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Like with most large-scale systems, the evaluation of quantitative properties of collective adaptive
systems is an important issue that crosscuts all its development stages, from design (in the case
of engineered systems) to runtime monitoring and control. Unfortunately it is a difficult problem
to tackle in general, due to the typically high computational cost involved in the analysis. This
calls for the development of appropriate quantitative abstraction techniques that preserve most of the
system’s dynamical behaviour using a more compact representation. This paper focuses on models
based on ordinary differential equations and reviews recent results where abstraction is achieved
by aggregation of variables, reflecting on the shortcomings in the state of the art and setting out
challenges for future research.

1 Introduction

Collective adaptive systems (CAS) generally consist of a large number of entities that evolve according
to local interactions, across multiple time and space scales, in order to achieve their own objectives. Their
behaviour is influenced by such interactions as well as by changes in the environment. As a result, one
typically deals with a highly complex system where the overall dynamics cannot be directly inferred from
the analysis of the individual entities taken in isolation. This poses a serious problem to our capability
of reasoning about CAS effectively. Indeed, for analysis purposes the availability of a model (e.g., an
analytical description or discrete-event simulation) greatly helps understand the behaviour under a variety
of conditions which would be otherwise difficult, or even impossible, to exercise on the concrete system
under consideration. However, the impossibility of studying isolated CAS entities in a model requires
the construction of the product space of the system that explicitly accounts for all possible interactions
between agents. Because of the large scale involved, this clearly incurs the well-known problem of state
explosion, affecting both qualitative and quantitative analysis efforts. In the latter case, it is worth to note
that state explosion is not merely a computational problem: higher level of detail in the model implies a
larger parameter space, which requires substantial effort for measurement, calibration, and validation.

By abstraction we mean a range of techniques where the basic idea is to construct a smaller CAS
model, with fewer variables and/or parameters, that can yet preserve most of the dynamics of the original
one. Such a more compact representation may be useful, for example, to provide a more intelligible
description that ignores original low-level details, or to perform computational analyses more efficiently.
Many branches of science and engineering that deal with CAS-like systems have acknowledged the
importance of developing abstraction techniques, for instance:

• Ecological systems are a prototypical example of (natural) CAS with massive populations of en-
tities interacting with and adapting to the environment. And ecology is a discipline where quan-
titative abstractions have long been understood (e.g., [18]), motivated by the clear presence of
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multiple levels of hierarchy—from molecules to whole organisms in their ecosystem—and a high
degree of heterogeneity, e.g., individuals of different age and metabolism, at various locations in
space. Here, a large body of work has considered abstractions through aggregations of large-scale
dynamical models of ecosystems, e.g., based on differential or difference equations. Aggregation
is a coarsening of the state space that leads to a self-consistent smaller dynamical system where
each “macro-variable” appropriately represents a group of “micro-variables” in the original model.
Aggregations have been developed to ignore, e.g., age differences in population models [18] or ex-
ploit the separation of time scales typical of ecological systems (see [2] for a survey).

• In physics, cellular automata are a basic model to describe complex phenomena such as chaos and
fractals, arising from simple interactions between agents with small state spaces. Coarse graining
methods identify groups of neighbouring cells for which an aggregate dynamics can still describe
the overall behaviour of the original model [17].

• In computational systems biology, a wealth of abstraction techniques have been developed to cope
with the combinatorial explosion of the state space of mechanistic dynamical models based on
ordinary differential equations (ODEs) for the modelling of protein interaction networks (e.g. [5,
14]). Here, available methods consider a covering of the state space (where a variable may appear
in more than one group) [14]; quotienting, induced by a partition of the ODE variables (e.g., [15]);
and aggregations exploiting time-scale separation (e.g., [23]).

• Large-scale dynamical systems are routinely encountered in control engineering. Here, starting
with Aoki [1], numerous approaches have considered the transformation of the original model into
a reduced one that preserves controllability, i.e., the capability of bringing the system to a desired
state by an appropriate choice of control inputs [26].

A common feature shared by these examples is that CAS can be effectively described using dy-
namical systems. Even when the original description is a Markov chain, the underlying behaviour is
characterised by a (large-scale) system of difference/differential equations (i.e., the forward equations
of motion of the probability distribution). This paper briefly reviews recently developed techniques that
consider the abstraction problem from an algorithmic viewpoint [7, 9, 8], with the intent of computing
reduced dynamical systems that enjoy the following properties:

P1. The abstraction should come with formal guarantees on the relationship between the abstract dynam-
ics and the original one. This enables the modeller to use the abstract model with full confidence in
the results of the analysis.

P2. The construction of the abstract model should be fully automatic, since the original model is likely
to be unintelligible due to size.

P3. The method should be generic in order to be applicable to as wide a range of CAS models as possible.

P4. The abstract model should preserve user-defined observables of the original system. For instance, it
should be possible to fully recover the dynamics of selected variables of the original model.

The techniques discussed here revolve around the notion of differential equivalence, an equivalence
relation over the variables of a dynamical system that induces a reduced model where each macro-
variable represents the aggregate dynamics of an equivalence class. Although the theory considers first-
order ODEs, it straightforwardly carries over to their discrete-time analogues. After a brief introduction
in Section 2, some challenges for future research in this area are discussed in detail in Section 3.
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2 Differential Equivalences

According to the terminology above, differential equivalences induce a quotienting of the ODE variables.
Two distinct flavours have been provided in [9]. Forward differential equivalence (FDE) is such that a
macro-variable describes the sum of the variables of an equivalence class. For instance, consider:

ẋ1 =−x1, ẋ2 = k1 · x1− x2, ẋ3 = k2 · x1− x3, (1)

where k1 and k2 are constants and the ‘dot’ operator denotes the derivative operator (with respect to time).
Then, {{x1},{x2,x3}} is an FDE because

ẋ1 =−x1, ˙(x2 + x3) = ẋ2 + ẋ3 = (k1 + k2) · x1− (x2 + x3). (2)

By the change of variable y = x2 + x3, this is equivalent to writing

ẋ1 =−x1 ẏ = (k1 + k2) · x1− y.

In this quotient model, whenever the initial condition (at time point 0) satisfies y(0) = x2(0)+ x3(0) we
get that y(t) = x2(t)+ x3(t) at all time points t.

Backward differential equivalence (BDE) equates variables that have the same solutions at all time
points. In (1), {{x1},{x2,x3}} is also a BDE provided that k1 = k2. In this case, we obtain a quotient
ODE by removing either equation between x2 and x3, say x3, and rewriting every occurrence of x3 as x2:

ẋ1 =−x1 ẋ2 = k1 · x1− x2.

Both FDE and BDE satisfy P1 because the relationship between the original model and the abstract
one is exact; there is, however, loss of information when FDE is applied because the individual traces
of the members of an equivalence class may not be recovered in general. Differential equivalences are
closely related to the notion of exact ODE lumpability, very well understood in the chemistry literature
(e.g., [27, 24, 22]). However this approach lacks of an automatic way of identifying lumping schemes
(e.g., [31]). To cope with this, i.e., to satisfy P2, restrictions are imposed to be able to develop minimi-
sation algorithms.

Symbolic minimisation. In [9] each ODE variable is treated explicitly as a real function and a differen-
tial equivalence is encoded in a logical formula over ODE variables. Thus, checking whether a candidate
partition is BDE/FDE can be done symbolically using an encoding into satisfiability modulo theories
(SMT) [4]. In fact, differential equivalences belong to the quantifier-free fragment of first-order logic. It
is possible to restrict the admissible ODE systems to those for which an SMT solver for nonlinear real
arithmetic — e.g., Z3 [10] — is a decision procedure. This can be done by, roughly speaking, excluding
trigonometric functions (somewhat satisfying P3).

Let us consider the example (1), assuming k1 = k2 = 1. The condition for {{x1},{x2,x3}} to be a
BDE can be shown to correspond to requiring that related variables with equal assignments always have
equal derivatives. This can be encoded in a logical formula φ thus:

φ := x2 = x3⇒ k1 · x1− x2 = k2 · x1− x3.

The SMT check sat(¬φ) looks for an assignment of the variables x1, x2, and x3 for which ¬φ holds.
Thus, the partition is a BDE if and only if the procedure returns “unsat” (as it is obviously the case in
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this example). More interestingly, it is possible to exploit the ability of the solver to return a witness in
case of satisfiability. This can be interpreted as a counterexample that distinguishes variables originally
supposed to be equivalent. For instance, an SMT check for the candidate BDE partition {{x1,x2,x3}}
might return the witness (x1 = 1,x2 = 1,x3 = 1), which yields derivatives that are not equivalent (ẋ1 =
−1, ẋ2 = 0, ẋ3 = 0). This suggests the implementation of an algorithm that splits the partition in such a
way to preserve the equalities in the witness. That is, at the next iteration the candidate BDE partition
would be {{x1},{x2,x3}}. It turns out that such an algorithm does iteratively compute the largest BDE
that refines a given initial partition of ODE variables. This algorithm also meets P4: indeed each variable
that should be treated as an observable can be put in a singleton initial block.

Syntax-driven minimisation. A more efficient minimisation algorithm can be provided for ODEs with
derivatives that are multivariate polynomials of degree at most two [8]. This covers the ubiquitous linear
systems as well as chemical reaction networks, at the basis of the aforementioned dynamic models in
systems biology. At the basis of this approach is a finitary representation of an ODE system as a so-called
reaction network (RN), consisting of species/variables interacting by means of reactions parameterised
by a real value. On this representation two bisimulation equivalences, the forward and backward RN
bisimulations, are related to FDE and BDE, respectively [7]. This makes such bisimulations similar in
spirit to quantitative equivalences on labelled transition systems, e.g., Larsen and Skou’s probabilistic
bisimulation [21]. In particular, the computation of the largest RN bisimulations that refine a given
partition can be computed using an appropriate variant of Paige and Tarjan’s famous algorithm [25].
In [8] a partition refinement algorithm is developed along the lines of efficient analogues for Markov
chain lumping such as [12] and [32], and for probabilistic transition systems [3]. This computes the
largest FB/BB refining a given partition of variables in O(mn logn) time, where m is the number of
monomials in the ODE system and n is the number of variables.

3 Outlook

The differential equivalences reviewed in this paper allow automatic reductions of ODE systems. The
benchmarks in [8] show that the algorithms for reduction up to forward and backward bisimulations can
scale to systems with millions of variables and monomials, terminating in a few seconds also in some
challenging models. There are, however, further challenges ahead which we wish to tackle.

Forward bisimulation is only a sufficient condition for FDE; while it has been shown to yield sig-
nificant reductions in practice [7, 8], some other examples from the literature demonstrate that the algo-
rithm may miss some FDE reductions (see [9]). Ongoing work is aiming to develop a new variant of
forward bisimulation that characterises FDE (for multivariate polynomial derivatives of degree at most
two). Backward bisimulation, on the other hand, does characterise BDE. In this case, the specialised
partition-refinement algorithm of [8] is to be preferred over the symbolic SMT-based approach of [9] for
computational reasons, since we observed runtimes generally separated by two/three orders of magnitude
in our experiments. This is an unsurprising fact because the SMT-based approach does not exploit the
finitary RN representation of [8], where no symbolic computation is performed. We plan to exploit the
advantage of the RN representation, extending [8] to polynomial derivatives with arbitrary degree.

The whole SMT technology has been treated as a black box in our proof-of-concept experiments,
despite the well-known fact that appropriate heuristics for SMT can sensibly affect the runtimes. Devel-
oping problem-specific solution strategies for differential equivalences is an interesting line of research;
a natural question to investigate is the possibility of parallelising the SMT checks at every iteration of
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the partition refinement. Improving the scalability of the SMT approach will be advantageous for all
such models that do not feature degree-two polynomial derivatives. Examples are: third-body reactions
(giving degree-three polynomials), appearing frequently in chemical engineering [31]; chemical reaction
networks that are based on different kinetics than mass-action, such as Hill’s [33]; and ODE performance
models of computing systems, such as those based on minimum-rate semantics (e.g., stochastic process
algebra [29] and queuing networks [28]). In addition, also the models that admit the RN representation
may benefit from improvements made in our SMT approach. For instance, the symbolic checks may be
used in models with uncertainties in rates (a well-known issue in mathematical biology): here the SMT
framework can already be easily extended to compute partitions that are differential equivalences under
all possible assignments of such uncertain parameters, left as free variables in the satisfiability problem
(similarly to the SMT-based parametric minimisation approach of [11] for probabilistic models written
in PRISM [19]).

Lastly, it has long been argued that exact reduction techniques such as the ones presented here are too
restrictive because they are sensitive to the values of the parameters. It is natural to consider approximate
variants (e.g., [6, 13, 20]) as weaker notions that, for instance, allow variability in the parameters, con-
sidering the exact versions as a degenerate case in which no such variability is needed. We remark that,
at least for the numerical benchmarks considered so far with realistic models, the exact reductions can al-
ready be quite effective. Of course, approximate ones might be able to provide even coarser descriptions.
In this case, however, the main challenge is to be able to relate the variability in the parameters tolerated
by the coarsening procedure with the error incurred when considering an approximate, smaller model,
instead of the original one. This issue has been attempted by some previous work which has provided an
asymptotic result of correctness of the approximation for small enough perturbations [16]. This has been
further improved upon using differential inequalities in [30], providing more usable bounds that how-
ever tend to degrade for larger perturbations. In this respect, two orthogonal lines of research may look
into the problem of improving the quality of the bounds and automatically detecting near-symmetries to
synthesise candidate approximately reduced models.
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