using n sexp induction defined above.
The interesting cases are the abstraction and the explicit substituion. We focus in the abstraction case,
i.e. when t = λy.t1, where the goal to be proven is {x := u}(λy.t1) =α λy.t1. We consider two cases:

1. If x = y the result is trivial because both LHS and RHS are equal to λy.t1

2. If x ̸= y , we have to prove that λz.{x := u}(y z)t1 =α λy.t1, where z is a fresh name not in the
set f v nom(u)∪ f v nom(λy.t1)∪{x}. The induction hypothesis express the fact that every term
with the same size as the body t1 of the abstraction satisfies the property to be proven: ∀t ′, |t ′| =
|t1| → ∀u x′ x0 y0,x′ /∈ f v((x0 y0)t ′) → {x′ := u}((x0 y0)t ′) =α (x y)t ′. Therefore, according to
the definition of the metasubstitution (function [subst_rec_fun]), the variable y will be renamed
to z, and the metasubstitution is propagated inside the abstraction resulting in the following goal:

6https://github.com/plclub/metalib

https://github.com/plclub/metalib

M. J. D. Lima & F. L. C. de Moura 89

λz.{x := u}((z y)t1) =α λy.t1. Since z /∈ f v nom(λy.t1) = f v nom(t1)\{y}, there are two cases to
consider, either z = y or z ∈ f v(t1):

(a) z = y: In this case, we are done by the induction hypothesis taking x0 = y0 = y, for instance.
(b) z ̸= y: In this case, we can apply the rule aeq abs diff, resulting in the goal {x := u}((y z)t1)=α

(y z)t1 which holds by the induction hypothesis, since |(z y)t1|= |t1| and x /∈ f v nom((y z)t1)
because x ̸= z, x ̸= y and x /∈ f v nom(t1).

The explicit substitution case is also interesting, i.e. if t = [y := t2]t1, but it follows a similar strategy
used in the abstraction case for t1. For t2 the result follows from the induction hypothesis. □

The following lemmas concern the expected behaviour of the metasubstitution when the metasubsti-
tution’s variable is equal to the abstraction’s variable. Their proofs are straightforward from the definition
subst rec fun. The corresponding version when the metasubstitution’s variable is different from the ab-
straction’s variable will be presented later.

Lemma m subst abs eq: ∀ u x t, {x := u}(n abs x t) = n abs x t.

Lemma m subst sub eq: ∀ u x t1 t2, {x := u}(n sub t1 x t2) = n sub t1 x ({x := u}t2).

We will now prove some stability results for the metasubstitution w.r.t. α-equivalence. More pre-
cisely, we will prove that if t =α t ′ and u =α u′ then {x := u}t =α {x := u′}t ′, where x is a variable and
t, t ′,u and u′ are terms. This proof is split in two cases: firstly, we prove that if u =α u′ then {x := u}t =α

{x := u′}t,∀x, t,u,u′; secondly, we prove that if t =α t ′ then {x := u}t =α {x := u}t ′,∀x, t, t ′,u. These
two cases are then combined through the transitivity of the α-equivalence relation. Nevertheless, this
task was not straighforward. Let’s follow the steps of our first trial.

Lemma aeq m subst in trial: ∀ t u u’ x, u =a u’ → ({x := u}t) =a ({x := u’}t).
Proof. The proof is done by induction on the size of term t, and we will focus on the abstraction case,
i.e. t = λy.t1. The goal in this case is {x := u}(λy.t1) =α {x := u′}(λy.t1).

1. If x = y then the result is trivial by lemma m subst abs eq.

2. If x ̸= y then we need two fresh names in order to propagate the metasubstitution inside the ab-
stractions on each side of the α-equation. Let x0 be a fresh name not in the set f v nom(u)∪
f v nom(λy.t1)∪{x}, and x1 be a fresh name not in the set f v nom(u′)∪ f v nom(λy.t1)∪{x}.
After propagating the metasubstitution we need to prove λx0 .{x := u}((y x0)t1) =α λx1 .{x :=
u′}((y x1)t1), and we proceed by comparing x0 and x1:

(a) If x0 = x1 then we are done by the induction hypothesis.
(b) Otherwise, we need to apply the rule aeq abs di f f and the goal is {x := u}((y x0)t1) =α

(x0 x1)({x := u′}((y x1)t1)). But in order to proceed we need to know how to propagate the
swap inside the metasubstitution, which is the content of the following lemma:

Lemma swap m subst: ∀ t u x y z, swap y z ({x := u}t) =a ({(vswap y z x) := (swap y z u)}(swap y z t)).
Proof. We write the statement of the lemma in metanotation before starting the proof:

∀t u x y z,(y z)({x := u}t) =α {((y z))x := (y z)u}(y z)t

The proof is by induction on the size of the term t, and again we will focus only on the abstraction
case, i.e. when t = λw.t1. The goal in this case is (y z)({x := u}(λw.t1))=α {((y z))x :=(y z)u}((y z)λw.t1),
and we proceed by comparing x and w.

90 A Formalized Substitution Lemma in Coq

1. If x = w the α-equality is trivial.

2. If x ̸= w then we need a fresh name, say w0, to be able to propagate the metasubstitution inside
the abstraction on the LHS of the α-equation. The variable w0 is taken such that it is not in the
set f v nom(u)∪ f v nom(λw.t1)∪{x}, and we get the goal λ((y z))w0 .(y z)({x := u}(w w0)t1) =α

{((y z))x := (y z)u}(λ((y z))w.(y z)t1). Now we propagate the metasubstitution over the abstraction in
the RHS of the goal. Since x ̸=w implies ((y z))x ̸=((y z))w, we need another fresh name, say w1, not
in the set f v nom((y z)u)∪ f v nom(λ((y z))w.(y z)t1)∪{((y z))x}, and after the propagation we need
to prove that λ((y z))w0 .(y z)({x := u}(w w0)t1) =α λw1 .{((y z))x := (y z)u}((w1 ((y z))w)((y z)t1)).
We consider two cases: either w1 = ((y z))w0 or w1 ̸= ((y z))w0. In the former case, we apply the rule
aeq abs same and we are done by the induction hypothesis. When w1 ̸= ((y z))w0, the application
of the rule aeq abs diff generates the goal

(w1 ((y z))w0)(y z)({x := u}(w w0)t1) =α {((y z))x := (y z)u}((w1 ((y z))w)((y z)t1)) (6)

We can use the induction hypothesis to propagate the swap inside the metasubstitution, and then
we get an α-equality with metasubstitution as main operation on both sides, whose corresponding
components are α-equivalent. In a more abstract way, we have to prove an α-equality of the form
{x := u}t =α {x := u′}t ′, where t =α t ′ and u =α u′, but this is exactly what we were trying to
prove in the previous lemma.

Therefore, we are in a circular problem because both aeq m subst in trial and swap m subst depend
on each other to be proved!

Our solution to this problem consists in taking advantage of the fact that α-equivalent terms have
the same set of free variables (see lemma aeq fv nom), and noting that the external swap in the LHS
of (6) was generated by the application of the rule aeq abs diff because the abstractions have different
bindings. Let’s go back to the proof of lemma aeq m subst in: Lemma aeq m subst in: ∀ t u u’ x, u
=a u’ → ({x := u}t) =a ({x := u’}t).
Proof. We go directly to the abstraction case. When t = λy.t1, the goal is {x := u}(λy.t1) =α {x :=
u′}(λy.t1). If x ̸= y then the fresh name needed for the LHS must not belong to the set f v nom(u)∪
f v nom(λy.t1)∪{x}, while the fresh name for the RHS must not belong to f v nom(u′)∪ f v nom(λy.t1)∪
{x}. These sets differ only by the subsets f v nom(u) and f v nom(u′). Nevertheless, these subsets are
equal because u and u′ are α-equivalent (see lemma aeq fv nom). Concretely, the current goal is as
follows:

(let (z, _) := atom_fresh (union (fv_nom u) (union (fv_nom (n_abs y t1))
(singleton x))) in n_abs z (subst_rec_fun (swap y z t1) u x)) =a

(let (z, _) := atom_fresh (union (fv_nom u’) (union (fv_nom (n_abs y t1))
(singleton x))) in n_abs z (subst_rec_fun (swap y z t1) u’ x))

where the sets f v nom(u) and f v nom(u′) appear in different let expressions, each one is responsi-
ble for generating one fresh name. But since these sets are equal, if one could replace f v nom(u) by
f v nom(u′) (or vice-versa) then only one fresh name is generated after evaluating the atom fresh func-
tion. Nevertheless, the only way that we managed to do such replacement was by adding the following
axiom:

Axiom Eq_implies_equality: forall t1 t2, t1 =a t2 -> fv_nom t1 = fv_nom t2.

M. J. D. Lima & F. L. C. de Moura 91

This axiom is similar to lemma aeq fv nom where the set equality [=] was replaced by the syntactic
(Leibniz) equality =. Now, we can generate just one fresh name and propagate the metasubstitution on
both sides of the goal, and we are done by the induction hypothesis. The case of the explicit substitution
is similar, and with this strategy we avoid both the rules aeq abs diff and aeq sub diff that introduce
swappings. □

The next lemma, named aeq m subst out will benefit the strategy used in the previous proof, but it
is not straightfoward.

Lemma aeq m subst out: ∀ t t’ u x, t =a t’ → ({x := u}t) =a ({x := u}t’).
Proof. The proof is by induction on the size of the term t. Note that induction on the hypothesis t =a t’
does not work due to a similar problem involving swaps that appears when structural induction on t is
used. The abstraction and the explicit substitution are the interesting cases.

In the abstraction case, we need to prove that {x := u}(λy.t1) =α {x := u}t ′, where λy.t1 =α t ′ by
hypothesis. Therefore, t ′ must be an abstraction, and according to our definition of α-equivalence there
are two possible subcases:

1. In the first subcase, t ′ = λy.t2, where t1 =α t2, and hence the current goal is {x := u}(λy.t1) =α

{x := u}(λy.t2). We proceed by comparing x and y:

(a) If x = y then, we are done by using twice lemma m subst abs eq.

(b) When x ̸= y, then we need to propagate the metasubstitution on both sides of the goal. On the
LHS, we need a fresh name that is not in the set f v(u)∪ f v(λy.t1)∪{x}, while for the RHS,
the fresh name cannot belong to the set f v(u)∪ f v(λy.t2)∪{x}. From the hypothesis t1 =α

t2, we know, by lemma aeq f v nom, that the sets f v nom(t1) and f v nom(t2) are equal.
Therefore, we can take just one fresh name, say z, and propagate both metasubstitutions over
abstractions with the same binding, and we conclude with the induction hypothesis.

2. In the second subcase, t ′ = λy0 .t2, where t1 =α (y0 y)t2 and y ̸= y0. The current goal is

{x := u}(λy.t1) =α {x := u}(λy0 .t2)

and we proceed by comparing x and y:

(a) If x = y then the goal simplifies to λy.t1 =α {x := u}(λy0 .t2) by lemma m subst abs eq,
and we pick a fresh name x, that is not in the set f v nom(u)∪ f v nom(λy0 .t2)∪{y}, and
propagate the metasubstitution on the RHS of the goal, resulting in the new goal λy.t1 =α

λx.{y := u}((y0 x)t2). Note that the metasubstitution on the RHS has no effect in the term
(y0 x)t2 because y ̸= y0, y ̸= x and y does not occur free in t2 and we conclude by hypothesis.

(b) If x ̸= y then we proceed by comparing x and y0 on the RHS, and the proof, when x = y0, is
analogous to the previous subcase. When both x ̸= y and x ̸= y0 then we need to propagate the
metasubstitution on both sides of the goal {x := u}(λy.t1) =α {x := u}(λy0 .t2). We have that
λy.t1 =α λy0 .t2 and hence the sets f v nom(λy.t1) and f v nom(λy0 .t2) are equal. Therefore,
only one fresh name, say x0, that is not in the set x0 /∈ f v nom(u)∪ f v nom(λy0 .t2)∪{x}
is enough to fulfill the conditions for propagating the metasubstitutions on both sides of the
goal, and we are done by the induction hypothesis.

3. The explicit substitution operation is also interesting, but we will not comment because we are
running out of space. □

92 A Formalized Substitution Lemma in Coq

As a corollary, one can join the lemmas aeq m subst in and aeq m subst out as follows:

Corollary aeq m subst eq: ∀ t t’ u u’ x, t =a t’ → u =a u’ → ({x := u}t) =a ({x := u’}t’).

Now, we show how to propagate a swap inside metasubstitutions using the decomposition of the
metasubstitution provided by the corollary aeq m subst eq.

Lemma swap subst rec fun: ∀ x y z t u, swap x y ({z := u}t) =a ({(vswap x y z) := (swap x y u)}(swap x
y t)).
Proof. Firstly, we write the lemma in metanotation: ∀x y z t u,(x y){z := u}t =α {((x y))z := (x y)u}(x y)t.
Next, we compare x and y, since the case x = y is trivial. When x ̸= y, the proof proceeds by induction
on the size of the term t. The tricky cases are the abstraction and explicit substitution, and we com-
ment just the former case. If t = λy′ .t1 then we must prove that (x y){z := u}(λy′ .t1) =α {((x y))z :=
(x y)u}(x y)(λy′.t1). Firstly, we compare the variables y′ and z according to the definition of the meta-
substitution:

1. When y′ = z the metasubstitution is erased according to the definition (5) on both sides of the goal
and we are done.

2. When y′ ̸= z then the metasubstitutions on both sides of the goal need to be propagated inside the
corresponding abstractions. In order to do so, a new name need to be created. Note that in this
case, it is not possible to create a unique name for both sides because the two sets are different. In
fact, in the LHS the fresh name cannot belong to the set f v nom(λ ′

y.t1)∪ f v nom(u)∪{z}, while
the name of the RHS cannot belong to the set f v nom((x y)λ ′

y.t1)∪ f v nom((x y)u)∪{((x y))z}.
Let x0 be a fresh name that is not in the set f v nom(λ ′

y.t1)∪ f v nom(u)∪{z}, and x1 a fresh name
that is not in the set f v nom((x y)λ ′

y.t1)∪ f v nom((x y)u)∪{((x y))z}. After the propagation of the
metasubstitutions, we have to prove that λ((x y))x0.((x y)({z := u}((y′ x0)t1)) =α λx1 .({((x y))z :=
(x y)u}((((x y))y′) x1)((x y)t1)). We proceed by comparing x1 with ((x y))x0.

(a) If x1 = ((x y))x0 then we use the induction hypothesis to propagate the swap inside the
metasubstitution in the LHS, and we get the goal {((x y))z := (x y)u}((x y)((y′ x0)t1)) =α

{((x y))z := (x y)u}(((((x y))y′) (((x y))x0))((x y)t1)) that is proved by the swap equivariance
lemma swap equivariance.

(b) If x1 ̸= ((x y))x0 then by the rule aeq abs di f f we have to prove that the variable ((x y))x0
is not in the set of free variables of the term {((x y))z := (x y)u}((((x y))y′ x1)(x y)t1) and
that (x y)({z := u}((y′ x0)t1)) =α (x1 (((x y))x0))({((x y))z := (x y)u}(((((x y))y′) x1)((x y)t1)).
The former condition is routine. The later condition is proved using the induction hypothesis
twice to propagate the swaps inside the metasubstitutions on each side of the α-equality.
This swap has no effect on the variable z of the metasubstitution because x1 is different from
((x y))z, and x0 is different from z. Therefore we can apply lemma aeq m subst eq, and each
generated case is proved by routine manipulation of swaps.

□

The following two lemmas toghether with lemmas m subst abs eq and m subst sub eq are essen-
tial in simplifying the propagations of metasubstitution. They are presented here because they depend on
lemma swap subst rec fun.

Lemma m subst abs neq: ∀ t u x y z, x ̸= y → z ‘notin‘ fv nom u ‘union‘ fv nom (n abs y t) ‘union‘
{{x}} → {x := u}(n abs y t) =a n abs z ({x := u}(swap y z t)).

M. J. D. Lima & F. L. C. de Moura 93

Lemma m subst sub neq : ∀ t1 t2 u x y z, x ̸= y → z ‘notin‘ fv nom u ‘union‘ fv nom ([y := t2]t1) ‘union‘
{{x}} → {x := u}([y := t2]t1) =a ([z := ({x := u}t2)]({x := u}(swap y z t1))).

In the pure λ -calculus, the substitution lemma is probably the first non trivial property. In our frame-
work, we have defined two different substitution operators, namely, the metasubstitution denoted by
{x := u}t and the explicit substitution, written as [x := u]t. In what follows, we present the main steps of
our proof of the substitution lemma for n sexp terms, i.e. for nominal terms with explicit substitutions.

Lemma m subst lemma: ∀ t1 t2 t3 x y, x ̸= y → x ‘notin‘ (fv nom t3) →
({y := t3}({x := t2}t1)) =a ({x := ({y := t3}t2)}({y := t3}t1)).

Proof. The proof is by induction on the size of t1. The interesting cases are the abstraction and the
explicit substitution. We focus on the former, i.e. t1 = λz.t ′1, whose initial goal is

{y := t3}({x := t2}(λz.t ′1)) =α {x := {y := t3}t2}({y := t3}(λz.t ′1))
assuming that x ̸= y and x /∈ f v nom(t3). The induction hypothesis generated by this case states that the
lemma holds for any term of the size of t ′1, i.e. any term with the same size of the body of the abstraction.
We start comparing z with x aiming to apply the definition of the metasubstitution on the LHS of the
goal.

1. When z = x, the subterm {x := t2}λx.t ′1 reduces to λx.t ′1 by lemma m subst abs eq, and then the
LHS reduces to {y := t3}λx.t ′1. The RHS {x := {y := t3}t2}{y := t3}λx.t ′1 also reduces to it because
x does not occur free neither in λx.t ′1 nor in t3, and we are done.

2. When z ̸= x, then we compare y with z.

(a) When y= z, the subterm {y := t3}(λz.t ′1) can be simplified to λz.t ′1, by lemma m subst abs eq.
On the LHS, we propagate the internal metasubstitution over the abstraction taking a fresh
name w not in the set f v nom(λz.t ′1)∪ f v nom(t3)∪ f v nom(t2)∪ {x}, where the goal is
{z := t3}(λw.({x := t2}(z w)t ′1)) =α {x := {z := t3}t2}(λz.t ′1). We proceed by comparing z
and w:

i. If z = w then the current goal simplifies to
{w := t3}(λw.({x := t2}t ′1)) =α {x := {w := t3}t2}(λw.t ′1)
We can propagate the metasubstitution on the RHS and there is no need for a fresh
name since the variable w fullfil the condition required by lemma m subst abs neq.
We conclude with lemmas aeq m subst in and m subst notin.

ii. If z ̸= w then we can propagate the metasubstitutions on both sides of the goal taking
w as the fresh name that fullfil the conditions of lemma m subst abs neq. We proceed
with aeq abs same, and conclude by the induction hypothesis.

(b) If y ̸= z then we follow a similar strategy that avoids unnecessary generation of fresh names.
In this way, we take a fresh w that is not in the set f v nom(t3)∪ f v nom(t2)∪ f v nom(λz.t ′1)∪
{x} ∪ {y}, and propagate the metasubstitution inside the abstraction resulting in the goal
λw.({y := t3}({x := t2}(z w)t ′1) =α λw.({x := {y := t3}t2}({y := t3}(z w)t ′1). We conclude
by the induction hypothesis. □

94 A Formalized Substitution Lemma in Coq

4 Conclusion and Future work

In this work, we presented a formalization of the substitution lemma in a framework that extends
the λ -calculus with an explicit substitution operator. Calculi with explicit substitutions are important
frameworks to study properties of the λ -calculus and have been extensively studied in the last decades
[1, 2, 3, 4, 9].

The formalization is modular in the sense that the explicit substitution operator is generic and could
be instantiated with any calculi with explicit substitutions in a nominal setting. Despite the fact that our
definition of metasubstitution, called subst rec f un, performs a renaming with a fresh name whenever it
is propagated inside a binding structure (either an abstraction or an explicit substitution in our case), we
showed how to avoid unnecessary generation of fresh names that could result in a circular problem in the
proofs. Several auxiliary (minor) results were not included in this document, but they are numerous and
can be found in the source file of the formalization that is publicly available at https://flaviomoura.
info/files/msubst.v

As future work, we intend to get rid of the axiom Eq implies equality. The natural candidate for
this would be the use of generalized rewriting, i.e. setoid rewriting, but it not clear whether generalized
rewriting allows a rewrite step in a let expression. Another possibility is the implementation of the
metasubstitution using recursors [22, 13]. In addition, we plan to integrate this formalization with another
one related to the Z property7 to prove confluence of calculi with explicit substitutions [20, 21], as well
as other properties in the nominal framework [16].

References
[1] M. Abadi, L. Cardelli, P.-L. Curien & J.-J. Lévy (1991): Explicit Substitutions. Journal of Functional Pro-

gramming 1(4), pp. 375–416, doi:10.1017/S0956796800000186.

[2] Beniamino Accattoli (2012): An Abstract Factorization Theorem for Explicit Substitutions, p. 16 pages.
doi:10.4230/LIPICS.RTA.2012.6.

[3] Mauricio Ayala-Rincón, Flávio L.C. De Moura & Fairouz Kamareddine (2002): Comparing Calculi of Ex-
plicit Substitutions with Eta-reduction. Electronic Notes in Theoretical Computer Science 67, pp. 76–95,
doi:10.1016/S1571-0661(04)80542-5.

[4] Mauricio Ayala-Rincón, Flávio L.C. De Moura & Fairouz Kamareddine (2005): Comparing and Implement-
ing Calculi of Explicit Substitutions with Eta-Reduction. Annals of Pure and Applied Logic 134(1), pp. 5–41,
doi:10.1016/j.apal.2004.06.009.

[5] H. P. Barendregt (1984): The Lambda Calculus: Its Syntax and Semantics, rev. ed edition. Studies in Logic
and the Foundations of Mathematics v. 103, North-Holland ; Sole distributors for the U.S.A. and Canada,
Elsevier Science Pub. Co, Amsterdam ; New York : New York, N.Y.

[6] Zine-El-Abidine Benaissa, Daniel Briaud, Pierre Lescanne & Jocelyne Rouyer-Degli (1996): Λν , a Calculus
of Explicit Substitutions Which Preserves Strong Normalisation. Journal of Functional Programming 6(5),
pp. 699–722, doi:10.1017/S0956796800001945.

[7] Stefan Berghofer & Christian Urban (2007): A Head-to-Head Comparison of de Bruijn Indices and Names.
Electronic Notes in Theoretical Computer Science 174(5), pp. 53–67, doi:10.1016/j.entcs.2007.01.018.

[8] Roel Bloo & Herman Geuvers (1999): Explicit Substitution: On the Edge of Strong Normalization. Theoret-
ical Computer Science 211(1-2), pp. 375–395, doi:10.1016/s0304-3975(97)00183-7.

[9] E. Bonelli (2001): Perpetuality in a Named Lambda Calculus With Explicit Substitutions. Mathematical
Structures in Computer Science 11(1), pp. 47–90, doi:10.1017/s0960129500003248.

7https://cicm-conference.org/2021/cicm.php?event=fmm&menu=general

https://flaviomoura.info/files/msubst.v
https://flaviomoura.info/files/msubst.v
https://doi.org/10.1017/S0956796800000186
https://doi.org/10.4230/LIPICS.RTA.2012.6
https://doi.org/10.1016/S1571-0661(04)80542-5
https://doi.org/10.1016/j.apal.2004.06.009
https://doi.org/10.1017/S0956796800001945
https://doi.org/10.1016/j.entcs.2007.01.018
https://doi.org/10.1016/s0304-3975(97)00183-7
https://doi.org/10.1017/s0960129500003248
https://cicm-conference.org/2021/cicm.php?event=fmm&menu=general

M. J. D. Lima & F. L. C. de Moura 95

[10] Pierre-Louis Curien, Thérèse Hardin & Jean-Jacques Lévy (1996): Confluence Properties of Weak and Strong
Calculi of Explicit Substitutions. Journal of the ACM 43(2), pp. 362–397, doi:10.1145/226643.226675.

[11] R. David & B. Guillaume (2001): A Lambda-Calculus with Explicit Weakening and Explicit Substitution.
Mathematical Structures in Computer Science 11(1), pp. 169–206, doi:10.1017/S0960129500003224.

[12] Murdoch J. Gabbay & Andrew M. Pitts (2002): A New Approach to Abstract Syntax with Variable Binding.
Formal Aspects of Computing 13(3-5), pp. 341–363, doi:10.1007/s001650200016.

[13] Lorenzo Gheri & Andrei Popescu (2020): A Formalized General Theory of Syntax with Bindings: Extended
Version. Journal of Automated Reasoning 64(4), pp. 641–675, doi:10.1007/s10817-019-09522-2.

[14] Bruno Guillaume (2000): The λ s e -Calculus Does Not Preserve Strong Normalisation. Journal of Func-
tional Programming 10(4), pp. 321–325, doi:10.1017/S0956796800003695.

[15] Fairouz Kamareddine & Alejandro Ríos (1997): Extending a λ -Calculus with Explicit Substitution Which
Preserves Strong Normalisation into a Confluent Calculus on Open Terms. Journal of Functional Program-
ming 7(4), pp. 395–420, doi:10.1017/S0956796897002785.

[16] D. Kesner (2008): Perpetuality for Full and Safe Composition (in a Constructive Setting). In: Automata,
Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11,
2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Programming & Track C: Security
and Cryptography Foundations, pp. 311–322, doi:10.1007/978-3-540-70583-3_26.

[17] Delia Kesner (2009): A Theory of Explicit Substitutions with Safe and Full Composition. Logical Methods
in Computer Science Volume 5, Issue 3, p. 816, doi:10.2168/LMCS-5(3:1)2009.

[18] Paul-André Mellies (1995): Typed λ -Calculi with Explicit Substitutions May Not Terminate. In Gerhard
Goos, Juris Hartmanis, Jan Van Leeuwen, Mariangiola Dezani-Ciancaglini & Gordon Plotkin, editors:
Typed Lambda Calculi and Applications, 902, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 328–334,
doi:10.1007/BFb0014062.

[19] C. A. Muñoz (1996): Confluence and Preservation of Strong Normalisation in an Explicit Substitutions
Calculus. In: Proceedings, 11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick,
New Jersey, USA, July 27-30, 1996, pp. 440–447, doi:10.1109/LICS.1996.561460.

[20] Koji Nakazawa & Ken-etsu Fujita (2016): Compositional Z: Confluence Proofs for Permutative Conversion.
Studia Logica 104(6), pp. 1205–1224, doi:10.1007/s11225-016-9673-0.

[21] Koji Nakazawa, Ken-etsu Fujita & Yuta Imagawa (2023): Z Property for the Shuffling Calculus. Mathemati-
cal Structures in Computer Science, pp. 1–13, doi:10.1017/S0960129522000408.

[22] Andrei Popescu (2023): Nominal Recursors as Epi-Recursors. arXiv:2301.00894.
[23] K. H. Rose, R. Bloo & F. Lang (2011): On Explicit Substitution With Names. J Autom Reasoning 49(2), pp.

275–300, doi:10.1007/s10817-011-9222-5.
[24] The Coq Development Team (2021): The Coq Proof Assistant. Zenodo, doi:10.5281/ZENODO.5704840.

https://doi.org/10.1145/226643.226675
https://doi.org/10.1017/S0960129500003224
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/s10817-019-09522-2
https://doi.org/10.1017/S0956796800003695
https://doi.org/10.1017/S0956796897002785
https://doi.org/10.1007/978-3-540-70583-3_26
https://doi.org/10.2168/LMCS-5(3:1)2009
https://doi.org/10.1007/BFb0014062
https://doi.org/10.1109/LICS.1996.561460
https://doi.org/10.1007/s11225-016-9673-0
https://doi.org/10.1017/S0960129522000408
https://arxiv.org/abs/2301.00894
https://doi.org/10.1007/s10817-011-9222-5
https://doi.org/10.5281/ZENODO.5704840

	Introduction
	A syntactic extension of the -calculus
	An explicit substitution operator
	-equivalence

	The metasubstitution operation of the -calculus
	Conclusion and Future work

