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Inspired by the chemical metaphor, this paper proposes an extension of Linda-like languages in
the aim of modeling the coordination of complex distributedsystems. The new language manipu-
lates finite sets of tuples and distributes a density among them. This new concept adds to the non-
determinism inherent in the selection of matched tuples a non-determinism to the tell, ask and get
primitives on the consideration of different tuples. Furthermore, thanks to de Boer and Palamidessi’s
notion of modular embedding, we establish that this new language strictly increases the expressive-
ness of the Dense Bach language introduced earlier and, consequently, Linda-like languages.

1 Introduction

The technological evolutions over the last recent years confirm the upward trends in a pervading of our
everyday environments by new mobile devices injecting or retrieving information from very dynamic and
dense networks. In order to garantee robustness and continuity of the services they propose, the global
structure must be tolerant regarding any modification in topology, device technology or creation of new
services. These constraints will be fulfilled if full self-organisation is incorporated as an inherent property
of the coordination models. Coordination languages based on tuple spaces offer an elegant response to
such constraints. The Bach language - a dialect of Linda developed at the University of Namur - is one of
them, and permits to model in an elegant way the interaction between different components through the
deposit and retrieval of tuples in a shared space. As its basic form only allows the manipulation of one
tuple at a time and since the selection between several tuples matching a required one is provided in an
non-deterministic fashion, a first extension was first proposed in [12] in the aim of enriching traditional
data-based coordination languages by a notion of density attached to tuples, thereby yielding a new
coordination language, called Dense Bach.

To illustrate the use of the dense tuples, let us consider thecontext of service oriented computing. Let
us imagine a situation where a group of n researchers planingtheir presence to a conference want to book
rooms in a hotel. Their query could naturally consist in getting n rooms in the tuple space of free rooms
in any hotel, and to effectivelly book them only if all the n rooms are available, or if the number of rooms
combined with their number of beds meets the required n amount. In a more scientific context, we could
consider the chemical reactions between three elements N (nitrogen), O (oxygen) and S (sulphur) present
in a reactor. Following the distribution - understood here in the chemical sense - of the global density
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between those three different reactants, some reactions will be more facilitated and others minder, and
the concentration of the resulting products could alternate more in favour of one solution (likeNO2) or
another (likeSO2).

Considering those two previous examples, we then propose inthis paper as a next natural step to
consider a set of tuples, among which the density is distributed. The new abstract language resulting
from that extension strictly increases the expressivenessof Linda-like languages. It is still built upon the
four primitives tell, ask, get and nask, accessing a tuplespace, also named subsequently store. However,
it enhances it with a non-deterministic behavior of the tell, ask and get primitives with regard to which
tuples from the set are considered.

Our purposes remain of a theoretical nature and, hence, for simplicity purposes, we shall consider
in this paper a simplified version where tuples are taken in their simplest form of flat and unstructured
tokens. Nevertheless, the resulting simplification of the matching process is orthogonal to our purposes
and, consequently, our results can be directly extended to more general tuples.

This paper fits into the continuity of previous work done by the authors, among others of [5,8,9,12,
16]. As a result, our approach follows the same lines of research, and employs de boer and Palamidessi’s
modular embedding to test the expressiveness of languages.The rest of this paper is consequently orga-
nized as follows. Section 2 presents our extension of the Dense Bach language, called Dense Bach with
Distributed Density and, after the definition of the distribution of density on a list of tokens, defines an
operational semantics. Section 3 provides a short presentation of modular embedding and, on that basis,
proceeds with an exhaustive comparison of the relative expressive power of the languages Dense Bach
and Dense Bach with Distributed Density. Finally, section 4compares our work with related work, draws
our conclusions and presents expectations for future work.

2 Densed Tuple-based Coordination Languages

This section exposes in four points the different densed tuple-based coordination languages, firstly by
presenting their primitives, and secondly the different languages. The two last points present an opera-
tional semantic based on transition systems.

2.1 Primitives

We start by defining the Bach and Dense Bach languages [12] from which the language under study in
this paper is an extension.

2.1.1 Bach and Dense Bach

The following definition formalizes how we attach a density to them.

Definition 1. LetStokenbe a enumerable set, the elements of which are subsequently called tokens and
are typically represented by the letters t and u. Define the association of a token t and a positive integer
n ∈ N as a dense token. Such an association is typically denoted ast(n). Define then the set of dense
tokens as the set SDtoken. Note that since Stoken andN are both enumerable, the set SDtoken is also
enumerable.

Intuitively, a dense token t(m) represents the simultaneous presence of m occurrences of t.As a
result,{t(m)} is subsequently used to represent the multiset{t, · · · , t} composed of these m occurrences.
Moreover, given two multisets of tokensσ and τ , we shall useσ ∪ τ to denote the multiset union of
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(T) 〈 tell(t) | σ 〉 −→ 〈 E | σ ∪{t} 〉

(A) 〈 ask(t) | σ ∪{t} 〉 −→ 〈 E | σ ∪{t} 〉

(G) 〈 get(t) | σ ∪{t} 〉 −→ 〈 E | σ 〉

(N)
t 6∈ σ

〈 nask(t) | σ 〉 −→ 〈 E | σ 〉

Figure 1: Transition rules for token-based primitives (Bach)

elements ofσ andτ . As a particular case, by slightly abusing the syntax in writing {t(m), t(n)}, we have
{t(m)} ∪ {t(n)} = {t(m), t(n)} = {t(m+ n)}. Finally, we shall useσ ⊎ {t(m)} to denote, on the one
hand, the multiset union ofσ and{t(m)}, and, on the other hand, the fact that t does not belong toσ .

Definition 2. Define the setT of the token-based primitives as the set of primitives T generated by the
following grammar:

T ::= tell(t) | ask(t) | get(t) | nask(t)

where t represents a token.

Definition 3. Define the set of dense token-based primitivesTd as the set of primitives Td generated by
the following grammar:

Td ::= tell(t(m)) | ask(t(m)) | get(t(m)) | nask(t(m))

where t represents a token and m a positive natural number.

The primitives of the Bach language are essentially the Linda ones rephrased in a constraint-like
setting. As a result, by callingstorea multiset of tokens aiming at representing the current content of
the tuple space, the execution of thetell(t) primitives amounts to enrich the store by an occurrence of
t. Theask(t) andget(t) primitives check whethert is present on the store with the latter removing one
occurrence. Dually,nask(t) tests whethert is absent from the store.

The primitives of the dense Bach language extend these primitives by simultaneously handling mul-
tiple occurrences. Accordingly,tell(t(m)) atomically putsmoccurrences oft on the store andask(t(m))
together withget(t(m)) require the presence of at leastm occurrences oft with the latter removingm of
them. Moreover,nask(t(m)) verifies that there are less thanmoccurrences oft.

These executions can be formalized by the transition steps of figures 1 and 2, where configurations
are pairs of instructions, for the moment reduced to simple primitives, coupled to the contents of a store.
Note thatE is used to denote a terminated computation. As can be seen by the above description, the
primitives of Bach are those of Dense Bach with a density of 1.Consequently, our explanation starts by
the more general rules of figure 2. Rule(Td) states that for any storeσ and any tokent with densitym,
the effect of the tell primitive is to enrich the current set of tokens bym occurrences of tokent. Note
that∪ denotes multi-set union. Rules(Ad) and(Gd) specify the effect of ask and get primitives, both
requiring the presence of at leastm occurrences oft, but the latter also consuming them. Rule(Nd)
defines the nask primitive, which tests for the absence ofm occurrences oft. Note that there might be
some provided there are less thanm. It is also worth observing that thanks to the notationσ ⊎{t(n)} one
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(Td)
m∈ N0

〈 tell(t(m)) | σ 〉 −→ 〈 E | σ ∪{t(m)} 〉

(Ad)
m∈ N0

〈 ask(t(m)) | σ ∪{t(m)} 〉 −→ 〈 E | σ ∪{t(m)} 〉

(Gd)
m∈ N0

〈 get(t(m)) | σ ∪{t(m)} 〉 −→ 〈 E | σ 〉

(Nd)
n< m

〈 nask(t(m)) | σ ⊎{t(n)} 〉 −→ 〈 E | σ ⊎{t(n)} 〉

Figure 2: Transition rules for dense token-based primitives (Dense Bach)

is sure thatt does not occur inσ and consequently that there are exactlyn occurrences oft. This does not
apply for rules(Ad) and(Gd) for which it is sufficient to assume the presence of at leastm occurrences,
allowing σ to contain others.

Figure 1 specifies the transition rules for the primitives ofthe Bach language. As expected, they
amount to the rules of Figure 2 where the densitym is taken to be 1 and the union symbol is interpreted
on multi-sets.

2.1.2 Dense Bach with distributed density

A natural extension is to replace a token by a set of tokens andto distribute the density requirements on
tokens. For instance, the primitiveask([t,u,v](6)) succeeds on a store containing one occurrence oft,
two of u and three ofv. Dually, the computation oftell([t,u,v](6)) may result in adding two occurrences
of t on the store, three ofu and one ofv. The following definitions formalize this intuition.

Definition 4. Let Snlt denote the set of non-empty sets of tokens in which, for simplicity purposes, each
token differs from the others. Such a set is typically denoted as L= [t1, . . . , tp] and is thus such that ti 6= t j

for i 6= j. Define a dense set of tokens as a set of Snlt associated with apositive integer. Such a dense set
is typically represented as L(m), with L the set of tokens and m an integer.

The distribution of the density over a set of tokens is formalized through the following distribution
function.

Definition 5. Define the distribution of tokens from dense sets of tokens tosets of tuples of dense tokens
as follows:

D([t1, · · · , tp](m)) = {(t1(m1), · · · , tp(mp)) : m1+ · · ·+mp = m}

Note that, thanks to the definition of dense tokens, we assumeabove that the mi ’s are positive integers.
For the sake of simplicity, we shall call the setD([t1, · · · , tp](m)) the distribution of m over[t1, · · · , tp].

The distribution of an integerm over a set of tokensL has the potential to express the behavior of
the extended primitives. Indeed, telling a dense set amounts to telling atomically theti(mi)’s of a tuple
defined above. Asking or getting a dense set requires to checkthat a tuple ofD([t1, · · · , tp](m)) is present
on the considered store. For the negative ask, the requirement is that none of the tuple is present. For the
ease of writing and to make this latter concept clear, we introduce the following concept of intersection.
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Definition 6. Let m be a positive integer, L= [t1, · · · , tp] be a set of tokens andσ a store. We define
D(L(m))⊓σ as the following set of tuples of dense tokens :

D(L(m))⊓σ = {(t1(m1), . . . , tp(mp)) ∈ D(L(m)) : ∀i{ti(mi)} ⊆ σ}

From an implementation point of view, it is worth observing that one may give a syntactical charac-
terization of the emptyness of such an intersection.

Definition 7. Given a storeσ and a dense set L(m), with L= [t1, · · · , tp], we denote by Max(σ ,L(m))
the tuple(t1(m1), . . . , tp(mp)) where the mi ’s denote the number of occurrences of ti in σ . Moreover, we
denote by SMax(σ ,L(m)) the sum m1+ · · ·+mp

It is easy to establish the following proposition.

Theorem 1. For any dense set of tokens L(m) and any storeσ , one hasD(L(m)) ⊓ σ = /0 iff
SMax(σ ,L(m)) < m.

Proof. Simple verification.

We are now in a position to specify the language extension handling dense sets of tokens.

Definition 8. Define the set of dense sets primitivesTdbd as the set of primitives Tdbd generated by the
following grammar:

Tdbd ::= tell(L(m)) | ask(L(m)) | get(L(m)) | nask(L(m))

where L(m) represents a dense set of tokens.

The transition steps for these primitives are defined in figure 3. As suggested above, rule(Tdbd)
specifies that telling a dense setL(m) of tokens amounts to atomically add the multiple occurrences
ti(mi)’s of the tokens of a tuple of the distribution ofm over L. Note that the selected tuple is chosen
non-deterministically, which gives to a tell primitive a non-deterministic behavior as opposed to the tell
primitives of Bach and Dense Bach. Rule(Adbd) states that asking for the dense setL(m) amounts to
testing that a tuple of the distribution ofm overL is in the store, which is technically stated through the
non-emptyness of the intersection of the distribution and the store. Rule(Gdbd) requires that the tokens
of the tuples are removed in the considered multiplicity. Finally, rule (Ndbd) specifies that negatively
askingL(m) succeeds ifm is strictly positive and no tuple of the distribution ofm overL is present on
the current store.

2.2 Languages

We are now in a position to define the languages we shall consider. The statements of these languages,
also calledagents, are defined from the tell, ask, get and nask primitives by possibly combining them by
the classical choice operator+, used among others in CCS, parallel operator (denoted by the|| symbol)
and the sequential operator (denoted by the ; symbol). The formal definition is as follows.

Definition 9. Define the Bach languageLB as the set of agents A generated by the following grammar:

A ::= T | A ; A | A || A | A + A

where T represents a token-based primitive. Define the DenseBach languageLDB similarly but by
taking dense token-based primitives Td:

Ad ::= Td | Ad ; Ad | Ad || Ad | Ad + Ad
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(Tdbd)
(t1(m1), · · · ,tp(mp)) ∈ D(L(m))

〈 tell(L(m)) | σ 〉 −→ 〈 E | σ ∪{t1(m1), · · · ,tp(mp)} 〉

(Adbd)
D(L(m))⊓σ 6= /0

〈 ask(L(m)) | σ 〉 −→ 〈 E | σ 〉

(Gdbd)
(t1(m1), · · · ,tp(mp)) ∈ D(L(m))

〈 get(L(m)) | σ ∪{t1(m1), · · · ,tp(mp)} 〉 −→ 〈 E | σ 〉

(Ndbd)
m> 0 andD(L(m))⊓σ = /0

〈 nask(L(m)) | σ 〉 −→ 〈 E | σ 〉

Figure 3: Transition rules for set of token-based primitives (Dense Bach with distributed Density)

Define the Dense Bach with distributed Density languageLDBD similarly but by taking lists of token-
based primitives Tdbd:

Adbd ::= Tdbd | Adbd ; Adbd | Adbd || Adbd | Adbd + Adbd

Subsequently, we shall consider sublanguages formed similarly but by considering only subsets of these
primitives. In that case, ifH denotes such a subset, then we shall write the induced sublanguages as
L (H ), LDB(H ), andLDBD(H ) respectively. Note that for the latter sublanguages, the tell, ask, nask
and get primitives are associated with the basic pairs described above.

2.3 Transition system

To study the expressiveness of the languages, a semantics needs to be defined. As suggested in the
previous subsections, we shall use an operational one, based on transition systems. For each transition
system, the configuration consists of agents (summarizing the current state of the agents running on the
store) and a multi-set of tokens (denoting the current stateof the store). In order to express the termination
of the computation of an agent, we extend the set of agents by adding a special terminating symbolE
that can be seen as a completely computed agent. For uniformity purpose, we abuse the language by
qualifying E as an agent. To meet the intuition, we shall always rewrite agents of the form (E;A), (E || A)
and (A || E) asA. This is technically achieved by defining the extended sets of agents asLB ∪ {E},
LDB∪{E} or LDBD∪{E} and by justifying the simplifications by imposing a bimonoidstructure.

The rules for the primitives of the languages have been givenin Figures 1 to 3. Figure 4 details the
usual rules for sequential composition, parallel composition, interpreted in an interleaving fashion, and
CCS-like choice.

2.4 Observables and operational semantics

We are now in a position to define what we want to observe from the computations. Following previous
work by some of the authors (see eg [7, 8, 13–15]), we shall actually take an operational semantics
recording the final state of the computations, this being understood as the final store coupled to a mark
indicating whether the considered computation is successful or not. Such marks are respectively denoted
asδ+ (for the successful computations) andδ− (for failed computations).
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(S)
〈A | σ〉 −→ 〈A′ | σ ′〉

〈A ; B | σ〉 −→ 〈A′ ; B | σ ′〉

(P)
〈A | σ〉 −→ 〈A′ | σ ′〉

〈A || B | σ〉 −→ 〈A′ || B | σ ′〉
〈B || A | σ〉 −→ 〈B || A′ | σ ′〉

(C)
〈A | σ〉 −→ 〈A′ | σ ′〉

〈A + B | σ〉 −→ 〈A′ | σ ′〉
〈B + A | σ〉 −→ 〈A′ | σ ′〉

Figure 4: Transition rules for the operators

L ′

L

O ′
s

Os

C

S ′

Dc

S

Figure 5: Basic embedding.

Definition 10.

1. Define the set of stores Sstore as the set of finite multisetswith elements from Stoken.

2. Letδ+ and δ− be two fresh symbols denoting respectively success and failure. Define the set of
histories Shist as the cartesian product Sstore×{δ+,δ−}.

3. For each languageLI of the languagesLB, LDB, LDBD, define the operational semanticsOI :
LI → P(Shist) as the following function: for any agent A∈ L

O(A) = {(σ ,δ+) : 〈A| /0〉 →∗ 〈E|σ〉}

∪{(σ ,δ−) : 〈A| /0〉 →∗ 〈B|σ〉9,B 6= E}

3 Comparison of Dense Bach and Dense Bach with Distributed Density

This section focusses on the comparison between the Dense Bach language and the newly introduced
Dense Bach with Distrbuted Density language.

3.1 Modular embedding

A natural way to compare the expressive power of two languages is to determine whether all programs
written in one language can be easily and equivalently translated into the other language, where equiva-
lent is intended in the sense of conserving the same observable behaviors.

According to this intuition, Shapiro introduced in [17] a first notion of embedding as follows. Con-
sider two languagesL andL ′. Assume given the semantics mappings (Observation criteria) S : L →
Os andS ′ : L ′ → O ′

s, whereOs andO ′
s are on some suitable domains. ThenL canembedL ′ if

there exists a mappingC (coder) from the statements ofL ′ to the statements ofL , and a mapping
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Dc (decoder) fromOs to O ′
s, such that the diagram of Figure 5 commutes, namely such thatfor every

statementA∈ L ′ : Dc(S (C (A))) = S ′(A).
This basic notion of embedding turns out however to be too weak since, for instance, the above

equation is satisfied by any pair of Turing-complete languages. de Boer and Palamidessi hence proposed
in [1] to add three constraints on the coderC and on the decoderDc in order to obtain a notion ofmodular
embedding usable for concurrent languages:

1. Dc should be defined in an element-wise way with respect toOs, namely for some appropriate
mappingDel

∀X ∈ Os : Dc(X) = {Del(x) | x∈ X} (P1)

2. the coderC should be defined in a compositional way with respect to the sequential, parallel and
choice operators:

C (A ; B) = C (A) ; C (B)
C (A || B) = C (A) || C (B)

C (A + B) = C (A) + C (B)
(P2)

3. the embedding should preserve the behavior of the original processes with respect to deadlock,
failure and success (termination invariance):

∀X ∈ Os,∀x∈ X : tm′(Del(x)) = tm(x) (P3)

wheretm andtm’ extract the termination information from the observables of L andL ′, respec-
tively.

An embedding is then calledmodular if it satisfies propertiesP1, P2, andP3. The existence of a
modular embedding fromL ′ into L is subsequently denoted byL ′ ≤ L . It is easy to prove that≤ is a
pre-order relation. Moreover ifL ′ ⊆L thenL ′ ≤L that is, any language embeds all its sublanguages.
This property descends immediately from the definition of embedding, by settingC andDc equal to the
identity function.

3.2 Formal propositions and proofs

Let us now turn to the formal proofs. As a first result, thanks to the fact that any language contains its
sublanguages, a number of modular embeddings are directly established. In subsequent proofs, this is
referred to bylanguage inclusion.

Proposition 1. LDBD( ψ)≤ LDBD( χ), for any subsets ofψ ,χ of primitives such thatψ ⊆ χ .

A second observation is that Dense Bach primitives are deduced from the primitives of Dense Bach
with Distributed Density by taking dense sets with only one token, the density being the same. As
a result Dense Bach sublanguages are embedded in the corresponding Dense Bach with Distributed
Density sublanguages.

Proposition 2. LDB( χ)≤ LDBD( χ), for any subset ofχ of primitives.

Proof. Immediate by defining the coder as follows:

C (tell(t(m))) = tell([t](m))
C (ask(t(m))) = ask([t](m))

C (get(t(m))) = get([t](m))
C (nask(t(m))) = nask([t](m))
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Proposition 3. LDB(tell) andLDBD(tell) are equivalent.

Proof. Indeed, thanks to proposition 2,LDB(tell) ≤ LDBD(tell). Furthermore, as to each distri-
bution of tokens from dense set of tokensD([t1, · · · , tp](m)) is associated a finite set of tuple of
dense tokens{(t1(m1), · · · , tp(mp)) : m1 + · · · + mp = m}, by coding anytell(L(m)) primitive as
tell(t1(m1)) ; · · · ; tell(tp(mp)) primitives, and by using the identity as decoder, one establishes that
LDBD(tell)≤ LDB(tell).

As a result of the expressiveness hierarchy of [12], it also comes that both languagesLDB(ask,tell)
andLDB(nask,tell) are strictly more expressive thanLDBD(tell) since both have been established strictly
more expressive thanLDB(tell).

Let us now compareLDB(ask,tell) with its distributed dense counterpart.

Proposition 4. LDB(ask,tell)< LDBD(ask,tell)

Proof. On the one hand,LDB(ask,tell) ≤ LDBD(ask,tell), by proposition 2. On the other hand,
LDBD(ask,tell) 6≤ LDB(ask,tell) may be established by contradiction. The proof proceeds by exploit-
ing the inability ofLDB(ask,tell) to atomically test the presence of two distinct tokensa andb. Assume
thus the existence of a coderC : LDBD(ask,tell) → LDB(ask,tell) and considerAB= ask([a,b](2)).
Let us prove that its coder is empty, which is absurd since, bydefinition 9, it should contain at least
one primitive. To that end, one may assume thatC (AB) is in normal form [6] and thus is written as
tell(t1);A1 + · · ·+ tell(tp);Ap+ ask(u1);B1 + · · ·+ ask(uq);Bq, whereti andu j denote the tokenti and
u j associated to a density. In this expression, we will establish that there is no alternative guarded by
a tell(ti) operation, and no alternative guarded by aask(u j) operation either, in which caseC (AB) is
empty.

Let us first establish by contradiction that there is no alternative guarded by atell(ti) operation.
Assume there is one, say guarded bytell(ti). ThenD = 〈C (AB)| /0〉 → 〈Ai|ti〉 is a valid computation
prefix of C (AB). It should deadlocks afterwards sinceO(AB) = ( /0,δ−). HoweverD is also a valid
computation prefix ofC (AB+ tell([a](1))). Hence,C (AB+ tell([a](1))) admits a failing computation
which contradicts the fact thatO(AB+ tell([a](1))) = ({a},δ+).

Secondly we establish that there is also no alternative guarded by anask(u j ) operation. To that end,
let us first consider two auxiliary computations: asO(tell([a](1))) = ({a},δ+), any computation of
C (tell([a](1))) starting in the empty store succeeds. Let〈C (tell([a](1)))| /0〉 → ·· · → 〈E|{a1, . . . ,am}〉
be such a computation. Similarly, let〈C (tell([b](1)))| /0〉 → ·· · → 〈E|{b1, . . . ,bn}〉 be one computa-
tion of C (tell([b](1))). The proof of the claim proceeds in two steps. First let us prove that none
of the ui ’s belong to{a1, . . . ,am}. By contradiction, assume thatui = ak for somek and thatd is
the density associated toui , namely, ui = ui(d). Let us observe that, since it is inLDB(ask,tell),
the considered computation ofC (tell([a](1))) can be repeated sequentially, as many times as needed.
As a result, by usingAd to denote the sequential composition ofd instances ofA, the sequence
D′ = 〈C (tell([a](1))d;AB)| /0〉 → ·· · → 〈AB|{ad

1, . . . ,a
d
m}〉 → 〈B j |{ad

1, . . . ,a
d
m}〉 is a valid computation

prefix ofC (tell([a](1))d;AB), which can only be continued by failing suffixes. HoweverD′ induces the
following computation prefixD′′ for tell([a](1))d;(AB+ask([a](1))) which admits only successful com-
putations: D′′ = 〈C (tell([a](1))d;(AB+ ask([a](1))))| /0〉 → ·· · → 〈AB+ ask([a](1))|{ad

1 , . . . ,a
d
m}〉 →

〈B j |{ad
1, . . . ,a

d
m}〉. The proof proceeds similarly in the caseu j ∈ b1, . . . ,bn for some j ∈ 1, . . . ,q by then

consideringtell([b](1))d;ABandtell([b](1))d;(AB+ask([b](1))).
Finally, the fact that the u′is do not belong to {a1, . . . ,am} ∪ {b1, . . . ,bn} induces a

contradiction. Indeed, if this is the case then〈C (tell([a](1)); tell([b](1));AB)| /0〉 → ·· · →
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〈tell([b](1));AB)|{a1, . . . ,am}〉 → ·· · → 〈AB|{a1, . . . ,am,b1, . . . ,bn}〉 6→ is a valid failing computation
prefix of C (tell([a](1)); tell([b](1));AB) whereastell([a](1)); tell([b](1));AB has only one successful
computation. As a conclusion,C (AB) is equivalent to an empty statement, which is absurd by defini-
tion 9.

Symmetrically,LDB(nask,tell) is strictly less expressive thanLDBD(nask,tell).

Proposition 5. LDB(nask,tell)< LDBD(nask,tell).

Proof. On the one hand,LDB(nask,tell) ≤ LDBD(nask,tell) holds by proposition 2. On the other hand,
LDBD(nask,tell) 6≤ LDB(nask,tell) is proved by contradiction, assuming the existence of a coder C . The
proof proceeds as in proposition 4 but this time by exploiting the inability ofLDB(nask,tell) to atomically
test the absence of two distinct tokensa andb.

LDBD(nask,tell) andLDB(ask,tell) are not comparable with each other, as well asLDBD(ask,tell)
with regards toLDB(nask,tell).

Proposition 6.

(i) LDBD(nask,tell) 6≤ LDB(ask,tell)
(ii) LDB(ask,tell) 6≤ LDBD(nask,tell)

(iii ) LDBD(ask,tell) 6≤ LDB(nask,tell)
(iv) LDB(nask,tell) 6≤ LDBD(ask,tell)

Proof. (i) Otherwise we haveLDB(nask,tell) ≤ LDB(ask,tell) which has been proved impossible in
[12]. (ii) By contradiction, considerA = tell(t(1)) ; ask(t(1))). One hasO(A) = {({t(1)},δ+)}.
Hence, byP3, C (A) succeeds whereas we shall establish that it has failing computations. Indeed,
sinceO(ask(t(1))) = {( /0,δ−)}, any computation ofC (ask(t(1))) starting on the empty store fails.
As C (ask(t(1))) is composed of nask and tell primitives, this can only occur by having a nask prim-
itive preceded by a tell primitive. As enriching the initialcontent of the store leads to the same re-
sult, any computation starting on any (arbitrary) store fails. As a consequence, even ifC (tell(t(1)))
has a successful computation, this computation cannot be continued by a successful computation of
C (ask(t(1))). Consequently any computation ofC (tell(t(1));ask(t(1))) fails, which produces a contra-
diction. (iii) Otherwise we would haveLDB(ask,tell)≤ LDB(nask,tell) which has been proved impossi-
ble in [12]. (iv) By contradiction, considerA = tell(t(1)) ; nask(t(1))). One hasO(A) = {({t},δ−)}.
By P3, C (A) fails, whereas we shall establish that it has a successful computation. Indeed, since
O(tell(t(1))) = {({t(1)},δ+)}, any computation ofC (tell(t(1))) starting on the empty store is suc-
cessful. Similarly, it follows fromO(nask(t(1))) = {( /0,δ+)} that any computation ofC (nask(t(1)))
starting on the empty store is successful, and, consequently, is any computation starting from any store,
sinceC (nask(t(1))) is composed of ask and tell primitives. Summing up, any (successful) computation
of C (tell(t)) starting on the empty store can be continued by a (successful) computation ofC (nask(t)),
which leads to the contradiction.

LDBD(nask,tell) andLDBD(ask,tell) are not comparable with each other, as well asLDBD(nask,tell)
with regards toLDB(ask,nask,tell).

Proposition 7.

(i) LDBD(nask,tell) 6≤ LDBD(ask,tell)
(ii) LDBD(ask,tell) 6≤ LDBD(nask,tell)

(iii ) LDB(ask,nask,tell) 6≤ LDBD(nask,tell)
(iv) LDBD(nask,tell) 6≤ LDB(ask,nask,tell)
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Proof. (i) OtherwiseLDB(nask,tell)≤ LDBD(ask,tell), which contradicts proposition 6(iv).(ii) and(iii)
OtherwiseLDB(ask,tell)≤LDBD(nask,tell), which contradicts proposition 6(ii).(iv) The proof proceeds
as in proposition 5(ii). The presence of the ask primitive inLDB does not modify the reasoning, as it
does not destroy elements and so does not modify the state of the storeσ .

Symmetrically,LDB(get,tell) andLDBD(ask,tell) are not comparable with each other, asLDB(get,tell)
andLDBD(nask,tell) are not comparable with each other.

Proposition 8.
(i) LDB(get,tell) 6≤ LDBD(ask,tell)
(ii) LDBD(ask,tell) 6≤ LDB(get,tell)

(iii ) LDB(get,tell) 6≤ LDBD(nask,tell)
(iv) LDBD(nask,tell) 6≤ LDB(get,tell)

Proof. (i) By contradiction, considertell(t(1)) ; get(t(1)). One hasO(tell(t(1)) ; get(t(1))) =
{( /0,δ+)}. By P2 andP3, any computation ofO(C (tell(t(1))) ; C (get(t(1)))) is thus successful. Since
C (get(t(1))) is composed of ask and tell primitives only and since ask and tell primitives do not de-
stroy elements, at least one computation ofO(C (tell(t(1))) ; C (get(t(1))) ; C (get(t(1)))) is successful.
However,O(tell(t(1)) ; get(t(1)) ; get(t(1))) = {( /0,δ−)}, which provides the contradiction.

(ii) The proof is established by contradiction. Intuitively,LDB(get,tell) is unable to atomically test
the presence ofa andb. Let us thus considerAB= ask([a,b](2)) and prove that its coder has a successful
computation. This leads to a contradiction sinceAB has just one failing computation. To that end, one
may assume thatC (AB) is in normal form (see [6]) and thus is written astell(t1);A1+ · · ·+ tell(tp);Ap+
get(u1);B1+ · · ·+get(uq);Bq, whereti andu j denote the tokenti andu j associated to a density.

The proof proceeds by establishing that (I) there is no alternative guarded by atell(ti) operation,
and (II) there is no alternative guarded by aget(u j ) operation. In which case,C (AB) is equivalent to an
empty statement, which is not possible in view of definition 9.

CASE I: there is no alternative guarded by atell(ti) operation. Otherwise,D = 〈C (AB)| /0〉 →
〈Ai |{ti}〉 would be a valid computation prefix ofC (AB) which should deadlocks afterwards since
O(AB) = {( /0,δ−)}. HoweverD is also a valid computation prefix ofC (AB+ tell([a](1))). Hence,
C (AB+ tell([a](1))) admits a failing computation which contradicts the fact that O(AB+ tell([a](1))) =
({a},δ+).

CASE II: there is no alternative guarded by aget(u j ) operation. To that end, let us first consider two
auxiliary computations: asO(tell([a](1))) = {({a},δ+)}, any computation ofC (tell([a](1))) starting
in the empty store succeeds. Let〈C (tell([a](1)))| /0〉 → ·· · → 〈E|{a1, . . . ,am}〉 be such a computation.
Similarly, let 〈(tell([b](1)))| /0〉 → ·· · → 〈E|{b1, . . . ,bn}〉 be one computation ofC (tell([b](1))). As
these two computations start by assuming no token on the store and sinceLDB(get,tell) does not con-
tain negative tests, it is easy to verify that they can be put sequentially so as to establish the following
computations:

〈C (tell([a](1)); tell([b](1)))| /0〉 → ·· · → 〈C (tell([b](1)))|{a1, . . . ,am}〉

→ ·· · → 〈E|{a1, . . . ,am}∪{b1, . . . ,bn}〉

〈C (tell([b](1)); tell([a](1)))| /0〉 → ·· · → 〈C (tell([a](1)))|{b1, . . . ,bn}〉

→ ·· · → 〈E|{a1, . . . ,am}∪{b1, . . . ,bn}〉

As C (tell([a](1)); tell([b](1));AB) has a successful computation, one of theget(ui) succeeds, and, con-
sequently, one has{u j} ⊆ {a1, . . . ,am}∪{b1, . . . ,bn} for some j. Assumeu j = ak for k and letd be the
density associated tou j , namely,u j = ak(d). Then

D′ = 〈C (tell([a](1));AB)| /0〉 → ·· · → 〈C (AB)|{a1, . . . ,am}〉 → 〈B j |{a1, . . . ,am}\{u j}〉
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is a valid computation prefix ofC (tell([a](1));AB). It can only be continued by failing suf-
fixes since tell([a](1));AB fails. However, this induces the following computation prefix D′′

for C (tell([a](1));(AB+ ask([a](1)))) and thus a failing computation whereastell([a](1));(AB+
ask([a](1))) only admits a successful computation:

D′′ = 〈C (tell([a](1));(AB+ask([a](1))))| /0〉 → ·· · → 〈AB+ask([a](1))|{a1, . . . ,am}〉

→ 〈B j |{a1, . . . ,am}\{u j}〉.

The proof proceeds similarly in the caseu j = bk for somek by then consideringtell([b](1));AB and
tell([b](1));(AB+ ask([b](1))). (iii) Otherwise,LDB(nask,tell) would be embedded inLDB(get,tell),
which has been prooved impossible in proposition 12(iv) of [12]. (iv) Otherwise,LDB(ask,tell) would
be embedded inLDBD(nask,tell) which contradicts proposition 6(ii).

Let us now prove thatLDB(get,tell) is not comparable withLDBD(ask,nask,tell).

Proposition 9.

(i) LDB(get,tell) 6≤ LDBD(ask,nask,tell)
(ii) LDBD(ask,nask,tell) 6≤ LDB(get,tell)

Proof. (i) By contradiction, considertell(t(1)) ; get(t(1)), for which O((tell(t(1)) ; get(t(1))) =
{( /0,δ+)}. Hence, byP2 and P3, any computation ofC (tell(t(1))) ; C (get(t(1))) is successful.
Such a computation is composed of a computation forC (tell(t(1))) followed by a computation for
C (get(t(1))). As the latter is composed of ask, nask, and tell primitives which do not destroy elements
on the store, the latter computation can be repeated step by step which yields a successful computation
for C (tell(t(1))) ; (C (get(t(1))) || C (get(t(1)))). However,O(tell(t(1)) ; (get(t(1)) || get(t(1))) =
{( /0,δ−)}, which produces the announced contradiction.(ii) Otherwise,LDB(nask,tell) would be em-
bedded inLDB(get,tell) which has been prooved impossible in proposition 12(iv) of [12].

Let us now include the get primitive in the Dense Bach with Distributed Density language. We first
prove thatLDBD(get,tell) is embedded inLDBD(ask,get,tell), but is not embedded inLDBD(ask,tell).

Proposition 10. LDBD(get,tell)≤ LDBD(ask,get,tell) andLDBD(get,tell) 6≤ LDBD(ask,tell)

Proof. (i) One hasLDBD(get,tell) ≤ LDBD(ask,get,tell) by language inclusion.(ii) By contradiction,
considerA = tell([t](1)) ; get([t](1)). One hasO(A) = {( /0,δ+)}. By P2 andP3, any computation of
O(C (tell([t](1))) ; C (get([t](1)))) is thus successful. Such a computation is composed of a computation
for C (tell([t](1))) followed by a computation forC (get([t](1))). As C (get([t](1))) is composed of ask
and tell primitives and since ask and tell primitives do not destroy elements, this latter computation can be
repeated, which yields successful computations forO(C (tell([t](1))) ; C (get([t](1))) ; C (get([t](1)))).
However,O(tell([t](1)) ; get([t](1)) ; get([t](1))) = {( /0,δ−)}, which leads to the contradiction.

Let us now establish thatLDB(get,tell) is strictly less expressive thanLDBD(get,tell).

Proposition 11. LDB(get,tell)< LDBD(get,tell)

Proof. On the one hand,LDB(get,tell) ≤ LDBD(get,tell) holds by proposition 2. On the other hand,
LDBD(get,tell) 6≤ LDB(get,tell) may be proved exactly as in proposition 8(ii), where we replace any
occurrence of ask([a,b](2)) by get([a,b](2)).
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In order to use once more the reasoning of proposition 8(ii),we now prove thatLDBD(ask,tell) is not
comparable withLDB(nask,get,tell).

Proposition 12.

(i) LDBD(ask,tell) 6≤ LDB(nask,get,tell)
(ii) LDB(nask,get,tell) 6≤ LDBD(ask,tell)

Proof. (i) The proof proceeds as in proposition 8(ii), by constructinga successful coded computation
for the same failing agentask([a,b](2)) with the alternatives guarded by a nask primitive of the nor-
mal form of the coded version treated as the alternatives guarded by a tell primitive. (ii) Otherwise
LDB(nask,tell)≤ LDBD(ask,tell) which contradicts proposition 6(iv).

We can now prove thatLDBD(get,tell) is not comparable with respectivelyLDB(nask,tell),
LDBD(nask,tell), LDB(nask,get,tell),LDBD(ask,nask,tell) andLDB(ask,nask,tell).

Proposition 13.

(i) LDBD(get,tell) 6≤ LDB(nask,tell)
(ii) LDB(nask,tell) 6≤ LDBD(get,tell)
(iii ) LDBD(get,tell) 6≤ LDBD(nask,tell)
(iv) LDBD(nask,tell) 6≤ LDBD(get,tell)
(v) LDBD(get,tell) 6≤ LDB(nask,get,tell)

(vi) LDB(nask,get,tell) 6≤ LDBD(get,tell)
(vii) LDBD(get,tell) 6≤ LDBD(ask,nask,tell)
(viii) LDBD(ask,nask,tell) 6≤ LDBD(get,tell)
(ix) LDBD(get,tell) 6≤ LDB(ask,nask,tell)
(x) LDB(ask,nask,tell) 6≤ LDBD(get,tell)

Proof. (i) Indeed, otherwise we haveLDB(ask,tell)≤LDB(nask,tell) which has been proved impossible
in [12]. (ii) By contradiction, considerA = tell(t(1)) ; nask(t(1)), for which O(A) = {({t(1)},δ−)}.
Then, byP2 andP3, any computation ofC (tell(t(1))) ; C (nask(t(1))) must fail whereas we shall es-
tablish thatC (tell(t(1))) ; C (nask(t(1))) has a successful computation. Indeed, let us observe that
O(tell(t(1))) = {({t(1)},δ+)} andO(nask(t(1))) = {( /0,δ+)}. For both cases, byP3, any computa-
tion of C (tell(t(1))) andC (nask(t(1))) starting on the empty store is successful. Consequently, since
C (tell(t(1))) and C (nask(t(1))) are composed of get and tell primitives, so are all of their compu-
tations starting from any store. Therefore, any (successful) computation ofC (tell(t(1))) starting on
the empty store can be continued by a (successful) computation of C (nask(t(1))), which leads to the
contradiction. (iii) Otherwise we haveLDB(ask,tell) ≤ LDBD(nask,tell) which contradicts proposition
6(ii). (iv) Otherwise we haveLDB(nask,tell) ≤ LDBD(get,tell) which contradicts (ii) above.(v) Sim-
ilar to proposition 11. (vi) OtherwiseLDB(nask,tell) ≤ LDBD(get,tell) which contradicts (ii) above.
(vii) By contradiction. Let us first observe thatO(tell([t](1)) ; get([t](1))) = {( /0,δ+)}. By P2 and
P3 any computation of(C (tell([t](1))) ; C (get([t](1)))) starting in the empty store is thus success-
ful. By repeating step by step the computation ofC (get([t](1))), this leads to a successful compu-
tation of (C (tell([t](1))) ; (C (get([t](1))) || C (get([t](1))))) starting in the empty store. However,
O(tell([t](1)) ; (get([t](1)) || get([t](1)))) = {( /0,δ−)}, which leads to the contradiction.(viii) Oth-
erwise LDBD(nask,tell) ≤ LDBD(get,tell) which contradicts proposition (iv) above.(ix) Otherwise
LDBD(get,tell) ≤ LDBD(ask,nask,tell) which contradicts (vii) above.(x) OtherwiseLDB(nask,tell) ≤
LDBD(get,tell) which contradicts (ii) above.

Let us now establish thatLDBD(nask,tell) andLDB(ask,nask,tell) are strictly less expressive than
LDBD(ask,nask,tell).
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Proposition 14.

(i) LDBD(nask,tell)< LDBD(ask,nask,tell)
(ii) LDB(ask,nask,tell)< LDBD(ask,nask,tell)

Proof. (i) By sublanguage inclusion, one hasLDBD(nask,tell) ≤ LDBD(ask,nask,tell). Moreover, if we
had LDBD(ask,nask,tell) ≤ LDBD(nask,tell), then we would haveLDBD(ask,tell) ≤ LDBD(nask,tell),
which contradicts proposition 7(ii).

(ii) Let us thus proceed by contradiction by assuming the existence of a coderC from
LDBD(ask,nask,tell) to LDB(ask,nask,tell). Let n be the cumulative occurrences of tokens innaskprim-
itives ofC (tell([a](1))).

As C (tell([a](1))) has only successful computations, letSa be the store resulting from one of them.
Moreover, as a matter of notation, let the constructionA||q denote the parallel composition ofq copies
of A. As (tell([b](1)))||(n+2) ; tell([a](1))) succeeds as well, letS′b denote the store resulting from one
successful computation of its coding. Consider finallyABs= ask([a,b](n+4)) with the intuitive aim of
requesting onea with n+3 copies ofb. ConsiderC (ABs) in its normal form:

tell(t1) ; A1+ · · ·+ tell(tp) ; Ap

+ask(u1) ; B1+ · · ·+ask(uq) ; Bq

+nask(v1) ; C1+ · · ·+nask(vr ) ; Cr

As in proposition 5(ii), it is possible to establish that there are no alternatives guarded bytell(ti) and
nask(v j ) primitives.

Let us prove that{u1, · · · ,uq} ∩ (Sa ∪S′b) = /0. This is done in two steps by establishing that (1)
{u1, · · · ,uq}∩Sa = /0, and that (2){u1, · · · ,uq}∩S′b = /0.

First let us prove that{u1, · · · ,uq}∩Sa = /0. Assumeui ∈ Sa and letd be the density associated toui ,
namely,ui = ui(d). Let us observe that each step of the considered computationof C (tell([a](1))) can
be repeated in turn, in as many parallel occurences of it as needed, so that

P= 〈C (tell([a](1))||d ; ABs)| /0〉

→ ·· · → 〈ABs|∪d
k=1 Sa〉

→ 〈Bi|(∪
d
k=1Sa)〉

is a valid computation prefix ofC (tell([a](1))||q ; ABs), which can only be continued by failing suf-
fixes. HoweverP induces the following computation prefixP′ for C (tell([a](1))||q ; (ABs+tell([a](1))))
which admits only successful computations:

P′ = 〈C (tell([a](1))||d ; (ABs+ tell([a](1))))| /0〉

→ ·· · → 〈C (ABs+ tell([a](1)))|∪d
k=1 Sa〉

→ 〈Bi|(∪
d
k=1Sa)〉

leading to the contradiction.
Secondly, the proof that{u1, · · · ,uq}∩S′b = /0 is established similarly by consideringS′b instead ofSa

andtell([b](1)) instead oftell([a](1)).

LDBD(ask,tell) is strictly less expressive thanLDBD(ask,nask,tell).

Proposition 15. LDBD(ask,tell)< LDBD(ask,nask,tell)
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Proof. On the one hand,LDBD(ask,tell) ≤ LDBD(ask,nask,tell) results from language inclusion. On
the other hand, one hasLDBD(ask,nask,tell) 6≤ LDBD(ask,tell) since otherwiseLDBD(nask,tell) ≤
LDBD(ask,tell), which contradicts proposition 7(i).

Symmetrically to proposition 12(i) and 12(ii),LDB(nask,get,tell) is not comparable with
LDBD(nask,tell).

Proposition 16.

(i) LDB(nask,get,tell) 6≤ LDBD(nask,tell)
(ii) LDBD(nask,tell) 6≤ LDB(nask,get,tell)

Proof. (i) Otherwise,LDB(ask,tell)≤ LDBD(nask,tell) which contradicts proposition 6(ii).
(ii) The proof proceeds by contradiction, similarly to the proofs of LDBD(nask,tell) 6≤

LDB(ask,nask,tell) of proposition 7(iv), which itself extends that ofLDBD(nask,tell) 6≤ LDB(nask,tell)
of proposition 5(ii).

LDB(nask,get,tell) is not comparable withLDBD(ask,nask,tell).

Proposition 17.

(i) LDBD(ask,nask,tell) 6≤ LDB(nask,get,tell)
(ii) LDB(nask,get,tell) 6≤ LDBD(ask,nask,tell)

Proof. (i) Otherwise,LDBD(ask,tell)≤ LDB(nask,get,tell) which contradicts proposition 12(i).(ii) Re-
sulting from proposition 9(i).

LDBD(ask,nask,tell) is strictly less expressive thanLDBD(ask,nask,get,tell).

Proposition 18. LDBD(ask,nask,tell)< LDBD(ask,nask,get,tell)

Proof. On the one hand,LDBD(ask,nask,tell) ≤ LDBD(ask,nask,get,tell) results from language inclu-
sion. On the other hand,LDBD(ask,nask,get,tell) 6≤ LDBD(ask,nask,tell). Otherwise,LDBD(get,tell) ≤
LDBD(ask,nask,tell), which contradicts proposition 13(vii).

LDBD(get,tell) is strictly less expressive thanLDBD(nask,get,tell).

Proposition 19. LDBD(get,tell)< LDBD(nask,get,tell)

Proof. On the one hand,LDBD(get,tell) ≤ LDBD(nask,get,tell) results from language inclusion. On
the other hand,LDBD(nask,get,tell) 6≤ LDBD(get,tell) is established by contradiction. Consider
tell([t](1)) ; nask([t](1)), for which O(tell([t](1)) ; nask([t](1)) = {({t(1)},δ−)}. Hence, byP2 and
P3, C (tell([t](1))) ; C (nask([t](1))) fails. The contradiction comes then from the fact that at least one
computation ofC (tell([t](1))) ; C (nask([t](1))) starting on the empty store is successful. Indeed, as
O(tell([t](1))) = {({t(1)},δ+)}, any computation ofC (tell([t](1))) starting on the empty store suc-
ceeds. Similarly, any computation ofC (nask([t](1))) starting on the empty store succeeds. Moreover,
asC (nask([t](1))) is composed of get and tell primitives only, for any storeσ , C (nask([t](1))) admits
at least one successful computation starting onσ . It follows that any computation ofC (tell([t](1)))
starting on the empty store can be continued by a (successful) computation ofC (nask([t](1))), which
leads to the announced contradiction.
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Finally, LDB(ask,nask,get,tell) can be proved strictly less expressive thanLDBD(ask,nask,get,tell).

Proposition 20. LDB(ask,nask,get,tell)< LDBD(ask,nask,get,tell)

Proof. On the one hand,LDB(ask,nask,get,tell) ≤ LDBD(ask,nask,get,tell) is directly deduced from
proposition 2. On the other hand, if one hadLDBD(ask,nask,get,tell) ≤ LDB(ask,nask,get,tell) then
LDBD(get,tell)≤ LDB(nask,get,tell) would hold, which contradicts proposition 13(v).

4 Conclusion

This paper is written in the continuity of our previous research on the expressiveness of Linda-like
languages. It has presented an extension of our Dense Bach language, that had promoted the notions
of density and dense tokens. The new language, called Dense Bach with Distributed Density, proposes to
distribute the density on a finite list of tokens manipulatedby the four classical primitives of the language.
Technically this is achieved by associating a positive number, called density, to a finite list of tokens and
to distribute this density among the tokens of the list.

Our work builds upon previous work by some of the authors [7, 8, 13–15]. We have essentially fol-
lowed the same lines and in particular have used de Boer and Palamidessi’s notion of modular embedding
to compare the families of sublanguages of Dense Bach and Dense Bach with Distributed Density. Ac-
cordingly, we have established a gain of expressivity, namely that Dense Bach with Distributed Density
is strictly more expressive than Dense Bach and, consequently, in view of the results of [12], strictly
more expressive than the Bach and Linda languages.

Our work has similarities but also differences with severalwork on the expressiveness of Linda-
like languages. Compared to [19] and [20], it is worth observing that a different comparison criteria
is used to compare the expressiveness of languages. Indeed,in these pieces of work, the comparison
is performed on (i) the compositionality of the encoding with respect to parallel composition, (ii) the
preservation of divergence and deadlock, and (iii) a symmetry condition. Moreover, as will be observed
by the careful reader, we have taken a more liberal view with respect to the preservation of termination
marks in requiring these preservations on the store resulting from the execution from the empty store of
the coded versions of the considered agents and not on the same store. In particular, these ending stores
are not required to be of the formσ ∪σ (where∪ denotes multi-set union) if this is so for the stores
resulting from the agents themselves.

In [2], nine variants of theL (ask,nask,get,tell) language are studied. They are obtained by varying
both the nature of the shared data space and its structure. Rephrased in the setting of [1], this amounts
to considering different operational semantics. In contrast, in our work we fix an operational semantics
and compare different languages on the basis of this semantics. In [11], a process algebraic treatment
of a family of Linda-like concurrent languages is presented. Again, different semantics are considered
whereas we have sticked to one semantics and have compared languages on this basis.

In [10], a study of the absolute expressive power of different variants of Linda-like languages has
been made, whereas we study the relative expressive power ofdifferent variants of such languages (using
modular embedding as a yard-stick and the ordered interpretation of tell).

It is worth observing that [2, 10, 11, 19, 20] do not deal with anotion of density attached to tuples.
In contrast, [3] and [4] decorate tuples with an extra field inorder to investigate how probabilities and
priorities can be introduced in the Linda coordination model. Different expressiveness results are estab-
lished in [3] but on an absolute level with respect to Turing expressiveness and the possibility to encode
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the Leader Election Problem. Our work contrasts in several aspects. First, we have established rela-
tive expressiveness results by comparing the sublanguagesof two families. Moreover, some of these
sublanguages incorporate thenaskprimitives, which strictly increases the expressiveness.Finally, the
introduction of density resembles but is not identical to the association of weights to tuples. Indeed, in
contrast to [3, 4] we do not modify the tuples on the store and do not modify the matching function so
as to retrieve the tuple with the highest weight. In contrast, we modify the tuple primitives so as to be
able to atomically put several occurrences of a tuple on the store and check for the presence or absence
of a number of occurrences. We have also introduced a distribution of a density among the tokens of
a set, which results in adding a new non-deterministic behavior to the tell, ask and get primitives. As
can be appreciated by the reader through the comparison of Bach, Dense Bach and Dense Bach with
Distributed Density, this facility of handling atomicallyseveral occurrences produces a real increase of
expressiveness. One may however naturally think of encoding the number of occurrences of a tuple
as an additional weight-like parameter. It is neverthelessnot clear how our primitives tackling at once
several occurrences can be rephrased in Linda-like primitives and how the induced encoding would still
fulfills the requirements of modularity. Moreover, in contrast to Linda-like language, due to the non-
determinism of the get and tell primitives, it is not clear how to code ask primitives by get and tell ones
in our distributed density framework. This will be the subject for future research.

In [18], Viroli and Casadei propose a stochastic extension of the Linda framework, with a notion of
tuple concentration, similar to the weight of [3] and [4] andour notion of density. The syntax of this tuple
space is modeled by means of a calculus, with an operational semantics given as an hybrid CTMC/DTMC
model. This operational semantics describes the behavior of tell, ask and get like primitives but does
not consider a nask like primitive. Moreover, no expressiveness results are established and there is no
counterpart for non-determinism arising from the distribution of density on tokens.

These three last pieces of work tackle probabilistic extensions of Linda-like languages. As a further
and natural step in our research, we aim at studying how our notion of density can be the basis of such
probabilistic extensions. As our work also relies on the possibility to atomically put several occurrences
of tokens and test for their presence or absence, we will alsoexamine in future work how Dense Bach
with Distributed Density compares with the Gamma language.
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