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We consider the problem of forming a distributed queue in theadversarial dynamic network model
of Kuhn, Lynch, and Oshman (STOC 2010) in which the network topology changes from round to
round but the network stays connected. This is a synchronousmodel in which network nodes are
assumed to be fixed, the communication links for each round are chosen by an adversary, and nodes
do not know who their neighbors are for the current round before they broadcast their messages.
Queue requests may arrive over rounds at arbitrary nodes andthe goal is to eventually enqueue them
in a distributed queue. We present two algorithms that give atotal distributed ordering of queue
requests in this model. We measure the performance of our algorithms throughround complexity,
which is the total number of rounds needed to solve the distributed queuing problem. We show that in
1-interval connected graphs, where the communication links change arbitrarily between every round,
it is possible to solve the distributed queueing problem inO(nk) rounds usingO(logn) size messages,
wheren is the number of nodes in the network andk≤ n is the number of queue requests. Further,
we show that for more stable graphs, e.g.T-interval connected graphs where the communication

links change in everyT rounds, the distributed queuing problem can be solved inO
(

n+ nk
min{α ,T}

)

rounds using the sameO(logn) size messages, whereα > 0 is the concurrency level parameter that
captures the minimum number of active queue requests in the system in any round. These results
hold in any arbitrary (sequential, one-shot concurrent, ordynamic) arrival ofk queue requests in
the system. Moreover, our algorithms ensure correctness inthe sense that each queue request is
eventually enqueued in the distributed queue after it is issued and each queue request is enqueued
exactly once. We also provide an impossibility result for this distributed queuing problem in this
model. To the best of our knowledge, these are the first solutions to the distributed queuing problem
in adversarial dynamic networks.

1 Introduction

Many distributed systems rely on some concept of mobile objects. A mobile object lives on only one
node of the network at a time and it moves from one node to another in response to explicit requests
by other nodes. A tracking mechanism, commonly known as a distributed directory, allows nodes to
keep track of mobile objects by providing the ability to locate the objects and also the ability to ensure
consistency of the objects in concurrent situations [6]. These directories are interesting in the sense that
they provide the controlled way of sending the mobile objectto the requesting nodes without flooding
the object information to the whole network.

This mobile object tracking problem has been extensively studied in the literature for various coordi-
nation problems that arise in a distributed setting. For example, authors in [18, 20] studied this problem
in the context of distributed mutual exclusion. The node which has the token (or the shared object) can
enter the critical section in their problem setting. Later,Demmer and Herlihy [6] studied this problem
in the context of distributed directories. Awerbuch and Peleg [3] studied this problem in the context of
tracking a mobile user in sensor networks. Recently, these papers [11, 23, 21, 2, 26] studied this problem
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2 Distributed Queuing in Dynamic Networks

for distributed transactional memories. In these applications, the concept of path reversal -when a node
receives a message, it flips its edge to point to the node from which the request was received- is used.
Path reversal approaches are evolved from the trail of forwarding pointers approach of [16] studied for
memory coherence in virtual shared memory systems.

The very common feature of the aforementioned solutions [6,18, 20, 3, 11, 23, 21, 2, 26] is that they
essentially form some short of adistributed queueby which processes (i.e. nodes or vertices) that issued
operations for a shared object can be organized in a total order and each processor receives the identity
of its predecessor operation in that total order [6, 10, 12].A distributed queue approach is appealing
because it ensures that no single node becomes a synchronization bottleneck [6, 18, 20]. However, these
previous solutions assumed the static network such that a pre-selected spanning tree [6, 18, 20, 26] or a
hierarchical directory [3, 11, 23, 21, 2] can be embedded on top of the graph. It is yet to know whether it is
possible to come up with efficient solutions to the queuing problem in dynamic graphs. This is because
when the network topology changes frequently, there might be a significant overhead on adapting the
commonly used structures (tree or hierarchy) accordingly to cope up with the changes.

Therefore, we initiate the study of the distributed queuingproblem in situations where the underlying
network graph changes frequently such that a static structure can not be efficiently maintained. To model
frequent changes, we consider the adversarial dynamic network model first studied by Kuhn, Lunch, and
Oshman [13]. This is a synchronous model in which time is divided into rounds, and in each round, the
communication network is a graph chosen by an adversary overa vertex set. The vertex set is assumed
to be fixed throughout the execution. The communication graph is also assumed to be connected but it
can change completely from one round to the next, i.e. the network topology changes from round to
round. Nodes communicate by broadcasting messages to theirimmediate neighbors. The adversary is
very strong in the sense that nodes do not know who their neighbors are for the current round before
they broadcast their messages. This model is appealing in the sense that it captures widely-used mobile
and wireless networks where communication can be unpredictable (see [19, 15] for details). Our main
objective in this present work is to understand the complexity of the distributed queuing problem in this
adversarial dynamic network model.

Contributions: Assume that there aren nodes in the network andk≤ n nodes issue a queue request
each which must be ordered in such a way that each requesting node receives the identity of its prede-
cessor node in a total distributed order. We derive an impossibility result showing that this distributed
queuing problem can not be solved without queue request replication in adversarial dynamic networks.
We then give two simple algorithms for this problem, one for frequently changing graphs and the other
for more stable graphs, assuming that the adversary satisfies T-interval connectivity: there must exist a
connected spanning subgraph that stably persists throughout T consecutive rounds. To be more clear,
T-interval connected graphs are those graphs in which for anyconsecutive interval ofT rounds, the
maximal common subgraph of the graphs in these rounds is connected. The communication is limited to
O(logn) bits per message.

We measure the performance of our algorithms throughround complexity, which is the total number
of rounds needed to solve the queuing problem. Our goal is to minimize the total number of rounds
needed in solving the queuing problem. We show that in 1-interval connected graphs, where the commu-
nication links change arbitrarily between rounds, our algorithm needsO(nk) rounds to solve the queueing
problem. Further, we show that in more stable graphs, e.g.T-interval connected graphs where the com-

munication links change in every knownT > 1 rounds, our algorithm needsO
(

n+ nk
min{α ,T}

)

rounds to

solve the queuing problem, whereα > 0 is a concurrency level parameter that captures the minimum
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number ofactive (initiated but not yet enqueued) queue requests in the system in any round. These
bounds hold in all three cases of sequential, (one-shot) concurrent, and dynamic execution ofk queue
requests. A sequential execution consists of non-overlapping sequence of queue operations, whereas a
set of queue requests are initiated simultaneously in a concurrent execution. For dynamic executions, we
consider a window of time such that an arbitrary set of bounded k queue requests are assumed to be ini-
tiated at arbitrary moments of time within that window. Therefore, sequential and concurrent executions
are the special cases of dynamic executions. Let us denote bycycle the window ofO(n) consecutive
rounds and byβi the number of active queue requests in the beginning of cyclei. The value ofβi may be
different from cycle to cycle depending on the execution, however 1≤ βi ≤ k holds for every cyclei in

any execution. Therefore,α that appears in the boundO
(

n+ nk
min{α ,T}

)

is essentially the smallest value

of βi in any cyclei, i.e.,α :=min{β1,β2, . . .}. This bound is interesting in the sense that it shows that the
performance speed up can only be obtained inT-interval connected graphs for the distributed queuing
problem whenα ≈ T throughout the execution.

Our results also extend to dynamic executions with continuous arrival of queue requests from nodes
over time (i.e.,k→ ∞) where we show that, ifβi are the active queue requests in the beginning of any
cycle i, then our algorithms guarantee that they will be enqueued within nextO(nβi) rounds in 1-interval

connected graphs, and within nextO
(

n+ nβi
min{βi ,T}

)

rounds inT-interval connected graphs. Moreover,

our algorithms ensure correctness in any execution (see Section 6 for details) in the sense that each
queue request is eventually enqueued in the distributed queue after it is issued and each queue request
is enqueued exactly once. To our best knowledge, these are the first solutions to the distributed queuing
problem in adversarial dynamic networks.

Our bounds suggest that the queuing problem needs as much as the number of rounds needed to
solve thecountingproblem1 and thek-token disseminationproblem2 in dynamic networks, in the worst-
case. It is shown thatO(n2) rounds are sufficient [13] andΩ(n2/ logn) rounds are necessary [7] to solve
the counting and all-to-all token dissemination problems.The complexity arises in adversarial dynamic
networks due to the fact that the communication graph changes in every round. Therefore, even in the
case of distributed queuing, a queue request may need to visit all the restn− 2 nodes before finding
the predecessor node, which takesn− 1 rounds as the communication in each round is controlled by
the worst-case adversary. Someone may say that the distributed queuing problem can be solved by
first solving thek-token dissemination problem and then making the predecessor a node with ID that
is immediately smaller than that of a queue request issuing node for every node that issued the queue
request. However, this approach only solves the queuing problem in the case of an one-shot concurrent
execution (and does not solve the problem in sequential and dynamic executions).

Related Work: The distributed queuing problem has been studied extensively in the literature assum-
ing a static network [6, 18, 20, 3, 11, 23, 21, 2, 26]. To solve this problem, either the pre-selected spanning
tree as used in [6, 18, 20, 2, 26] or the hierarchical structure as used in [3, 11, 23, 21] is constructed on
top of the static network. These ideas were based on some well-known spanning tree and clustering
techniques (e.g., minimum spanning tree [5], sparse covers[3], maximal independent sets [17]) which
organize the nodes in the network in some useful way to facilitate efficient coordination. These papers
[12, 11, 2, 23, 21] studied the distributed queuing problem in the concurrent execution setting, and these

1In the counting problem, assuming that nodes do not known in the initial state, every node in the dynamic graph comprising
n nodes should known after some rounds of message exchange [13].

2In thek-token dissemination problem, there arek unique tokens, usually ink different nodes of the network, and the goal
is to transmit these tokens to all the nodes in the network [13].
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papers [22, 10] considered dynamic executions. Moreover, the self-stabilizing version of the distributed
queuing problem was studied by Tirthapura and Herlihy [24].This self-stabilizing version is also not
inherently dynamic as the eventual stabilization of the network is assumed, i.e., the network stabilizes
and stops changing after a finite time. These approaches, e.g. [6, 18, 20, 3, 11, 23], used latency as the
cost metric, i.e., the cost is measured through the total latency, which is the sum of the latencies of indi-
vidual queuing requests. However, in dynamic networks, theproblem is to figure out how many rounds
of message broadcasts are required to solve the distributedqueuing problem.

The adversarial dynamic network model was proposed in the seminal paper of Kuhn, Lynch, and
Oshman [13]. The authors studied the complexity of countingand token dissemination problems. Sub-
sequently, there have been a significant interest in solvingmany distributed coordination problems in this
model as it makes very few assumptions about the behavior of the network, such that the properties of
the highly dynamic large scale mobile and sensor networks can be captured. Kuhn et al. [14] studied the
problem of coordinated consensus in this model. Recently, these papers [9, 7] improved and extended
some of the results presented in [13]. Moreover, Haeupler and Karger, in [8], studied how to use net-
work coding to expedite the information dissemination in this model. We direct readers to [15] for the
state-of-the-art up to the end of 2010.

Outline of Paper: The rest of the paper is organized as follows. In Section 2, weformally present
the adversarial dynamic network model and define the distributed queuing problem. We give a very
simple impossibility result in Section 3. We then present and analyze a queuing algorithm for frequently
changing graphs in Section 4. We do the same for more stable graphs in Section 5. We then discuss an
inherent limitation in Section 6 and conclude with a short discussion in Section 7.

2 Preliminaries

2.1 Dynamic Network Model

We formally present the dynamic network model, originally introduced by Kuhn, Lynch, and Oshman
[13]. This model works on a synchronous round based execution. A dynamic network is represented
as a connected graphG = (V,E), where|V| = n. We assume thatn is known to the nodes ofG. If n
is not known, an existing counting algorithm, e.g. [13], canbe used to findn spendingO(n2) rounds.
This is not a much overhead as counting is needed only once, whereas queuing is an ongoing service.
Each vertex ofG models a node, and each edge a two-way reliable communication link. Moreover, each
node has a unique identifier (UID) drawn from a namespaceU . These identifers haveO(logn) bits,
so that they fit in a message. Each node can send messages directly to its neighbors and indirectly to
non-neighbors along a path. Each edge has same weight and sending a message from one node to its
neighbor node needs a single round. It is assumed that every message is eventually delivered (i.e. no
message loss occurs).

This model assumes that nodes share a common global clock that starts at 0 and advances in unit
steps. The communication is done in synchronous rounds as follows [13]: The roundr starts as soon
as roundr − 1 finishes. The time between timer − 1 and timer is assumed to be the roundr and the
following execution happens in each roundr. First, each node generates a single message to broadcast
based on its local state at timer−1. The adversary then provides connected communication graph (i.e.,
a set of edges) for roundr. Each node then delivers its message to it’s neighbors following the edges
given by the adversary. The assumption of connected communication graph is each round is the only
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constraint on the adversary. After messages are delivered to the neighbors, each node processes the
messages it received, and transits to a new state (its state at time r). Then, the next round begins. The
communication is assume to be limited toO(logn) bits per message.

The adversary is actually astrong adaptive adversaryin the sense that it can decide the networkG(r)
of round r based on the complete history of the network up to roundr − 1 as well as on the messages
the nodes will send in roundr. Formally, the adversary’s behavior in a given execution iscaptured by
dynamic graphG= (V,E), whereV is a static set of nodes andE :N→{{u,v}|u,v∈V} is a function that
maps a round numberr ∈ N to a set of undirected edgesE(r). dist(u,v) is used to denote the minimum
hop distance between nodesu,v∈G in the dynamic subgraphG(r) at roundr. G satisfies the following
property.

Definition 1 ([13]) A dynamic graph G= (V,E) is said to be T-interval connectedfor any T≥ 1 if for
all r ∈ N, the static graph Gr,T :=

(

V,
⋂r+T−1

i=r E(r)
)

is connected. The graph is said to be∞-interval
connectedif there is a connected static subgraph G′ = (V,E′) such that for all r∈N, E′ ⊆ E(r).

A dynamic graphG= (V,E) in this model induces acasual order, denoted(u, r) G (v, r ′), which
means that nodeu’s state in roundr influences nodev’s state in roundr ′. The casual order is a transitive
and reflexive closure of the order(u, r)→G (v, r +1), which holds if and only if eitheru= v or {u,v} ∈
E(r +1). Therefore at roundr, nodeu has direct information about the states of nodev at roundr ′ such
that(v, r ′) G (u, r). The following lemma shows that the number of nodes that haveinfluenced a node
u grows by at least one in every round, which is a very importantproperty for this model.

Lemma 2.1 ([13]) For any node u∈V and round r≥ 0, |{v∈V : (u,0) (v, r)}| ≥min{r +1,n} and
|{u∈V : (v,0) (u, r)}| ≥min{r +1,n}.

2.2 Distributed Queuing Problem

We denote a distributed queueQ = (h,g, . . . , t) by an UID set of|Q| nodes, where the first nodeh∈ Q
is the head of the queue and the last nodet ∈ Q is the tail of the queue. Initially, there is only one node
in Q which acts as both the head and the tail of the queue; the tail changes when other requests change
the tail of the queue by becoming the successor. For example,g is thesuccessornode ofh andh is the
predecessornode ofg in Q. Q is not explicitly known to all the nodes in the system and is maintained
implicitly by the nodes. A predecessor node stores only the UID of its successor node in the queue.
Therefore, by visiting the successor nodes of all the nodes in Q starting from its head provides the total
distributed queue order.

An instance of the distributed queuing problem consists of aset E = {q1,q2, . . . ,qk} of k queue
requests which want to joinQ. An algorithm solves the queuing problem if for all instances E , when
the algorithm is executed in any dynamic graphG= (V,E), all queue requests are eventually organized
one after another providing a total distributed order. Eachqueue requestqi has a source nodesi , which
is the node that issued this request, and a destination nodeti , which is its predecessor node in the queue.
In the distributed queuing problem, the source node of the predecessor requestqi in the total order is the
destination node for the successor requestqi+1, i.e., the destination node for each request is not known
beforehand and the distributed queuing algorithm should find out the destination node online while in
execution. The purpose of any queuing algorithm is to provide the total order.

We denote a queue requestq ∈ E by the tupleq = (r,u), wherer ≥ 0 is the time when the queue
request is initiated andu is the node that initiates it (i.e., the requesting node). Therefore, we denote by
E = {q1 = (r1,v1),q2 = (r2,v2), . . . ,qk = (rk,vk)} the arbitrary set ofk dynamic queue requests, where
the requestsr i ∈ E are indexed according to their initiation times, i.e.i < j =⇒ r i ≤ r j . We also consider
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sequential and concurrent (one-shot) execution of these queue requests. In a sequential case, the requests
in E have initiation times such that they provide a non-overlapping sequence ofk queue operations, i.e.,
a next request will be issued only after the current request finishes. In one-shot concurrent case, the
requests inE have same initiation times such that allk queue requests come to the system at the same
time.

3 An Impossibility Result

We prove a very simple impossibility result for the distributed queuing problem showing the power of the
adversary in the dynamic graph model. We mean by queue request replication that when a node receives
a queue request from some other node, it stores a copy in it before forwarding that queue request to its
neighbors. This theorem shows that queue request replication in network nodes is necessary to solve the
distributed queueing problem in the adversarial dynamic network model.

Theorem 3.1 The distributed queuing problem is impossible to solve in 1-interval connected graphs
against a strong adversary withoutqueuerequest replication.

Proof (sketch). We prove this theorem similar to the impossibility proof fortoken dissemination given
in [13]. Consider a distributed queuing problem. Assume that, initially, there exist a head node inQ, say
at nodev (theheadnode). This node is also the tail ofQ. The nodev has a local variablesuccv which
is initialized to⊥ (i.e.,succhead=⊥) to imply that there is no successor of theheadnode inQ. Assume
also that each nodew∈ G has a local Boolean variablequeuew to represent that it has a queue request,
denoted byqueue(w). queuew is initially zero, and ifqueuew = 1 for some nodew thenw is said to “join
the queue”. Lets consider the case where some nodew ∈ G,w 6= v, wants to joinQ, i.e., queuew = 1.
To join Q, nodew needs to sends its queue request messagequeue(w) to one of its neighbors. In every
round exactly one node in the network has thequeue(w) message, and it can either keep thequeue(w)
message or pass thequeue(w) message to one of its neighbors. The goal is for a predecessornode (in this
proof the nodev) to eventually have thequeue(w) message in some round. This problem is impossible to
solve in 1-interval connected graphs. This is because as theadversary we considered has the knowledge
of which nodex has thequeue(w) message, it can provide that nodex with only one edge{w,x} such
thatx is not the predecessor node forqueue(w). Nodex then has no choice except to communicate with
nodew. After x receives thequeue(w) message, the adversary can turn around and remove all ofx’s
edges except{x,w}, so thatx has no choice except to pass thequeue(w) message back tow, which is
the node that issuedqueue(w). In this way the adversary can prevent thequeue(w) message from ever
visiting any node exceptw,x for the queue request issued byw. ⊓⊔

4 Queuing in Frequently Changing Graphs

We present and formally analyze a simple algorithm (see Algorithm 1) which solves the distributed queu-
ing problem in 1-interval connected graphs. Recall that thenetwork topology changes in every round in
1-interval connected graphs. This algorithm is a simple extension to the token dissemination algorithm
of [13]; recall that the algorithm of [13] solves the queuingproblem only in (one-shot) concurrent sit-
uations. This algorithm is suitable for all sequential, concurrent (one-shot), and dynamic execution of
queue requests (see Section 1). Algorithm 1 is round based and runs fork cycles. The value ofk does
not need to be known to the algorithm; we discuss later how to get around to this problem. There are two
phases in every cycle: thesearch phaseand thecancelation phase. The search phase runs forn rounds
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and after that the cancelation phase runs for the samen rounds. Therefore, each cycle is of 2n rounds
in this algorithm. Algorithm 1 can solve the queuing problemwithout the cancelation phase, however in
that case messages are queued inQ in the order starting from the smallest UID message to the largest
UID message.

The intuition behind the algorithm is as follows. In each round r of the search phase, all nodes in the
network propagate the smallest queue request they have heard about that has not yet joined the queueQ.
The smallest queue message request is selected with respectto the lexicographical ordering on first the
initiation round and then on the UID of the requesting node ofthe queue requests. Initially, each node
that initiated the queue request broadcasts the queue request to its neighbors. Moreover, in each round of
the phase nodes remember the smallest queue request they have sent or received so far in the execution,
and broadcast that value in the next round of the phase. At theend of the search phase, each node in
the network checks its local successor variable to determine whether a queue request that was received
during the search phase can actually joinQ.

Similar to the queue message broadcasting in the search phase, a special kind of message called
cancel message that is initiated at the predecessor node of the enqueued request at the end of the search
phase, is broadcasted to the all the nodes in the network in the cancelation phase to remove thepending
(i.e., waiting to joinQ) queue request from the network nodes for the queue request that has joinedQ at
the end of the search phase. Note that Algorithm 1 guaranteesthat at the end of every search phase one
queue request joins the queue; we give formal proof in Section 4.1. This cancel message broadcasting is
used in Algorithm 1 to ensure that every queue request will beenqueued inQ and no queue request will
be enqueued inQ more than once. At the end of the cancelation phase, every node removes the matching
queue request, if any, from the list of queue requests that are waiting at that node during execution to join
Q.

We present some necessary notations used in Algorithm 1. We assume that, initially, there is a node
in G that is the head of the queueQ, denoted byhead. Moreover, there are two kind of requests in
the system: queue requests and cancel requests. We denote a queue requestq from a nodeu∈ G by a
messagemwhich is a triple〈queue, ru,UIDu〉, whereru is the round in which the requestq was initiated
andUIDu ∈ N is the unique identifier of the nodeu that issuedq. Moreover, we denote acancelrequest
by a messagem which is a double〈cancel,UIDu〉, whereUIDu ∈ N is the identifier of the nodeu the
queue request from which joinedQ in some nodev such thatv issued thecancelrequest to remove the
pending queue request〈queue, ru,UIDu〉 from all nodes inG exceptu andv. Note that a corresponding
cancel request for a queue request is always initiated by thepredecessor node of that queue request.

Every nodex in G has a local variablesuccx to denote the successor of the nodex in Q. This variable
plays very important role in forming the distributed total order of the queue requests.succx variable
implicitly stores the total distributed order, i.e., visiting the nodes specified by thesuccx variable in the
order starting from theheadnode up to the tail node provides the distributed queuing order. The local
variablesuccx for any nodex takes one of the three values at any time, that is,succx ∈ {UIDy,⊥,∞},
whereUIDy is the UID of a nodey∈ G such thatUIDx 6=UIDy. Initially, every nodeu in the system
hassuccu = ∞, except the head node of the queue which hassucchead= ⊥. The valuesuccu = ∞ for u
becomessuccu =⊥ whenu becomes the successor inQ. When a queue request from a nodez∈G finds
a nodew with succw =⊥ (w is the tail node ofQ), it changes the value ofsuccw from⊥ to theUIDz, the
UID of z to become the new tail ofQ.

We denote byRu(r) the set of queue requests nodeu has received by the beginning of roundr. Node
u may or may not have the input, which we denote byI(u). Nodeu has the input ifu issued the queue
request, otherwise it has no input. Our algorithm satisfies that: (a) for allu ∈ V and roundr ≥ 0, the
message sent byu at roundr is a member ofRu(r)∪ I(u)∪{⊥}, where⊥ denotes the empty message,
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Algorithm 1: A queuing algorithm run by nodeu
1 Ru(r)← /0; // queuerequests at node u at the beginning of round r
2 Cu(r)← /0; // cancel requests at node u at the beginning of round r

3 For ℓ= 0, . . . ,k−1 do
4 Search phase:
5 For r = 0, . . . ,n−1 do
6 qmin← a queue message inRu(r) that is smallest w.r.t. lexicographical ordering on the initiation round and the

identifier of the issuing node, respectively;
7 broadcastqmin to neighbors;
8 receivequeue messages froms≥ 1 neighbors;
9 Ru(r)← Ru(r)

⋃

{q1, · · · ,qs};
10 If succu ==⊥ then
11 t← UID of the first received queue message inRu(r);
12 succu← t; // node t becomes the successor of u
13 generatecancelmessagem= 〈cancel, t〉;
14 Cu(r)←Cu(r)

⋃

{m};

15 Cancelation phase:
16 For r = 0, . . . ,n−1 do
17 m← the smallest UIDcancelmessage inCu(r); // in fact, Cu(r) is a singleton set

18 broadcastm to neighbors;
19 receivecancel messages froms≥ 1 neighbors;
20 Cu(r)←Cu(r)

⋃

{m1, · · · ,ms};
21 If UID of the smallestcancelmessage inCu(r) is equal toUIDu then succu←⊥;
22 Ru(r)← Ru(r)\Cu(r) w.r.t. UIDs;
23 Cu(r)← /0;

and (b) nodeu can not halt in roundr unless all the queue requests inE are served, i.e. enqueued in
Q. Note that our algorithm do not combine or alter queue messages, it only stores and forwards them.
Similarly, we denote byCu(r) the set of cancel requests nodeu has received by the beginning of roundr.
Similar to the definition ofRu(r), nodeu may or may not have a cancel message as input which can be
defined accordingly.

We are now ready to describe how algorithm works. Recall thatin every cycle, the search and the
cancelation phase run one after another forn rounds each. In each round of the search phase (Lines 5–9
of Algorithm 1, the smallest queue request among queue requests inRu(r) is chosen to broadcast by
each nodeu∈V. The smallest queue message (or request) is selected with respect to the lexicographical
ordering on first the initiation round and then on the UID of the requesting node of the queue requests
in Ru(r). After that each node updatesRu(r) by receiving the queue messages send by its neighbors in
that round. At the end of the search phase, each nodeu∈V checks whether the local variablesuccu is
⊥. If succu ==⊥ for some nodeu, u selects the UID, sayt, of the queue message that was received by
u first among the available queue messages inRu(r) and assign that UID to its local variablesuccu. In
other words, the node whose queue request reached tov first becomes the successor of nodev (Line 11,
12 of Algorithm 1). After that a cancel messagem is generated atu to remove the queue message fromt
(that just joinedQ) that might have been replicated from the other nodes of the graphG (Lines 13, 14 of
Algorithm 1). This ensures that the same queue request fromt will not be enqueued inQ later.

In each round of the cancelation phase (Lines 16–20 of Algorithm 1), each nodeu chooses the
smallest UID cancel messagem from Cu(r) and broadcastm to its neighbors similar to queue requests
in the search phase. After that it receives the cancel messages sent to it by its neighbors and updates
Cu(r) accordingly. Note that as only one queue request can be enqueued inQ in the search phase, there
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is always only one cancel message in each cancelation phase.Therefore,Cu(r) is a singleton set. At the
end of the cancelation phase, if the UID of nodeu∈V matches the UID of the smallest cancel message
in Cu(r), the nodeu changes the value of its local variablesuccu from ∞ to ⊥ (Lines 21 of Algorithm
1). At this point, one queue request from some node inG is served by Algorithm 1.Ru(r) for each node
u ∈V is then updated by removing the queue message fromRu(r) the UID of which matches with the
UID of the cancel message inCu(r), andCu(r) is made empty before transiting to the next cycle (Lines
22, 23 of Algorithm 1).

We now describe how to get around to the problem of knowingk. We remove this assumption by
allowing the nodex ∈ V which hassuccx == ⊥ to broadcast an algorithm termination message to its
neighbors if it does not receive any queue message for up to 2n rounds. Nodex can maintain a local
variable that is dedicated to perform this operation. The termination message fromx reaches all the
nodes in the network in at mostn rounds; after that every node can terminate the execution.

4.1 Analysis

Progress and Correctness: We first establish progress guarantees of Algorithm 1. LetBi be the set
of active queue requests in the beginning of any cyclei ≥ 1 and letβi be the number of active queue
requests inBi (i.e., βi = |Bi|); each cycle is of exactly 2n rounds in our algorithm. Note that the size of
Bi may be different from one cycle to the other cycle. Therefore, βi captures essentially the concurrency
level of the queue request execution in the algorithm in any arbitrary moment of time. We prove progress
guarantees of Algorithm 1 in dynamic executions for the continuous arrival of queue requests initiated
by graph nodes over time (i.e.,k is not bounded in this setting so thatk→∞). In particular, we prove the
following lemma.

Lemma 4.1 If there areβi activequeuerequests in the beginning of any cycle i in a dynamic execution,
Algorithm 1 guarantees that they will be enqueued inQ in next at most O(nβi) rounds.

Proof. Recall that a queue request can joinQ in Algorithm 1 at the end of the search phase. Moreover,
when searching for the node withsucc= ⊥, the queue request is stored in every node it visits until this
queue message at those nodes is later canceled by a corresponding cancel message. We have that there
is a nodeheadwith succhead= ⊥ in the beginning of the execution (which is also the tail) andthe tail
nodetail in the beginning of cyclei where one of the future queue requests need to reach to joinQ.
Therefore, we show the following for the active queue requests setBi in the beginning of every cycle
i: the smallest queue request (with respect to the lexicographical ordering on first the initiation round
and then on the UID of the queue request issuing node) inBi, sayqmin, amongβi requests inBi reaches
the nodeu with succu = ⊥ within n rounds from the beginning of the cyclei. This is the case because,
according to Algorithm 1, when two or more queue requests reach at some intermediate nodey such that
succy = ∞, the smallest queue request among them is broadcasted to theneighboring nodes ofy (Lines
6, 7 of Algorithm 1). The nodey continues broadcasting the smallest queue message among the queue
requests it currently holds untily receives the corresponding cancel message for that queue request or the
other queue request that is smaller than the previous one is reached toy in the previous round. Therefore,
in a given round, consider a cut between the nodes that already received the smallest queue request and
those that have not. From the properties of 1-interval connected graphs, there is always an edge in that
cut such that when the smallest queue request is broadcastedon that edge some new node receives it
(Lemma 2.1). Since the node that initiated the queue requestalready knows the queue message and there
aren nodes in the graphG, aftern−1 rounds all nodes have the smallest queue request message.
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In n rounds after the beginning of cyclei, a queue request issued by nodezcan be enqueued inQ by
assigningsucctail ← z, which indicates thatzbecame the successor oftail in Q in cyclei. The predecessor
node ofz, i.e. tail , now issues a cancel message with the UID ofz and broadcasts it to its neighbors in
the cancelation phase forn rounds. Similar to the searching phase, the cancel message reaches to the
node that issued the queue request withinn rounds. This can be again shown by considering the cut
between the nodes that already received the cancel message and those that have not (Lemma 2.1). When
nodez finds the cancel message with UID equals the node UID, it changes itssuccz variable from∞ to
⊥ at the end of the search phase, so that other queue requests can join Q later. Therefore, the smallest
queue request is finished execution by the Algorithm 1 in exactly 2n rounds after the beginning of cycle
i. Now in cyclei +1 some other queue request fromBi becomes the smallest queue request. As queue
requests that are initiated during cyclei have initiation times greater than all the requests inBi, they
can not overtake queue requests inBi to join Q. That is, any request that is generated in cyclei +1 are
ordered in the queue after the requests inBi. Therefore, at end of cyclei+1, the second smallest request
from Bi joins Q. Applying this argument repetitively forβi requests inBi, all the queue requests inBi

join queue in nextβi cycles starting from cyclei. Therefore, we need total 2n∗βi = O(nβi) rounds after
the beginning of the cyclei to enqueue all requests inBi . ⊓⊔

It is clear from Lemma 4.1 that from the round some queue request joinedQ until the round the node
that issued that queue request received the corresponding cancel message and changes the value of its
successor variablesuccfrom ∞ to ⊥, Q becomestailless. Tailless is the situation in which no node in
G hassucc=⊥. However, this phenomenon happens inQ for just n rounds which follows immediately
from Lemma 4.1.

Corollary 4.2 The queue formed is tailless for O(n) rounds.

We now prove the correctness properties of Algorithm 1 in thesense that it eventually forms a dis-
tributed queue so that every queue request is enqueued inQ and each queue request is enqueued only
once.

Lemma 4.3 Eachqueuerequest is enqueued inQ only once.

Proof. We have from Lemma 4.1 that each queue request is enqueued inQ within finite number of
rounds after it is issued. To prove that each queue request isenqueued inQ only once, recall that initially
every nodeu ∈ V hassuccu = ∞ except the head node ofQ which hassucchead = ⊥. According to
Algorithm 1, no queue request can make itself the successor of any node inG for which succi = ∞ or
succi = j, where j is the UID of some node in graphG such thatj 6= i. In Algorithm 1, we have that
each nodeu changes the value of its local variablesuccu from ∞ to⊥ only after the queue request from
it joined Q at nodex at the end of the search phase such thatsuccx = u (i.e.,u becomes the tail ofQ) and
the cancel message generated atx (the predecessor node ofu in Q) to remove replicated queue message
for the queue request ofu (from other nodes inG exceptx andu) reachesu at the end of the cancelation
phase, the current tail ofQ. Therefore, only one queue request can seesuccl = ⊥ at some nodel such
that some pending queue request from nodeo that is currently at nodel can makesuccl = o at the end of
every cycle. Aftero becomes the successor ofl , there is no nodep in the system withsuccp = ⊥ until
a cancel message froml reacheso ando changes itssucco variable value from∞ to⊥ at the end of the
cycle. Arguing similar to Lemma 4.1, any change in thesuccvariable for any node in done aftern rounds
of message exchanges. The first change is done in the node withsucc= ⊥ at the end of a search phase
to make it point to some requesting nodeu and the second change is done inu at the end of a cancelation
phase to makesuccu = ⊥ from succu = ∞. The queue request that is enqueued inQ in search phase is
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removed from the system in cancelation phase so that there isno chance of that request being enqueued
in Q again in the future. Therefore, every request in enqueued inQ and each queue request in enqueued
exactly once. ⊓⊔

Complexity in Sequential Executions: We prove here the round complexity of Algorithm 1 in forming
Q for the setE of k queue requests fromk different nodes ofG. We first prove the round complexity
of Algorithm 1 in sequential execution of queue requests. A sequential execution consists of a non-
overlapping sequence of queue operations. As queue requests do not overlap with each other in sequential
executions, the system attains quiescent configuration (nomessage is in transit and no sequence of events
in which a message is sent) after a queue request is served anduntil a next queue request is issued, i.e.
the next queue request will be issued only after the current queue request finishes. We provide the tight
bound for Algorithm 1 in sequential executions.

Theorem 4.4 Algorithm 1 is optimal for the distributed queuing problem in sequential executions.

Proof. According to Lemma 4.1,βi queue requests in the beginning of cyclei join Q (i.e., find their
predecessor nodes) within nextO(nβi) rounds starting from the beginning of the cyclei. Sinceβi = 1 in
every cyclei in sequential executions and there arek queue requests in the system, Algorithm 1 needs
O(nk) rounds, in the worst-case.

We now show that this round complexity is the best possible any distributed queuing algorithm can
do in sequential executions in 1-interval connected graphs. We prove that, in sequential executions, any
algorithm for the distributed queuing problem in 1-interval connected graphs requires at leastΩ(nk)
rounds to complete against a strong adversary. We borrow some ideas from [7] for this proof. Consider a
setE = {q1,q2, . . . ,qk} of k queue requests. As queue request do not overlap with each other in sequential
executions, we focus our attention on the least number of rounds needed to serve one queue request. The
lower bound then follows by amplifying the number of rounds needed for one request to allk requests
in E . We proceed as follows. Let the nodeu issued the queue requestq0 and nodev is the current tail
node of the queue withsuccv = ⊥. To finish execution ofq0, q0 should be reached tov and change
the existing value ofsuccv such thatsuccv = u. The adversary can connect nodesu,v1, . . . ,vn−2,v in G
in a line in the first round thereby guaranteeing only nodev1 getsq0. In the next round, the adversary
connectsu,v2, . . . ,vn−2,v1 in a line. In this round, nodev2 andvn−2 will both get queue messageq0. The
adversary can continue this way forn−2

2 +1 rounds, at which point the queue messageq0 from nodeu
will eventually reach the tail nodev with succv =⊥. After changingsuccv to u such thatu becomes the
new tail, the corresponding cancel messages needs alson−2

2 +1 rounds to reach to nodeu from v. That
is, we need 2(n−2

2 +1) = n rounds to serve the queuing requestq0. Repeating this argument for all thek
queue requests inE , we have the lower bound ofΩ(nk) rounds, as needed. ⊓⊔

Complexity in Concurrent Executions: We now consider the round complexity of Algorithm 1 in
concurrent one-shot execution of queue requests. We assumethe R⊆ V, |R| = k, nodes in the graphG
issue one queue request each at round 0 and no further queue requests occur. We prove the following
theorem.

Theorem 4.5 Algorithm 1 solves the distributed queuing problem in O(nk) rounds in concurrent execu-
tions.

Proof. According to Algorithm 1, in the worst-case execution scenario, we can order the queue requests
in such way that the smallest queue request (with respect to the lexicographical ordering of active queue
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requests) ordered first and the largest queue request ordered last. As initiation time is same for allk
queue requests in concurrent executions, the ordering onlydepends on the UID of requesting nodes.
Therefore, the successor of theheadof Q is the smallest UID node among the nodes that issued queue
requests, the successor of the head’s successor node is the second smallest UID node among the nodes
that issued queue requests, and so on. The queue request fromthe highest UID node ordered last inQ.
Since we consider 1-interval connected graphs and allk request come at the same time in the beginning
of execution, we have thatβ1 = k in the beginning of the first cycle. As no more request arrivesin
the system later in the execution,βi decreases in every cyclei > 1. Therefore, using Lemma 4.1 and
replacingβi by k, the theorem follows. ⊓⊔

Complexity in Dynamic Executions: We now consider the round complexity of Algorithm 1 in dy-
namic execution of queue requests. We assume theR⊆V, |R|= k, nodes in the graphG issue one queue
request each at arbitrary moments of time. We prove the following theorem.

Theorem 4.6 Algorithm 1 solves the distributed queuing problem in O(nk) rounds in dynamic execu-
tions.

Proof. We proved in Lemma 4.1 that when a queue requestq is issued in the arbitrary roundr, and there
areβi active queue requests in the system which have the initiation times less thanr, then the request
q will be enqueued inQ within next O(nβi) rounds starting from the roundr. Therefore, the round
complexity of Algorithm 1 is dynamic executions is no more than the round complexity bounds proved
in Theorems 4.4 and 4.5. ⊓⊔

5 Queuing in More Stable Graphs

We now study whether the distributed queuing problem can be sped up in more stable graphs. We con-
siderT-interval connected graphs of Definition 1 and give an algorithm (see Algorithm 2) to solve the
distributed queuing problem for someT > 1. This algorithm is also an extension to the token dissem-
ination algorithm given in [13] forT-interval connected graphs. The main idea behind Algorithm2 is
to serveγ := min{α ,T} queue requests inO(n) rounds when the graph is 2T-interval connected. Note
thatα := min{β1,β2, . . .}, whereβℓ is the number of active queue requests in the beginning of cycle ℓ.
If α = 1 in every cycleℓ, this constitutes a sequential execution, whereas there isa one-shot concurrent
execution in the case whenα ≥ T in every cycleℓ. However due to the properties ofT-interval con-
nected graphs, Algorithm 2 can broadcast onlyγ = T queue requests to all the nodes inG in O(n) rounds
in these 2T-interval connected graphs. In dynamic executions,γ is between 2 toT in every cycleℓ. In
summary,α has the impact in the performance of Algorithm 2 in the sense that it determines how many
cycles are needed to form a distributed queue for the active queue requests. Therefore,α essentially
represents theconcurrency levelof queue requests.γ does not necessarily be known to Algorithm 2 in
the beginning, it can be adapted based onβℓ andT while in execution.

Algorithm 2 consists of⌈k/γ⌉ cycles. In contrast to Algorithm 1, we do not need cancelation phase
in this algorithm asγ smallest queue requests can be queued afterO(n) rounds and then correspond-
ing queue requests that are replicated to other nodes can be implicitly canceled. Moreover, each cycle
consists of⌈n/T⌉ periods of 2T rounds each, i.e., there are total 2n rounds in each cycle (Lines 4, 5 of
Algorithm 2). During each period, each nodeu maintains the setAu of queue messages it has already
learned and a setSu of queue messages it has already broadcasted in the current period. Su is initially
empty and it is made empty after each periodη .
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Algorithm 2: A queuing algorithm run by nodeu
1 Su← /0; // queuerequests already broadcasted by node u
2 Au← /0; // queuerequests already received by node u

3 For ℓ= 0, . . . ,⌈k/γ⌉−1 do // γ := min{α,T}
4 For η = 0, . . . ,⌈n/T⌉−1 do
5 For r = 0, . . . ,2T−1 do
6 If Su 6= Au then
7 qmin← a queue message inAu\Su that is smallest w.r.t. lexicographical ordering on the initiation round and

the identifier of the issuing node, respectively;
8 broadcastqmin to neighbors;
9 Su← Su

⋃

{qmin};
10 receivequeue messages froms≥ 1 neighbors;
11 Au← Au

⋃

{q1, · · · ,qs};
12 Su← /0;
13 If succu ==⊥ then
14 t← UID of the smallest queue message inAu w.r.t. the lexicographical ordering;
15 succu← t;
16 If a queue requestq∈ Au is jth Smallest(Au) for 1< j < γ w.r.t. the lexicographical ordering and the UID ofq is

equal to theUID of nodeu then
17 t← UID of a ( j +1)th Smallest(Au) queue message w.r.t. the lexicographical ordering;
18 succu← t;
19 If a queue requestq∈ Au is γth Smallest(Au), γ > 1, and the UID ofq is equal to the UID ofu then
20 succu←⊥;
21 Au← Au after removingγ smallest queue messages fromAu;

The main idea behind Algorithm 2 is to be able to enqueueγ queue requests fromAu in O(n) rounds.
We exploit theT-interval connectivity and the concurrent level parameterγ to perform this task as fol-
lows. In each round of the period (Lines 5–11 of Algorithm 2),each nodeu∈V selects the smallest queue
messageqmin that is inAu\Su with respect to the lexicographical ordering based on the initiation round
and the UID of the queue request issuing node (Line 7 of Algorithm 2). The nodeu then broadcastsqmin

to its neighbors and addsqmin to the setSu (Lines 8, 9 of Algorithm 2). As a stable connected subgraph
Gη persists for each period, we can always send in a round of the period the token that was not already
broadcasted. AsGη changes in the next period, wet setSu (the set of queue requests already broadcasted
by nodeu) to /0 (Line 12 of Algorithm 2) and start broadcasting similarly in the next round. This is to
make sure that the neighboring nodes ofu in the new connected graphG′η receive the tokens that were
received by the neighboring nodes in the previous period. After repeating this process for⌈n/T⌉ periods,
we check the local variablesuccu of each nodeu∈G to see whethersuccu is⊥. If succu ==⊥ for some
nodeu, then this must be the tail node ofQ that was formed in previous cycle, so we select the smallest
queue messageqmin from Au and assign the UIDt associated withqmin to succu, i.e. succu← t (Lines
13–15 of Algorithm 2).

To complete the queuing ofγ queue requests in a cycle, we perform the following before next cycle
begins. If some nodeu issued a queue requestq such thatq is the jth smallest request inAu for 1< j < γ
and the UID ofq is equal to the UID of a nodeu ∈ V, then we setsuccu← t, wheret is the UID of
the( j +1)th smallest request inAu (Lines 16–18 of Algorithm 2). This is also determined based on the
lexicographical ordering on initiation time and UIDs associated with the requests inAu. After that,succu
is set to⊥ for theγ th smallest queue request issuing node (Lines 19, 20 of Algorithm 2). At the end of
each cycle, we remove all theγ requests that joinedQ so that only remaining requests compete to joinQ
in the next cycle (Line 21 of Algorithm 2).
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5.1 Analysis

Similar to Algorithm 1, we first establish progress and correctness properties of Algorithm 2. We con-
sider the execution of continuous arrival of queue requests(i.e.,k→ ∞) similar to Lemma 4.3.

Lemma 5.1 If there areβℓ activequeuerequests in the beginning of any cycleℓ in a dynamic execution,

Algorithm 2 guarantees that they will be enqueued inQ in next at most O
(

n+ nβℓ

min{βℓ,T}

)

rounds.

Proof. Recall that a queue request that is initiated in the beginning of a cycle can joinQ after it reaches
a nodex such thatsuccx = ⊥ at the end of a cycle, assuming that there is no other queue request in the
system. We know from 2T-interval connectivity of the graph that there is a stable connected subgraph
Gη in each periodη that does not change throughout the period of 2T rounds. Therefore, through the
pipelined broadcasting of the queue requests in each round,if there areβℓ active queue requests in the
beginning of a cycleℓ, we prove here that min{βℓ,T} queue requests will reach to all the nodes inG at
the end of the cycleℓ. Therefore, ifβℓ ≤ T, all the requests reach to all the nodes inG at the end of that
cycle, but in the case whenβℓ > T then we needβℓ/min{βℓ,T} cycles to finish all theβℓ requests.

We proceed as follows similar to [13] for each cycleℓ of Algorithm 2. LetKη(q) denote the set of
nodes that know a queue requestq at the beginning of periodη and let distη(u,q) denote the minimum
distance inGη between a nodeu and any node that is inKη(q). Let Aη

u (r) andSη
u (r) denote the values

of the local setsAu and Su of nodeu at the beginning of roundr of period η . Note that the nodeu
knows a queue messageq wheneverq∈ Au. According to the definition of 2T-interval connectivity, if
a roundr is such that distη(u,q) ≤ r ≤ 2T, then eitherq belongs toSη

u (r + 1) or Su(r + 1) includes at
leastr−distη(u,q) queue requests that are smaller thanq with respect to the lexicographical ordering of
queue requests. Therefore, ifr ≥ distη(u,q), thenr rounds must be enough for the nodeu to receive the
queue requestq. Moreover, ifr ≥ distη(u,q) but u has not receivedq, then there must be smaller queue
requests thanq from other nodes that have blocked the broadcast of requestq in nodes that are between
u and the node that initiatedq.

Now we show that at the end of each cycleℓ, at least min{βℓ,T} smallest queue requests among
the βℓ active queue requests that are available in the system in thebeginning of cycleℓ are reached to
all the nodes and then they can be enqueued inQ. Again, we proceed similar to [13]. LetNd

η(q) :=
{u ∈ V|distη(u,q) ≤ d} denote the set of nodes at distance at mostd from some node that knowsq at
the beginning of periodη and letq be one of the min{βℓ,T} smallest queue request with respect to the
lexicographical ordering of queue requests. We have that, for each nodeu∈NT

η (q), eitherq∈Sη
u (2T+1)

or Sη
u (2T +1) contains at least min{βℓ,T} queue requests which are smaller thanq. As q is one of the

smallest queue request, this is not the case thatSη
u (2T +1) contains at least min{βℓ,T} queue requests

which are smaller thanq. Therefore, all nodes inNT
η (q) know queue requestq at the end of the period

η . As Gη is connected, at each periodT new nodes learnq. Since there are no more thann nodes in
the networkG and we have⌈n/T⌉ periods, at the end of the last period, all nodes knowq. Therefore,
at least min{βℓ,T} smallest queue request will be at all nodes inG at the end of each cycleℓ. These
min{βℓ,T} smallest queue requests are then implicity enqueued inQ before the next cycleℓ+1 begins
(Lines 13–20 of Algorithm 2). We have that each cycleℓ consists of⌈n/T⌉ periods of 2T rounds each.
That is, we have 2n rounds in a cycle. Moreover, as we use initiation time in finding the min{βℓ,T}
smallest queue requests, no quest request that is initiatedduring cycleℓ or later overtakes the requestsBi

that are initiated up to the beginning of cycleℓ. Therefore, all theβℓ requests will be enqueued inQ in

next at mostO
(

n+ nβi
min{βℓ,T}

)

rounds. ⊓⊔

Lemma 5.2 Algorithm 2 enqueues eachqueuerequest inQ only once.
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Proof. We prove this lemma similar to Lemma 4.3. Recall the every node u in the system initially has
succu =∞ except the head node ofQ which hassucchead=⊥. In Algorithm 2, the enqueue of min{βℓ,T}
queue requests toQ happens at the end of each cycle (Lines 13–20 of Algorithm 2).In this process, the
nodeu which hassuccu = ⊥ changes its value from⊥ to t, wheret is the UID of the smallest queue
message inAu with respect to the lexicographical ordering of the queue requests inAu. After that the
second smallest to min{βℓ,T}−1 smallest queue request are enqueued implicitly as given inLines 16–
18 of Algorithm 2. The local successor variablesuccu of the nodeu that issued the min{βℓ,T}th smallest
queue message is set to⊥. As all min{βℓ,T} smallest queue requests are removed fromAu at the end of
each cycleℓ, after this enqueue they can not be enqueued in the future. Therefore, in this process, each
queue request is enqueued inQ only once. Moreover, Algorithm 2 does not terminate until all requests
in E finished execution. Hence, the lemma follows. ⊓⊔

We now analyze the performance of Algorithm 2 in sequential,concurrent, and dynamic executions.

Complexity in Sequential Executions: We show that, for the sequential execution ofk queue re-
quests, the distributed queuing problem needsΘ(nk) rounds to solve in the worst-case even inT-interval
connected graphs.

Theorem 5.3 In sequential executions, Algorithm 2 is optimal for the distributed queuing problem in
T-interval connected graphs against a strong adversary.

Proof. Recall that queue requests do not overlap with each other in sequential executions. The upper
bound ofO(nk) is immediate from Theorem 4.4 as each queue request is enqueued in Q at the end of
each cycle in the worst-case, irrespective of theT-interval connectivity. We now focus our attention to
prove the lower bound ofΩ(nk) in T-interval connected graphs. The idea of the proof is also similar
the lower bound proof of Theorem 4.4. As there is only one queue requestq in the system at any time
in sequential executions, the adversary can connect the nodes in a line forT rounds in such a way that
only one new node can learnq in each round. The adversary can repeat this again for nextT rounds by
connecting the nodes of the graph in a line, so that only otherT nodes can learnq. Therefore,q needs
n rounds (i.e. a cycle) to reach to the tail ofQ and join it to become a new tail ofQ. Repeating this
argument for all thek queue requests inE , the lower bound follows, as needed. ⊓⊔

Complexity in Concurrent Executions: We prove the following theorem for the performance of Al-
gorithm 2 on the concurrent (one-shot) execution ofk queue requests.

Theorem 5.4 In concurrent executions, Algorithm 2 requires O(n+ nk
T ) rounds to solve the distributed

queuing problem in T-interval connect graphs.

Proof. Since all the queue requests inE arrive in the system in the beginning of the first cycle, we have
from Lemma 5.1 thatT queue requests will be enqueued inQ at the end of the first cycle. As this needs
to repeat up to⌈k/T⌉ times to make sure that all thek requests joinedQ, we needO(n+ nk

T ) rounds to to
serve allk queue requests inE . ⊓⊔

Complexity in Dynamic Executions: We prove the following theorem for the performance of Algo-
rithm 2 in dynamic execution ofk queue requests.

Theorem 5.5 In dynamic executions, Algorithm 2 requires O
(

n+ nk
min{α ,T}

)

rounds to solve the dis-

tributed queuing problem in T-interval connected graphs.
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Proof. In a cycleℓ, Algorithm 2 can enqueue min{βℓ,T} queue requests that are initiated in the cycles up
to the beginning of cycleℓ. It can be seen from Theorem 5.4 that ifβℓ > T then the round complexity of
Algorithm 2 depends on the value ofT. If βℓ < T, Algorithm 2 can not exploit the benefits ofT-interval
connectivity and onlyβℓ queue requests can be enqueued inQ at the end of each cycle. Therefore, as
only min{βℓ,T} requests can be enqueued in each cycleℓ based on the concurrency level parameterβℓ in
each cycleℓ, arguing similar to Theorem 5.4, we need to run Algorithm 2 for at most⌈ k

min{α ,T}⌉ cycles
to make sure that allk queue requests joinedQ, whereα := min{β1,β2, . . .} for the value ofβℓ in each

cycle ℓ. Thus, Algorithm 2 needsO
(

n+ nk
min{α ,T}

)

rounds to serve allk queue requests in a dynamic

execution ofk requests. ⊓⊔

Theorem 5.5 subsumes the results in Theorems 5.3 and 5.4 in the sense that the round complexity
bound of Theorem 5.5 becomesO(nk) as min{α ,T}= 1 in every round of any sequential execution and
becomesO(n+ nk

T ) as min{α ,T}= T in every round of any concurrent execution.
We assumed in Algorithm 2 thatT is known. IfT is not known then we can guessT by trying all the

values ofT = 1,2,4, · · · ,k. This incurs extra logk factor in the round complexity bound. Therefore, we

can solve the distributed queuing problem inO
(

min
{

nk,nlogk+ nk·logk
min{α ,T}

})

rounds in any execution.

6 An Inherent Limitation

We discuss here why algorithms designed for the distributedqueuing problem in the adversarial dynamic
graph model, including Algorithms 1 and 2, need to performn consecutive rounds of message broadcasts
before they enqueue some queue requests in the distributed queueQ. In other words, we argue why we
used explicit cycles ofn consecutive rounds for message broadcasts in our algorithms before we decide to
enqueue any queue request inQ. Our argument is under the assumption that the queueQ formed by any
queuing algorithm needs to ensure the following two properties which together provide thecorrectness
of the distributed queue formed.

1. Each queue request is eventually enqueued inQ after it is issued. This guarantees that no queue
request is canceled (or removed) from the system without being enqueued inQ, after it is issued.

2. Each queue request is enqueued inQ exactly once. This property guarantees that no queue request
is enqueued inQ more than one time.

These two properties imply that every request will be enqueued inQ but only once. Our objective
now is to present some instances of the distributed queuing problem where it is difficult to satisfy these
two properties simultaneously if we allow any algorithm forthis problem to enqueue some queue requests
in Q within o(n) rounds of message broadcasts after the last enqueue by that algorithm. In particular,
we present two instances of the distributed queuing problem. We consider the dynamic execution in 1-
interval connected graphs in this discussion; recall that queue requests are initiated in arbitrary moments
of time in a dynamic execution.

We start with the first instance where we try to satisfy the second property from which the first
property is violated. Let the queuing algorithm that we consider in this discussion allows the tail node
p in Q enqueue a queue requestq from any nodev as soon as it receivesq. Consider an execution
instance in which some nodeu that issued a queue requestq in some roundi− t, t ≤ o(n), reached the
current tail nodep (with the local successor variablesuccp = ⊥) at roundi such thatp can now madeu
its successor (the new tail ofQ), that issuccp = u. In t consecutive rounds of message broadcastingq



G. Sharma & C. Busch 17

might also have been replicated to some other nodes in the network because queue message replication
is necessary (Theorem 3.1) to solve the queuing problem. Asq is already enqueued inQ, to satisfy
the second property so that it will not be enqueued inQ more than once,q has to be removed from
those nodes so that it will not be enqueued again inQ. As nodes have no global information, the nodes
whereq still exists need to rely on removing either the largest or the smallest queue message using some
ordering mechanism (e.g., UIDs of queue request issuing nodes, initiation times, or the combination of
both) from the set of requests that are at those nodes at roundi. Lets assume that, at roundi, in two
nodesu′ andu′′ of the graphG(i), q′(6= q) is the smallest queue request asq has not yet been reached
to u′ andu′′, andq is the smallest queue request in all the remaining nodes of the graph. Now when a
queuing algorithm uses the technique to remove the smallestqueue request from all the network nodes,
q′ will be removed fromu′ andu′′ which was not yet enqueued inQ andq will be removed from rest
of the nodes in the graph, so that there is no possibility thatq will be enqueued twice inQ, satisfying
the second property. But, this violates the first property because some other request was removed from
the system before it has been enqueued inQ. However, if the algorithm would have allowedt = n
rounds of message broadcasts before it enqueueq, q would have been the smallest request in all the
nodes in the graph and both properties would have been satisfied. As the graph is controlled by a strong
adversary, sending the acknowledgement messages to removethe particular requests from the nodes also
needn−2

2 + 1 rounds in the worst-case as adversary can give very bad graph in every round (Theorem
4.4), forcing the acknowledgement to reach one of the required nodes aftern−2

2 +1 rounds.
We discuss now the second execution instance where we try to satisfy the first property from which

the second property is violated. Consider the above mentioned execution instance and assume thatp does
not try to removeq immediately. Insteadp tries to send acknowledgement (cancel) messages to nodes
whereq has been replicated. Suppose an acknowledgement message isreached tou at roundi+s, where
s≤ o(n), and some other queue requestq′′ from nodew that was atu became the new tail ofQ. Now u
issues an acknowledgement message forq′′. As s is very small, the acknowledge message forq (from p)
may not have been reached already to all the nodes whereq still exists. Letw be the node whereq is the
only request that it is has. Let, at roundi +s+1, acknowledgement message fromu reachedw (w andu
happened to be the neighbors in the graphG(i + s+1) given by the adversary); which in turn forcesw
to makeu its successor. This violates the second property asq is enqueued twice inQ. We summarize
our discussion in the following observation which shows that there are some execution instances of the
distributed queuing problem where messages broadcast for at leastn−2

2 +1 consecutive rounds is needed
for any algorithm before enqueuing any queue request inQ, in the worst-case.

Observation 1 There are execution instances of the distributed queuing problem for whichΘ(n) con-
secutive rounds of message broadcasts by the graph nodes is necessary and sufficient for any algorithm
before it enqueues anyqueuerequest(s) in a distributed queueQ so thatQ that is formed from the ex-
ecution of thequeuerequests in the system iscorrect– eachqueuerequest is eventually enqueued inQ
and noqueuerequest is enqueued inQ more than once.

7 Discussion

We addressed the distributed queuing problem in adversarial dynamic networks by giving two simple
algorithms, one for 1-interval connected graphs and the other forT-interval connected graphs. These al-
gorithms work in sequential, concurrent, and dynamic execution instances of the problem. Our solutions
for 1-interval connected graphs can be easily extended to solve this problem inO(nk

c ) rounds inc-vertex
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connected graphsfor somec> 1− we say that a dynamic networkG= (V,E) is alwaysc-vertex con-
nected if and only ifG(r) is c-vertex connected for every roundr, i.e. each node is connected to every
c other nodes [9]. Our results and the discussion in Section 6 suggest that, in the worst-case, algorithms
for the distributed queuing problem need the same number of rounds required for thek-token dissemina-
tion problem. Therefore, it is interesting to establish a lower bound similar to thek-token dissemination
problem given in [13, 7, 9] for the distributed queuing problem in this model; finding faster queuing
algorithms is another open problem. Moreover, Busch and Tirthapura [4] showed that the related prob-
lem of distributed counting3 is harder than the distributed queuing problem in concurrent situations in
static networks. Therefore, it will be very interesting to prove the similar results of [4] for the distributed
queuing and counting problems in this adversarial dynamic network model.
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