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We consider the problem of forming a distributed queue inattheersarial dynamic network model
of Kuhn, Lynch, and Oshman (STOC 2010) in which the netwogotogy changes from round to
round but the network stays connected. This is a synchrommaiel in which network nodes are
assumed to be fixed, the communication links for each rouadlamsen by an adversary, and nodes
do not know who their neighbors are for the current round teefbey broadcast their messages.
Queue requests may arrive over rounds at arbitrary nodethargbal is to eventually enqueue them
in a distributed queue. We present two algorithms that giveta distributed ordering of queue
requests in this model. We measure the performance of oaritdms throughround complexity
which is the total number of rounds needed to solve the Higed queuing problem. We show that in
1-interval connected graphs, where the communicatios laftange arbitrarily between every round,
it is possible to solve the distributed queueing proble®@(nk) rounds using(logn) size messages,
wheren is the number of nodes in the network ane n is the number of queue requests. Further,
we show that for more stable graphs, eXinterval connected graphs where the communication
links change in every rounds, the distributed queuing problem can be solved (lm+ ﬁgn)
rounds using the sam@(logn) size messages, whege> 0 is the concurrency level parameter that
captures the minimum number of active queue requests inytera in any round. These results
hold in any arbitrary (sequential, one-shot concurrentlyaramic) arrival ofk queue requests in
the system. Moreover, our algorithms ensure correctnefiseirsense that each queue request is
eventually enqueued in the distributed queue after it isedsand each queue request is enqueued
exactly once. We also provide an impossibility result fds ttistributed queuing problem in this
model. To the best of our knowledge, these are the first swisiio the distributed queuing problem
in adversarial dynamic networks.

1 Introduction

Many distributed systems rely on some concept of mobileatbjeA mobile object lives on only one
node of the network at a time and it moves from one node to andthresponse to explicit requests
by other nodes. A tracking mechanism, commonly known as tailalised directory, allows nodes to
keep track of mobile objects by providing the ability to ltez#he objects and also the ability to ensure
consistency of the objects in concurrent situations [6jeSeEhdirectories are interesting in the sense that
they provide the controlled way of sending the mobile obfedhe requesting nodes without flooding
the object information to the whole network.

This mobile object tracking problem has been extensivelglist in the literature for various coordi-
nation problems that arise in a distributed setting. Fong{a, authors in [18, 20] studied this problem
in the context of distributed mutual exclusion. The nodeckithas the token (or the shared object) can
enter the critical section in their problem setting. Lai@emmer and Herlihy [6] studied this problem
in the context of distributed directories. Awerbuch andeg€E] studied this problem in the context of
tracking a mobile user in sensor networks. Recently, thapens([11], 23, 21,2, 26] studied this problem
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for distributed transactional memories. In these appticat the concept of path reversakhen a node
receives a message, it flips its edge to point to the node froichvithe request was receiveds used.
Path reversal approaches are evolved from the trail of fiting pointers approach of [16] studied for
memory coherence in virtual shared memory systems.

The very common feature of the aforementioned solution$8620/ 3| 11/, 23, 21, 2, 26] is that they
essentially form some short oftistributed queudy which processes (i.e. nodes or vertices) that issued
operations for a shared object can be organized in a total @mtl each processor receives the identity
of its predecessor operation in that total order [6,[10, ¥distributed queue approach is appealing
because it ensures that no single node becomes a synchimmizattleneckl[[5, 18, 20]. However, these
previous solutions assumed the static network such that-aglected spanning tree€ [6, 18] 20, 26] or a
hierarchical directory [3, 11, 28, 21|, 2] can be embeddeapmtthe graph. Itis yet to know whether itis
possible to come up with efficient solutions to the queuirgpfam in dynamic graphs. This is because
when the network topology changes frequently, there migh& Isignificant overhead on adapting the
commonly used structures (tree or hierarchy) accordirmlyope up with the changes.

Therefore, we initiate the study of the distributed queyngplem in situations where the underlying
network graph changes frequently such that a static steictan not be efficiently maintained. To model
frequent changes, we consider the adversarial dynamiconietwodel first studied by Kuhn, Lunch, and
Oshman([13]. This is a synchronous model in which time isddidiinto rounds, and in each round, the
communication network is a graph chosen by an adversaryavertex set. The vertex set is assumed
to be fixed throughout the execution. The communication lgia@lso assumed to be connected but it
can change completely from one round to the next, i.e. th&orkttopology changes from round to
round. Nodes communicate by broadcasting messages tdrtireigdiate neighbors. The adversary is
very strong in the sense that nodes do not know who their beighare for the current round before
they broadcast their messages. This model is appealing isethse that it captures widely-used mobile
and wireless networks where communication can be unpeddiisee/ [19, 15] for details). Our main
objective in this present work is to understand the complexfithe distributed queuing problem in this
adversarial dynamic network model.

Contributions:  Assume that there arenodes in the network arki< n nodes issue a queue request
each which must be ordered in such a way that each requesitdgyreceives the identity of its prede-
cessor node in a total distributed order. We derive an inipitigg result showing that this distributed
queuing problem can not be solved without queue requestadiph in adversarial dynamic networks.
We then give two simple algorithms for this problem, one feigliently changing graphs and the other
for more stable graphs, assuming that the adversary saflSfieterval connectivity there must exist a
connected spanning subgraph that stably persists thraudhoonsecutive rounds. To be more clear,
T-interval connected graphs are those graphs in which forcamgecutive interval of rounds, the
maximal common subgraph of the graphs in these rounds isecteth The communication is limited to
O(logn) bits per message.

We measure the performance of our algorithms thraogihd complexitywhich is the total number
of rounds needed to solve the queuing problem. Our goal isimimize the total number of rounds
needed in solving the queuing problem. We show that in Inateconnected graphs, where the commu-
nication links change arbitrarily between rounds, our atgm need$D(nk) rounds to solve the queueing
problem. Further, we show that in more stable graphs,Teigterval connected graphs where the com-

munication links change in every knowih> 1 rounds, our algorithm nee@s(m— W:;T}) rounds to

solve the queuing problem, wheee> 0 is a concurrency level parameter that captures the minimum
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number ofactive (initiated but not yet enqueued) queue requests in the mysteany round. These
bounds hold in all three cases of sequential, (one-shouwroent, and dynamic execution kfqueue
requests. A seguential execution consists of non-ovargpgequence of queue operations, whereas a
set of queue requests are initiated simultaneously in awoe execution. For dynamic executions, we
consider a window of time such that an arbitrary set of bodridgueue requests are assumed to be ini-
tiated at arbitrary moments of time within that window. Tdferre, sequential and concurrent executions
are the special cases of dynamic executions. Let us denotgdiythe window ofO(n) consecutive
rounds and bys; the number of active queue requests in the beginning of ¢ydlee value of3; may be
different from cycle to cycle depending on the executionyéeer 1< 5 < k holds for every cycle in

any execution. Therefore, that appears in the bourml(n+ WET}) is essentially the smallest value
of B in any cyclei, i.e.,a := min{B, B2,...}. This bound is interesting in the sense that it shows that the
performance speed up can only be obtained -imterval connected graphs for the distributed queuing
problem whero =~ T throughout the execution.

Our results also extend to dynamic executions with contisuarrival of queue requests from nodes
over time (i.e.k — o) where we show that, i are the active queue requests in the beginning of any

cyclei, then our algorithms guarantee that they will be enqueugtimmextO(nf;) rounds in 1-interval
connected graphs, and within ne&t(nJr #ﬁ'”) rounds inT-interval connected graphs. Moreover,

our algorithms ensure correctness in any execution (segoB8& for details) in the sense that each
gqueue request is eventually enqueued in the distributedeqatter it is issued and each queue request
is enqueued exactly once. To our best knowledge, these afathsolutions to the distributed queuing
problem in adversarial dynamic networks.

Our bounds suggest that the queuing problem needs as muble asimber of rounds needed to
solve thecountingproblenlﬂ and thek-token disseminatioprobler@ in dynamic networks, in the worst-
case. It is shown tha(n?) rounds are sufficient [13] ard(n?/logn) rounds are necessary [7] to solve
the counting and all-to-all token dissemination probleffise complexity arises in adversarial dynamic
networks due to the fact that the communication graph cleimgevery round. Therefore, even in the
case of distributed queuing, a queue request may need taallighe restn — 2 nodes before finding
the predecessor node, which takes 1 rounds as the communication in each round is controlled by
the worst-case adversary. Someone may say that the disttilqueuing problem can be solved by
first solving thek-token dissemination problem and then making the predecessode with ID that
is immediately smaller than that of a queue request issuirtig rior every node that issued the queue
request. However, this approach only solves the queuinglgmmoin the case of an one-shot concurrent
execution (and does not solve the problem in sequential ynandic executions).

Related Work: The distributed queuing problem has been studied extdpsivéhe literature assum-
ing a static network [6, 18, 20/13,111,/123] 21!, 2, 26]. To sahis problem, either the pre-selected spanning
tree as used in [6, 18, 20,[2,126] or the hierarchical strecasrused ir_[3, 11, 28, R1] is constructed on
top of the static network. These ideas were based on somem@ln spanning tree and clustering
techniques (e.g., minimum spanning tree [5], sparse cd@grsaximal independent sets [17]) which
organize the nodes in the network in some useful way to fawliefficient coordination. These papers
[12,11)2] 23] 21] studied the distributed queuing problerte concurrent execution setting, and these

1in the counting problem, assuming that nodes do not kmiowthe initial state, every node in the dynamic graph conipgis
n nodes should know after some rounds of message exchahgé [13].

?In the k-token dissemination problem, there &renique tokens, usually ik different nodes of the network, and the goal
is to transmit these tokens to all the nodes in the network [13
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papers([2P, 10] considered dynamic executions. Moreolerself-stabilizing version of the distributed

queuing problem was studied by Tirthapura and Herlihy [2Bhis self-stabilizing version is also not

inherently dynamic as the eventual stabilization of thevoek is assumed, i.e., the network stabilizes
and stops changing after a finite time. These approaches[ealt8, 20/ 3| 11, 23], used latency as the
cost metric, i.e., the cost is measured through the totahtgt which is the sum of the latencies of indi-
vidual queuing requests. However, in dynamic networksptioblem is to figure out how many rounds

of message broadcasts are required to solve the distriquisging problem.

The adversarial dynamic network model was proposed in thense paper of Kuhn, Lynch, and
Oshman([13]. The authors studied the complexity of counsind token dissemination problems. Sub-
sequently, there have been a significant interest in sowiagy distributed coordination problems in this
model as it makes very few assumptions about the behavidreofie¢twork, such that the properties of
the highly dynamic large scale mobile and sensor networkdeacaptured. Kuhn et al. [14] studied the
problem of coordinated consensus in this model. Recemtidge papers [9.) 7] improved and extended
some of the results presented [in][13]. Moreover, Haeupldrkarger, in [8], studied how to use net-
work coding to expedite the information dissemination iis tnodel. We direct readers to [15] for the
state-of-the-art up to the end of 2010.

Outline of Paper: The rest of the paper is organized as follows. In Sedtion 2fonmally present
the adversarial dynamic network model and define the dig&t queuing problem. We give a very
simple impossibility result in Sectidd 3. We then present analyze a queuing algorithm for frequently
changing graphs in Sectidh 4. We do the same for more stasphgiin Sectiohl5. We then discuss an
inherent limitation in Sectionl6 and conclude with a shostdssion in Sectidn 7.

2 Preliminaries

2.1 Dynamic Network Model

We formally present the dynamic network model, originatiyréduced by Kuhn, Lynch, and Oshman
[13]. This model works on a synchronous round based exatu#todynamic network is represented
as a connected gragh = (V,E), where|V| = n. We assume that is known to the nodes db. If n

is not known, an existing counting algorithm, e.g.1[13], ¢@nused to find spendingO(n?) rounds.
This is not a much overhead as counting is needed only oncereab queuing is an ongoing service.
Each vertex of5 models a node, and each edge a two-way reliable communidatlo Moreover, each
node has a unique identifier (UID) drawn from a namespace These identifers hav®(logn) bits,

so that they fit in a message. Each node can send messagely daréts neighbors and indirectly to
non-neighbors along a path. Each edge has same weight agidigg@nmessage from one node to its
neighbor node needs a single round. It is assumed that evesgage is eventually delivered (i.e. no
message loss occurs).

This model assumes that nodes share a common global clockténes at 0 and advances in unit
steps. The communication is done in synchronous roundsllas/$o[13]: The roundr starts as soon
as roundr — 1 finishes. The time between tinme- 1 and timer is assumed to be the roumdand the
following execution happens in each roundFirst, each node generates a single message to broadcast
based on its local state at time- 1. The adversary then provides connected communicatigrhdize.,

a set of edges) for round Each node then delivers its message to it's neighborsvioip the edges
given by the adversary. The assumption of connected conuatiom graph is each round is the only
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constraint on the adversary. After messages are deliverdldet neighbors, each node processes the
messages it received, and transits to a new state (its $taweear). Then, the next round begins. The
communication is assume to be limited@glogn) bits per message.

The adversary is actuallystrong adaptive adversaiy the sense that it can decide the netwG(k)
of roundr based on the complete history of the network up to roundL as well as on the messages
the nodes will send in round Formally, the adversary’s behavior in a given executiocaigtured by
dynamic graplG = (V,E), whereV is a static set of nodes aitt N — {{u,v}|u,v €V} is a function that
maps a round numbere N to a set of undirected edgé&sgr). dist(u,v) is used to denote the minimum
hop distance between nodew € G in the dynamic subgrap@(r) at roundr. G satisfies the following

property.

Definition 1 ([13]) A dynamic graph G= (V,E) is said to be Finterval connectedor any T > 1 if for
all r € N, the static graph @r := (V,N! 'E(r)) is connected. The graph is said to &einterval
connectedf there is a connected static subgraph6(V,E’) such that for all re N, E' C E(r).

A dynamic graphG = (V,E) in this model induces aasual ordey denoted(u,r) ~~g (v,r’), which
means that node’s state in round influences node’s state in round’. The casual order is a transitive
and reflexive closure of the ordéu,r) —¢ (v, r + 1), which holds if and only if eitheu = v or {u,v} €
E(r +1). Therefore at round, nodeu has direct information about the states of neds roundr’ such
that (v,r’) ~g (u,r). The following lemma shows that the number of nodes that h#fieenced a node
u grows by at least one in every round, which is a very imponpaoperty for this model.

Lemma 2.1 ([13]) For any node e V and round r> 0, [{veV : (u,0) ~ (vr)}| > min{r +1,n} and
HueV:(v,0)~ (u,r)} >min{r+1n}.

2.2 Distributed Queuing Problem

We denote a distributed que@= (h,g,...,t) by an UID set of|Q| nodes, where the first nodec Q

is the head of the queue and the last nbdeQ is the tail of the queue. Initially, there is only one node
in Q which acts as both the head and the tail of the queue; thehaiges when other requests change
the tail of the queue by becoming the successor. For exagpethe successonode ofh andh is the
predecessonode ofg in Q. Q is not explicitly known to all the nodes in the system and isnt@éned
implicitly by the nodes. A predecessor node stores only thHe &f its successor node in the queue.
Therefore, by visiting the successor nodes of all the nad€sstarting from its head provides the total
distributed queue order.

An instance of the distributed queuing problem consists eéta8” = {q1,0p,...,0«} of k queue
requests which want to joip. An algorithm solves the queuing problem if for all instasiég when
the algorithm is executed in any dynamic graphk- (V,E), all queue requests are eventually organized
one after another providing a total distributed order. Equwbue requesy; has a source nodg, which
is the node that issued this request, and a destinationtnadeich is its predecessor node in the queue.
In the distributed queuing problem, the source node of tedguessor requegtin the total order is the
destination node for the successor request, i.e., the destination node for each request is not known
beforehand and the distributed queuing algorithm shouldl it the destination node online while in
execution. The purpose of any queuing algorithm is to pr total order.

We denote a queue requept & by the tupleq = (r,u), wherer > 0 is the time when the queue
request is initiated and is the node that initiates it (i.e., the requesting nodekréfore, we denote by
& ={aq1=(r1,v1),q2 = (ra,2),...,0k = (rx, k) } the arbitrary set ok dynamic queue requests, where
the requests; € & are indexed according to their initiation times, i.e< j = r; <rj. We also consider



6 Distributed Queuing in Dynamic Networks

sequential and concurrent (one-shot) execution of theseeequests. In a sequential case, the requests
in & have initiation times such that they provide a non-overiagsequence df queue operations, i.e.,

a next request will be issued only after the current requasthiés. In one-shot concurrent case, the
requests inF’ have same initiation times such that kljueue requests come to the system at the same
time.

3 An Impossibility Result

We prove a very simple impossibility result for the distitidth queuing problem showing the power of the
adversary in the dynamic graph model. We mean by queue reguodisation that when a node receives

a queue request from some other node, it stores a copy inatéo&frwarding that queue request to its

neighbors. This theorem shows that queue request replicatinetwork nodes is necessary to solve the
distributed queueing problem in the adversarial dynamiwokk model.

Theorem 3.1 The distributed queuing problem is impossible to solve intérval connected graphs
against a strong adversary withogtieuerequest replication.

Proof (sketch). We prove this theorem similar to the impossibility proof foken dissemination given

in [13]. Consider a distributed queuing problem. Assumg, thdially, there exist a head node @, say

at nodev (the headnode). This node is also the tail @. The nodev has a local variablsucg which

is initialized to_L (i.e.,SucGeag = L) to imply that there is no successor of theadnode inQ. Assume
also that each node € G has a local Boolean variabtgieug, to represent that it has a queue request,
denoted byqueuéw). queug, is initially zero, and ifqgueug, = 1 for some nodav thenw is said to “join

the queue”. Lets consider the case where some modes, w = v, wants to joinQ, i.e.,queug, = 1.

To join Q, nodew needs to sends its queue request mesgagagw) to one of its neighbors. In every
round exactly one node in the network has ¢fueuéw) message, and it can either keep theugw)
message or pass theeug¢w) message to one of its neighbors. The goal is for a predecesder(in this
proof the node) to eventually have thgueug¢w) message in some round. This problem is impossible to
solve in 1-interval connected graphs. This is because amdersary we considered has the knowledge
of which nodex has thequeugw) message, it can provide that noxlevith only one edggw,x} such
thatx is not the predecessor node fpreu¢w). Nodex then has no choice except to communicate with
nodew. After x receives thequeuéw) message, the adversary can turn around and remove @ of
edges excepfx,w}, so thatx has no choice except to pass tgeuéw) message back ta, which is

the node that issuegueuéw). In this way the adversary can prevent theeu¢w) message from ever
visiting any node except, x for the queue request issued Wy O

4 Queuing in Frequently Changing Graphs

We present and formally analyze a simple algorithm (see #tgn[T) which solves the distributed queu-
ing problem in 1-interval connected graphs. Recall thatitgvork topology changes in every round in
1-interval connected graphs. This algorithm is a simplemsibn to the token dissemination algorithm
of [13]; recall that the algorithm of [13] solves the queuimgpblem only in (one-shot) concurrent sit-
uations. This algorithm is suitable for all sequential, @ament (one-shot), and dynamic execution of
queue requests (see Section 1). Algorifim 1 is round bastduss fork cycles. The value ok does

not need to be known to the algorithm; we discuss later hovet@agpund to this problem. There are two
phases in every cycle: theearch phasand thecancelation phaseThe search phase runs forounds
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and after that the cancelation phase runs for the samoeinds. Therefore, each cycle is af Bunds

in this algorithm. AlgorithniIL can solve the queuing problesthout the cancelation phase, however in
that case messages are queue® im the order starting from the smallest UID message to thgekr
UID message.

The intuition behind the algorithm is as follows. In eachmdu of the search phase, all nodes in the
network propagate the smallest queue request they have &leant that has not yet joined the quéde
The smallest queue message request is selected with réspbetlexicographical ordering on first the
initiation round and then on the UID of the requesting nod¢éhefqueue requests. Initially, each node
that initiated the queue request broadcasts the queuestaquts neighbors. Moreover, in each round of
the phase nodes remember the smallest queue request tleeydmor received so far in the execution,
and broadcast that value in the next round of the phase. Agrideof the search phase, each node in
the network checks its local successor variable to determwimether a queue request that was received
during the search phase can actually jQin

Similar to the queue message broadcasting in the searcle,phapecial kind of message called
cancel message that is initiated at the predecessor notle ehtjueued request at the end of the search
phase, is broadcasted to the all the nodes in the networleinahcelation phase to remove thending
(i.e., waiting to joinQ) queue request from the network nodes for the queue reduadtds joined) at
the end of the search phase. Note that Algorithm 1 guaratheést the end of every search phase one
gueue request joins the queue; we give formal proof in Sedid. This cancel message broadcasting is
used in Algorithni 1l to ensure that every queue request widlrispieued ifQ and no queue request will
be enqueued i more than once. At the end of the cancelation phase, eveg/mnenaoves the matching
gueue request, if any, from the list of queue requests tleawaiting at that node during execution to join
Q.

We present some necessary notations used in Algofithm 1.sgeree that, initially, there is a node
in G that is the head of the quew@, denoted byhead Moreover, there are two kind of requests in
the system: queue requests and cancel requests. We denmeeargquesf from a nodeu € G by a
messagen which is a triple(queuer,,U1D), wherer, is the round in which the requegtwas initiated
andUID, € N is the unique identifier of the nodethat issuedj. Moreover, we denote eancekequest
by a messagen which is a doublgcancelUID), whereUID, € N is the identifier of the node the
gueue request from which joingd in some nodes such thatv issued thecancekequest to remove the
pending queue reque&ueuer,,UID) from all nodes inG exceptu andv. Note that a corresponding
cancel request for a queue request is always initiated bgrdecessor node of that queue request.

Every nodexin G has a local variablsucg to denote the successor of the nade Q. This variable
plays very important role in forming the distributed totatler of the queue requestsucg variable
implicitly stores the total distributed order, i.e., visg the nodes specified by tlseicg variable in the
order starting from théaeadnode up to the tail node provides the distributed queuingror@ihe local
variablesucg for any nodex takes one of the three values at any time, thasigg € {UIDy, L, o},
whereUIDy is the UID of a nodey € G such thalIDy # UIDy. Initially, every nodeu in the system
hassucg, = o, except the head node of the queue which $waspeag= L. The valuesucg, = o for u
becomesucg = 1 whenu becomes the successorgn When a queue request from a nade G finds
a nodew with sucg, = L (w is the tail node of)), it changes the value slicg, from L to theUID, the
UID of zto become the new tail @.

We denote byR,(r) the set of queue requests nadeas received by the beginning of roundNode
u may or may not have the input, which we denotel fy). Nodeu has the input iu issued the queue
request, otherwise it has no input. Our algorithm satisfias: t(a) for allu € V and roundr > 0, the
message sent hyat roundr is a member oR,(r) Ul (u) U{L}, where L denotes the empty message,
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Algorithm 1: A queuing algorithm run by node

1 Ry(r) < 0; // queuerequests at node U at the beginning of round r
2 Cy(r) «+ 0; // cancelrequests at node U at the beginning of round r
3 For¢=0,....k—1do

4  Search phase:

5 Forr=0,...,n—1do

6 Omin < & queue message Ry(r) that is smallest w.r.t. lexicographical ordering on thei@tion round and the
identifier of the issuing node, respectively;

7 broadcastgmi, to neighbors;

8 receivequeue messages fros> 1 neighbors;

o Ru(r) < Ru(r)U{as, -+, s}

10 If sucg, == L then

11 t < UID of the first received queue messagérir{r);

12 sucg < t; // node t becomes the successor of U

13 generatecancelmessagen = (cancelt);

14 Cu(r) « Cu(r)U{m};

15 Cancelation phase:

16 Forr=0,...,n—1do

17 m « the smallest UICcancemessage i€y(r); // in fact, Cy(r) is a singleton set

18 broadcastmto neighbors;

19 receivecancel messages fros® 1 neighbors;

20 Cu(r) « Cu(r)U{mg,--- ,ms};

21 If UID of the smallestancelmessage i€y(r) is equal tdJID, then sucg, + L;

22 Ru(r) < Ry(r)\Cu(r) w.r.t. UIDs;

23 Cu(r) < 0;

and (b) nodeu can not halt in round unless all the queue requestsdnare served, i.e. enqueued in
Q. Note that our algorithm do not combine or alter queue messagonly stores and forwards them.
Similarly, we denote b, (r) the set of cancel requests nadkas received by the beginning of round
Similar to the definition oR,(r), nodeu may or may not have a cancel message as input which can be
defined accordingly.

We are now ready to describe how algorithm works. Recallithavery cycle, the search and the
cancelation phase run one after anothemfoounds each. In each round of the search phase (Lines 5-9
of Algorithm [, the smallest queue request among queue s&gjireR,(r) is chosen to broadcast by
each nodel € V. The smallest queue message (or request) is selected wjitbateto the lexicographical
ordering on first the initiation round and then on the UID dof tlequesting node of the queue requests
in Ry(r). After that each node updat&s(r) by receiving the queue messages send by its neighbors in
that round. At the end of the search phase, each nael¥ checks whether the local variattecg, is
L. If sucg, == L for some noday, u selects the UID, sal; of the queue message that was received by
u first among the available queue messageR,im) and assign that UID to its local variabdeicg. In
other words, the node whose queue request reachefirss becomes the successor of nadgine 11,

12 of Algorithm[1). After that a cancel messagés generated ai to remove the queue message from
(that just joinedQ) that might have been replicated from the other nodes of tihehds (Lines 13, 14 of
Algorithm([dl). This ensures that the same queue requesttfraithnot be enqueued iQ later.

In each round of the cancelation phase (Lines 16-20 of Algmril), each nod@& chooses the
smallest UID cancel messagefrom C,(r) and broadcagm to its neighbors similar to queue requests
in the search phase. After that it receives the cancel messaant to it by its neighbors and updates
Cu(r) accordingly. Note that as only one queue request can be eedueQ in the search phase, there
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is always only one cancel message in each cancelation phlaseeforeC,(r) is a singleton set. At the
end of the cancelation phase, if the UID of nade V matches the UID of the smallest cancel message
in Cy(r), the nodeu changes the value of its local variatdacg, from o to L (Lines 21 of Algorithm

[d)). At this point, one queue request from some nod® is served by Algorithmi]1R,(r) for each node

u €V is then updated by removing the queue message Rgimn the UID of which matches with the
UID of the cancel message @y(r), andC,(r) is made empty before transiting to the next cycle (Lines
22, 23 of Algorithn{1).

We now describe how to get around to the problem of knowkingVe remove this assumption by
allowing the nodex € V which hassucg == 1 to broadcast an algorithm termination message to its
neighbors if it does not receive any queue message for up touhds. Nodex can maintain a local
variable that is dedicated to perform this operation. Thmieation message from reaches all the
nodes in the network in at mostrounds; after that every node can terminate the execution.

4.1 Analysis

Progress and Correctness: We first establish progress guarantees of Algorithm 1. B;die the set
of active queue requests in the beginning of any cyclel and letS be the number of active queue
requests irB; (i.e., B = |Bi|); each cycle is of exactlyrRrounds in our algorithm. Note that the size of
Bi may be different from one cycle to the other cycle. Thereffireaptures essentially the concurrency
level of the queue request execution in the algorithm in ahigrary moment of time. We prove progress
guarantees of Algorithil 1 in dynamic executions for the icmmus arrival of queue requests initiated
by graph nodes over time (i.& js not bounded in this setting so that> «). In particular, we prove the
following lemma.

Lemma 4.1 If there aref3; activequeuerequests in the beginning of any cycle i in a dynamic exeautio
Algorithm[1 guarantees that they will be enqueue®im next at most @nf3;) rounds.

Proof. Recall that a queue request can j@rin Algorithm[1 at the end of the search phase. Moreover,
when searching for the node wilucc= L, the queue request is stored in every node it visits unsl thi
gueue message at those nodes is later canceled by a codiegpoancel message. We have that there
is a nodeheadwith sucgeag = L in the beginning of the execution (which is also the tail) dmel talil
nodetail in the beginning of cyclé where one of the future queue requests need to reach t@join
Therefore, we show the following for the active queue retpusstB; in the beginning of every cycle

i the smallest queue request (with respect to the lexicgrapordering on first the initiation round
and then on the UID of the queue request issuing nodB),isaygmin, amongB; requests irB; reaches
the nodeu with sucg, = _L within n rounds from the beginning of the cydleThis is the case because,
according to Algorithni 11, when two or more queue requeststrahsome intermediate nogsuch that
sucg = o, the smallest queue request among them is broadcasted neitffdoring nodes of (Lines

6, 7 of Algorithm[1). The nodg continues broadcasting the smallest queue message aneggebe
requests it currently holds ungilreceives the corresponding cancel message for that queuesteor the
other queue request that is smaller than the previous oradbed ty in the previous round. Therefore,
in a given round, consider a cut between the nodes that glreagived the smallest queue request and
those that have not. From the properties of 1-interval coeukegraphs, there is always an edge in that
cut such that when the smallest queue request is broadoastddht edge some new node receives it
(Lemmd2.1). Since the node that initiated the queue reglestdy knows the queue message and there
aren nodes in the grapls, aftern— 1 rounds all nodes have the smallest queue request message.
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In nrounds after the beginning of cydlea queue request issued by nadmmn be enqueued @ by
assigningsucesj < z which indicates thatbecame the successortafl in Q in cyclei. The predecessor
node ofz, i.e. tail, now issues a cancel message with the Ulz ahd broadcasts it to its neighbors in
the cancelation phase farrounds. Similar to the searching phase, the cancel messaghes to the
node that issued the queue request withiounds. This can be again shown by considering the cut
between the nodes that already received the cancel messagjgoae that have not (Lemimal2.1). When
nodez finds the cancel message with UID equals the node UID, it adgitgsucg variable fromeo to
| at the end of the search phase, so that other queue requegtsnc® later. Therefore, the smallest
queue request is finished execution by the Algorithm 1 in #x&n rounds after the beginning of cycle
i. Now in cyclei + 1 some other queue request fr@nbecomes the smallest queue request. As queue
requests that are initiated during cyc¢léave initiation times greater than all the request8jnthey
can not overtake queue requestsBijrto join Q. That is, any request that is generated in cyelel are
ordered in the queue after the requestB;inTherefore, at end of cyclet 1, the second smallest request
from B; joins Q. Applying this argument repetitively fqB requests irB;, all the queue requests B
join queue in nexB; cycles starting from cycle Therefore, we need totah2 3, = &(nf3;) rounds after
the beginning of the cyclieto enqueue all requests B3. O

It is clear from Lemma4]1 that from the round some queue EqamedQ until the round the node
that issued that queue request received the correspondimgeicmessage and changes the value of its
successor variablsuccfrom o to 1, Q becomedailless Tailless is the situation in which no node in
G hassucc= 1. However, this phenomenon happenitior just n rounds which follows immediately
from Lemmd4.1L.

Corollary 4.2 The queue formed is tailless for(® rounds.

We now prove the correctness properties of Algorifim 1 insvese that it eventually forms a dis-
tributed queue so that every queue request is enqueu®daimd each queue request is enqueued only
once.

Lemma 4.3 Eachqueuerequest is enqueued {@ only once.

Proof. We have from LemmfA 4.1 that each queue request is enqueu@dnithin finite number of
rounds after it is issued. To prove that each queue requestiiseued iIQ only once, recall that initially
every nodeu € V hassucg, = o except the head node € which hassucgeaq = L. According to
Algorithm [, no queue request can make itself the succegsamyonode inG for which sucg = o or
sucg = j, wherej is the UID of some node in grap® such thatj # i. In Algorithm[1, we have that
each nodas changes the value of its local varialdecg, from o to L only after the queue request from
it joined Q at nodex at the end of the search phase such siaty = u (i.e., u becomes the tail d) and
the cancel message generated @he predecessor node wfn Q) to remove replicated queue message
for the queue request af(from other nodes s exceptx andu) reachesu at the end of the cancelation
phase, the current tail @. Therefore, only one queue request canse® = | at some nodé such
that some pending queue request from notleat is currently at nodecan makesucg = o at the end of
every cycle. Aftero becomes the successorlothere is no nodg in the system witlsucg = L until

a cancel message frohnteaches ando changes itsucg variable value fromw to L at the end of the
cycle. Arguing similar to Lemmla 4.1, any change in siecvariable for any node in done afterounds

of message exchanges. The first change is done in the nodeweitk- | at the end of a search phase
to make it point to some requesting nadand the second change is donaiat the end of a cancelation
phase to maksucg, = L from sucg = «. The queue request that is enqueue@im search phase is
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removed from the system in cancelation phase so that thagedhance of that request being enqueued
in Q again in the future. Therefore, every request in enqueu€lland each queue request in enqueued
exactly once. O

Complexity in Sequential Executions: We prove here the round complexity of Algoritiiin 1 in forming
Q for the sets of k queue requests fromdifferent nodes of5. We first prove the round complexity

of Algorithm [d in sequential execution of queue requests. efuential execution consists of a non-
overlapping sequence of queue operations. As queue reqgieesbt overlap with each other in sequential
executions, the system attains quiescent configuratiom@ssage is in transit and no sequence of events
in which a message is sent) after a queue request is servaghtihd next queue request is issued, i.e.
the next queue request will be issued only after the curreatig request finishes. We provide the tight
bound for Algorithn1 in sequential executions.

Theorem 4.4 Algorithm[1 is optimal for the distributed queuing problemsiequential executions.

Proof. According to Lemma 4113 queue requests in the beginning of cyciein Q (i.e., find their
predecessor nodes) within né{ng;) rounds starting from the beginning of the cytl&ince = 1 in
every cyclei in sequential executions and there krgueue requests in the system, Algorithm 1 needs
O(nk) rounds, in the worst-case.

We now show that this round complexity is the best possibledastributed queuing algorithm can
do in sequential executions in 1-interval connected gra@fesprove that, in sequential executions, any
algorithm for the distributed queuing problem in 1-intdreannected graphs requires at le&xink)
rounds to complete against a strong adversary. We borrowe sibeas from([[7] for this proof. Consider a
set& = {1, d,...,0«} of kqueue requests. As queue request do not overlap with eashingequential
executions, we focus our attention on the least number ofd®needed to serve one queue request. The
lower bound then follows by amplifying the number of round@gded for one request to &lrequests
in &. We proceed as follows. Let the nodéssued the queue requegtand nodev is the current tail
node of the queue witBucg = L. To finish execution ofy, o should be reached to and change
the existing value ofucg such thatsucg = u. The adversary can connect nodgs,...,v,_»2,vin G
in a line in the first round thereby guaranteeing only negdgetsqy. In the next round, the adversary
connectal, Vo, ..., Vh_2,v1 in aline. In this round, node, andv,,_» will both get queue messagg. The
adversary can continue this way f@g—z + 1 rounds, at which point the queue messggéom nodeu
will eventually reach the tail nodewith sucg = L. After changingsucg to u such thaiu becomes the
new tail, the corresponding cancel messages need&gﬂsel rounds to reach to nodefrom v. That
is, we need Q”%Z + 1) = nrounds to serve the queuing requestRepeating this argument for all the
queue requests ifi, we have the lower bound 6(nk) rounds, as needed. O

Complexity in Concurrent Executions: We now consider the round complexity of Algoritimh 1 in
concurrent one-shot execution of queue requests. We ashieReC V, |R| = k, nodes in the grapt®
issue one queue request each at round 0 and no further quuest® occur. We prove the following
theorem.

Theorem 4.5 Algorithm[1 solves the distributed queuing problem ifmk) rounds in concurrent execu-
tions.

Proof. According to Algorithnil, in the worst-case execution scenave can order the queue requests
in such way that the smallest queue request (with respebetkekxicographical ordering of active queue
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requests) ordered first and the largest queue request driexte As initiation time is same for al
gqueue requests in concurrent executions, the ordering depends on the UID of requesting nodes.
Therefore, the successor of theadof Q is the smallest UID node among the nodes that issued queue
requests, the successor of the head’s successor node ectirelssmallest UID node among the nodes
that issued queue requests, and so on. The queue requeghé&dnghest UID node ordered last@
Since we consider 1-interval connected graphs ankl r@fjuest come at the same time in the beginning
of execution, we have thg#; = k in the beginning of the first cycle. As no more request arrives
the system later in the executiof, decreases in every cycle- 1. Therefore, using Lemnia 4.1 and
replacing; by k, the theorem follows. O

Complexity in Dynamic Executions: We now consider the round complexity of Algoritith 1 in dy-
namic execution of queue requests. We assum&the&/, |R| = k, nodes in the grapl issue one queue
request each at arbitrary moments of time. We prove theviiolip theorem.

Theorem 4.6 Algorithm[1 solves the distributed queuing problem imk) rounds in dynamic execu-
tions.

Proof. We proved in Lemmga4l1 that when a queue reqgéstssued in the arbitrary roungand there
are 3 active queue requests in the system which have the iniidioes less tham, then the request
g will be enqueued irQ within next O(nG;) rounds starting from the round Therefore, the round
complexity of Algorithm1 is dynamic executions is no moraritthe round complexity bounds proved
in Theorem§ 414 arld 4.5. 0

5 Queuing in More Stable Graphs

We now study whether the distributed queuing problem carpbd sip in more stable graphs. We con-
siderT-interval connected graphs of Definitibh 1 and give an atbori(see Algorithni2) to solve the
distributed queuing problem for sonfe> 1. This algorithm is also an extension to the token dissem-
ination algorithm given in[[13] foiT -interval connected graphs. The main idea behind Algor[this
to servey := min{a, T} queue requests i@(n) rounds when the graph isT2interval connected. Note
thata := min{B1,Be,...}, wheref, is the number of active queue requests in the beginning dé ¢yc
If a =1 in every cyclel, this constitutes a sequential execution, whereas thereme-shot concurrent
execution in the case whan> T in every cycle/. However due to the properties dfinterval con-
nected graphs, Algorithfid 2 can broadcast gniy T queue requests to all the nodesaim O(n) rounds
in these 7 -interval connected graphs. In dynamic executignis, between 2 td in every cyclel. In
summary,a has the impact in the performance of Algorithin 2 in the sehaeit determines how many
cycles are needed to form a distributed queue for the actiesig requests. Therefore, essentially
represents theoncurrency levebf queue requestsy does not necessarily be known to Algorithim 2 in
the beginning, it can be adapted base@pandT while in execution.

Algorithm[2 consists ofk/y] cycles. In contrast to Algorithinl 1, we do not need cancetagibase
in this algorithm asy smallest queue requests can be queued @éftay rounds and then correspond-
ing queue requests that are replicated to other nodes cangbeitly canceled. Moreover, each cycle
consists offn/T] periods of I rounds each, i.e., there are total @unds in each cycle (Lines 4, 5 of
Algorithm[Z). During each period, each nodenaintains the sed, of queue messages it has already
learned and a s&, of queue messages it has already broadcasted in the cuerdod.pS, is initially
empty and it is made empty after each penpd
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Algorithm 2: A queuing algorithm run by node

1§+ 0; // queuerequests already broadcasted by node U
2 Ay« 0; // queuerequests already received by node U
3 For¢=0,...,[k/y] —1do // y:=min{a,T}

4 Forn=0,...,[n/T]-1do

5 Forr=0,...,2T —1do

6 If S, # Ay then

7 Omin < @ queue message M\ S, that is smallest w.r.t. lexicographical ordering on théigion round and
the identifier of the issuing node, respectively;

8 broadcastqmin to neighbors;

9 S SuU{Gmin};

10 receivequeue messages frosn> 1 neighbors;

11 Ay AdU{aL, -+, G}

12 S« 0;

13 If sucg == 1L then

14 t < UID of the smallest queue messagefinw.r.t. the lexicographical ordering;
15 SUCG, < t;

16 If aqueue requeste A, is jth_-SmallestA,) for 1 < j < yw.r.t. the lexicographical ordering and the UID@fs
equal to thaJID of nodeu then

17 t + UID of a (j + 1)th_SmallestA,) queue message w.r.t. the lexicographical ordering;

18 SUCG, < t;

19 If aqueue requeste Ay is yth_-SmallestA,), y > 1, and the UID ofg is equal to the UID ofi then

20 sucg «+ L;

21 Ay« Ay after removingy smallest queue messages fréqm

The main idea behind Algorithfid 2 is to be able to enquggaeue requests frod, in O(n) rounds.
We exploit theT -interval connectivity and the concurrent level paramgtty perform this task as fol-
lows. In each round of the period (Lines 5-11 of AlgorithmeZ)¢ch nodel € V selects the smallest queue
messagelmi, that is inA,\S, with respect to the lexicographical ordering based on thiion round
and the UID of the queue request issuing node (Line 7 of Afgmi2). The nodel then broadcastgmin
to its neighbors and addp,i, to the setS, (Lines 8, 9 of Algorithm 2). As a stable connected subgraph
G, persists for each period, we can always send in a round ofehedpthe token that was not already
broadcasted. A6, changes in the next period, wet f(the set of queue requests already broadcasted
by nodeu) to 0 (Line 12 of Algorithn2) and start broadcasting simlilan the next round. This is to
make sure that the neighboring nodesuah the new connected gram]?sg1 receive the tokens that were
received by the neighboring nodes in the previous perioterAépeating this process fom/T | periods,
we check the local variabkucg, of each nodel € G to see whethesucg, is L. If sucg, == L for some
nodeu, then this must be the tail node Qfthat was formed in previous cycle, so we select the smallest
gqueue messagsnin from A, and assign the UID associated witly,i, to sucg, i.e. sucg <t (Lines
13-15 of Algorithni2).

To complete the queuing gfqueue requests in a cycle, we perform the following before ogcle
begins. If some nodeissued a queue requegsuch thaf is the jth smallest request i, for 1 < j <y
and the UID ofq is equal to the UID of a noda € V, then we sesucg, < t, wheret is the UID of
the (j + 1)th smallest request iA, (Lines 16—18 of Algorithni2). This is also determined basedie
lexicographical ordering on initiation time and UIDs adated with the requests iy,. After that,sucg
is set toL for the yth smallest queue request issuing node (Lines 19, 20 of AllgofZ). At the end of
each cycle, we remove all therequests that joine@ so that only remaining requests compete to [Qin
in the next cycle (Line 21 of Algorithrinl 2).
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5.1 Analysis

Similar to Algorithm[1, we first establish progress and cctmess properties of Algorithid 2. We con-
sider the execution of continuous arrival of queue requéstsk — o) similar to Lemma 4.13.

Lemma 5.1 If there aref3; activequeuerequests in the beginning of any cyéla a dynamic execution,

Algorithm[2 guarantees that they will be enqueue®im next at most C<n+ ﬁ%ﬂ}) rounds.

Proof. Recall that a queue request that is initiated in the beggnaofra cycle can joirQ after it reaches
a nodex such thatsucg = L at the end of a cycle, assuming that there is no other queuestn the
system. We know fromR-interval connectivity of the graph that there is a stablensxted subgraph
G;, in each period) that does not change throughout the period Bfr@unds. Therefore, through the
pipelined broadcasting of the queue requests in each rolutindre aref, active queue requests in the
beginning of a cycle, we prove here that m{i8;, T} queue requests will reach to all the node&iat
the end of the cyclé. Therefore, if3; < T, all the requests reach to all the node&iat the end of that
cycle, but in the case wheh > T then we neeg,;/ min{B3,, T} cycles to finish all the3, requests.

We proceed as follows similar to [13] for each cyélef Algorithm[2. LetK; (q) denote the set of
nodes that know a queue requgsit the beginning of periog and let disf (u,q) denote the minimum
distance inG,, between a node and any node that is ik, (q). Let Al (r) andS](r) denote the values
of the local setsA, and S, of nodeu at the beginning of round of period . Note that the node
knows a queue messagavheneverg € A,. According to the definition of P-interval connectivity, if
a roundr is such that dist(u,q) < r < 2T, then eitherg belongs toS] (r + 1) or S,(r + 1) includes at
leastr — dist, (u,q) queue requests that are smaller tijamith respect to the lexicographical ordering of
queue requests. Thereforer it dist, (u,q), thenr rounds must be enough for the nadl® receive the
queue requesi. Moreover, ifr > dist, (u,q) butu has not received, then there must be smaller queue
requests thag from other nodes that have blocked the broadcast of requiastodes that are between
u and the node that initiategl

Now we show that at the end of each cyéleat least migf3,, T} smallest queue requests among
the 3, active queue requests that are available in the system ibefjigning of cycle/ are reached to
all the nodes and then they can be enqueue@.imAgain, we proceed similar to_[13]. LeMg(q) =
{u e V|dist,(u,q) < d} denote the set of nodes at distance at ndosbm some node that knowgat
the beginning of period) and letq be one of the mifi3,, T} smallest queue request with respect to the
lexicographical ordering of queue requests. We have tbagdch node Ng(q), eitherqe S} (2T +1)
or S} (2T + 1) contains at least mii8;, T} queue requests which are smaller tligrAs g is one of the
smallest queue request, this is not the caseShéaT + 1) contains at least m{iB,, T} queue requests
which are smaller thag. Therefore, all nodes ihlﬁ(q) know queue request at the end of the period
n. As G, is connected, at each periddnew nodes learq. Since there are no more thamodes in
the networkG and we havegn/T | periods, at the end of the last period, all nodes kmpwrherefore,
at least mif3,, T} smallest queue request will be at all nodesGrat the end of each cycle These
min{B,, T} smallest queue requests are then implicity enqueu€libefore the next cyclé+ 1 begins
(Lines 13-20 of Algorithmi 2). We have that each cytleonsists offn/T | periods of I rounds each.
That is, we have 2 rounds in a cycle. Moreover, as we use initiation time in figdihe mi{3,, T}
smallest queue requests, no quest request that is initlaré cyclel or later overtakes the requess
that are initiated up to the beginning of cydleTherefore, all thgs, requests will be enqueued @ in

next at moso (n + #ﬁ'ﬂ}) rounds. 0

Lemma 5.2 Algorithm[2 enqueues eacjueuerequest inQ only once.
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Proof. We prove this lemma similar to Lemrha 4.3. Recall the everyenoith the system initially has
sucg = o except the head node @which hassucgeag= L. In Algorithm[2, the enqueue of m{,, T}
gueue requests ©Q happens at the end of each cycle (Lines 13—-20 of Algorithnir2this process, the
nodeu which hassucg, = L changes its value from. to t, wheret is the UID of the smallest queue
message i\, with respect to the lexicographical ordering of the quewiests inA,. After that the
second smallest to m{i8,, T } — 1 smallest queue request are enqueued implicitly as givemas 16—
18 of Algorithm[2. The local successor variallgcg, of the nodeu that issued the mif3,, T }th smallest
qgueue message is setto As all min{3,, T} smallest queue requests are removed fAgnat the end of
each cycle, after this enqueue they can not be enqueued in the futurerefidre, in this process, each
gueue request is enqueuedQronly once. Moreover, Algorithihl 2 does not terminate unfiratjuests
in & finished execution. Hence, the lemma follows. O

We now analyze the performance of Algorithin 2 in sequenti@ahcurrent, and dynamic executions.

Complexity in Sequential Executions: We show that, for the sequential executionkoflueue re-
quests, the distributed queuing problem ne@¢sk) rounds to solve in the worst-case evefTiinterval
connected graphs.

Theorem 5.3 In sequential executions, AlgoritHoh 2 is optimal for thetritisited queuing problem in
T -interval connected graphs against a strong adversary.

Proof. Recall that queue requests do not overlap with each othexguential executions. The upper
bound ofO(nk) is immediate from Theorein 4.4 as each queue request is exdjirrQ@ at the end of
each cycle in the worst-case, irrespective of Thmterval connectivity. We now focus our attention to
prove the lower bound a2(nk) in T-interval connected graphs. The idea of the proof is alsdlaim
the lower bound proof of Theorelm 4.4. As there is only one gueguesty in the system at any time
in sequential executions, the adversary can connect thesrniada line forT rounds in such a way that
only one new node can leagnin each round. The adversary can repeat this again forheatinds by
connecting the nodes of the graph in a line, so that only cftheodes can learg. Therefore,q needs

n rounds (i.e. a cycle) to reach to the tail @fand join it to become a new tail @. Repeating this
argument for all thé&k queue requests i, the lower bound follows, as needed. O

Complexity in Concurrent Executions: We prove the following theorem for the performance of Al-
gorithm[2 on the concurrent (one-shot) executiok gfieue requests.

Theorem 5.4 In concurrent executions, Algorithioh 2 require$ro- r}—k) rounds to solve the distributed
gueuing problem in T -interval connect graphs.

Proof. Since all the queue requestsdiarrive in the system in the beginning of the first cycle, wechav
from Lemmd5.1l thal queue requests will be enqueuedirat the end of the first cycle. As this needs
to repeat up tok/T | times to make sure that all tikeequests joine®, we needd(n-+ ”Tk) rounds to to
serve allk queue requests if. O

Complexity in Dynamic Executions: We prove the following theorem for the performance of Algo-
rithm[2 in dynamic execution df queue requests.

Theorem 5.5 In dynamic executions, Algorithmd 2 reqU|res<®+
tributed queuing problem in T-interval connected graphs.

mm{a T}> rounds to solve the dis-



16 Distributed Queuing in Dynamic Networks

Proof. Ina cyclel, Algorithm[2 can enqueue mii,, T} queue requests that are initiated in the cycles up
to the beginning of cyclé. It can be seen from Theordm b.4 thaBif> T then the round complexity of
Algorithm[2 depends on the value ®f If B, < T, Algorithm[2 can not exploit the benefits finterval
connectivity and only3, queue requests can be enqueue@iat the end of each cycle. Therefore, as
only min{f,, T } requests can be enqueued in each cybased on the concurrency level param@en
each cycle/, arguing similar to Theorein 5.4, we need to run Algorifim demost[W} cycles

to make sure that ak queue requests joineéd, wherea := min{1,3,,...} for the value off3; in each

cycle £. Thus, Algorithm 2 need® <n+ Wgﬂ) rounds to serve ak queue requests in a dynamic

execution ok requests. O

Theoren 5.6 subsumes the results in Theorlens 5.8 ahd 5.4 setise that the round complexity
bound of Theorerh 515 becom@gnk) as min{a, T} = 1 in every round of any sequential execution and
becomeO(n+ ”Tk) asmifa,T} =T in every round of any concurrent execution.

We assumed in Algorithi] 2 thatis known. If T is not known then we can gue$sy trying all the
values ofT =1,2,4,--- k. This incurs extra lof factor in the round complexity bound. Therefore, we

can solve the distributed queuing probIenGr(min{nIg nlogk+ %}) rounds in any execution.

6 An Inherent Limitation

We discuss here why algorithms designed for the distribqtenling problem in the adversarial dynamic
graph model, including Algorithnid 1 ahd 2, need to perfarconsecutive rounds of message broadcasts
before they enqueue some queue requests in the distribueee@. In other words, we argue why we
used explicit cycles afi consecutive rounds for message broadcasts in our algaritefore we decide to
enqueue any queue requestnOur argument is under the assumption that the q@@t@rmed by any
queuing algorithm needs to ensure the following two propenvhich together provide theorrectness

of the distributed queue formed.

1. Each queue request is eventually enqueued aiter it is issued. This guarantees that no queue
request is canceled (or removed) from the system withouigbenqueued iQ, after it is issued.

2. Each gqueue request is enqueue@ iexactly once. This property guarantees that no queue reques
is enqueued i) more than one time.

These two properties imply that every request will be engdan Q but only once. Our objective
now is to present some instances of the distributed queuiiggm where it is difficult to satisfy these
two properties simultaneously if we allow any algorithmtiis problem to enqueue some queue requests
in Q within o(n) rounds of message broadcasts after the last enqueue bygbathen. In particular,
we present two instances of the distributed queuing probMa consider the dynamic execution in 1-
interval connected graphs in this discussion; recall thatug requests are initiated in arbitrary moments
of time in a dynamic execution.

We start with the first instance where we try to satisfy theoedcproperty from which the first
property is violated. Let the queuing algorithm that we ¢d@asin this discussion allows the tail node
p in Q enqueue a queue requesfrom any nodev as soon as it receivegs Consider an execution
instance in which some nodethat issued a queue requegsin some round —t,t < o(n), reached the
current tail nodep (with the local successor variabdeicg = L) at roundi such thatp can now made
its successor (the new tail €f), that issucg = u. Int consecutive rounds of message broadcasiing
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might also have been replicated to some other nodes in theriebecause queue message replication
is necessary (Theorem_B.1) to solve the queuing problemq issalready enqueued iQ, to satisfy

the second property so that it will not be enqueuedimore than onceg has to be removed from
those nodes so that it will not be enqueued agai@.irAs nodes have no global information, the nodes
whereq still exists need to rely on removing either the largest erdinallest queue message using some
ordering mechanism (e.g., UIDs of queue request issuings)aditiation times, or the combination of
both) from the set of requests that are at those nodes at iouets assume that, at roundin two
nodesu’ andu” of the graphG(i), d (# q) is the smallest queue requestcakas not yet been reached
to U andu”, andq is the smallest queue request in all the remaining nodeseofithph. Now when a
gueuing algorithm uses the technique to remove the smalleste request from all the network nodes,
g will be removed fromu’ andu” which was not yet enqueued @ andq will be removed from rest

of the nodes in the graph, so that there is no possibility ghatll be enqueued twice i, satisfying

the second property. But, this violates the first properiyalnse some other request was removed from
the system before it has been enqueued®inHowever, if the algorithm would have allowdd= n
rounds of message broadcasts before it enqueuewould have been the smallest request in all the
nodes in the graph and both properties would have been edti#s the graph is controlled by a strong
adversary, sending the acknowledgement messages to rénegvarticular requests from the nodes also
need"%2 -+ 1 rounds in the worst-case as adversary can give very bat gnagvery round (Theorem
[4.4), forcing the acknowledgement to reach one of the reduiodes aftei’%2 + 1 rounds.

We discuss now the second execution instance where we tatisysthe first property from which
the second property is violated. Consider the above mesierecution instance and assume phabes
not try to removeg immediately. Insteag tries to send acknowledgement (cancel) messages to nodes
whereq has been replicated. Suppose an acknowledgement messagehied ta at roundi + s, where
s< o(n), and some other queue requgstrom nodew that was at became the new tail @. Now u
issues an acknowledgement message/foAs sis very small, the acknowledge messaged@irom p)
may not have been reached already to all the nodes wjsiikexists. Letw be the node whereis the
only request that it is has. Let, at round s+ 1, acknowledgement message frameachedwv (w andu
happened to be the neighbors in the gr&ih+ s+ 1) given by the adversary); which in turn forces
to makeu its successor. This violates the second property isenqueued twice iQ. We summarize
our discussion in the following observation which shows thare are some execution instances of the
distributed queuing problem where messages broadcasltIfﬂarsa”%2 + 1 consecutive rounds is needed
for any algorithm before enqueuing any queue reque&, iim the worst-case.

Observation 1 There are execution instances of the distributed queuinglpm for which®(n) con-
secutive rounds of message broadcasts by the graph nodesdsgary and sufficient for any algorithm
before it enqueues amueuerequest(s) in a distributed queug so thatQ that is formed from the ex-
ecution of thequeuerequests in the systemdsrrect— eachqueuerequest is eventually enqueued(n
and noqueuerequest is enqueued @ more than once.

7 Discussion

We addressed the distributed queuing problem in advelshnwmmic networks by giving two simple
algorithms, one for 1-interval connected graphs and therdtr T -interval connected graphs. These al-
gorithms work in sequential, concurrent, and dynamic ettecunstances of the problem. Our solutions
for 1l-interval connected graphs can be easily extended\ye #us problem irO(”—Ck) rounds inc-vertex
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connected graph®r somec > 1 — we say that a dynamic netwofk = (V,E) is alwaysc-vertex con-
nected if and only ifG(r) is c-vertex connected for every roumdi.e. each node is connected to every
c other nodes [9]. Our results and the discussion in Settiarg§est that, in the worst-case, algorithms
for the distributed queuing problem need the same numbeoids required for thk-token dissemina-
tion problem. Therefore, it is interesting to establishvadobound similar to th&-token dissemination
problem given in[[1B} [7,19] for the distributed queuing pexal in this model; finding faster queuing
algorithms is another open problem. Moreover, Busch anthdpural[4] showed that the related prob-
lem of distributed countir@ is harder than the distributed queuing problem in conctirsénations in
static networks. Therefore, it will be very interesting toye the similar results of [4] for the distributed
gueuing and counting problems in this adversarial dynamieork model.
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