
Natallia Kokash and António Ravara (Eds.): 11th International Workshop on
Foundations of Coordination Languages and Self Adaptation(FOCLASA’12)
EPTCS 91, 2012, pp. 31–44, doi:10.4204/EPTCS.91.3

c© G. Ciobanu & R. Horne
This work is licensed under the
Creative Commons Attribution License.

A Provenance Tracking Model for Data Updates

Gabriel Ciobanu Ross Horne
Romanian Academy, Institute of Computer Science,

Blvd. Carol I, no. 8, 700505 Iaşi, Romania

gabriel@info.uaic.ro ross.horne@gmail.com

For data-centric systems, provenance tracking is particularly important when the system is open and
decentralised, such as the Web of Linked Data. In this paper,a concise but expressive calculus
which models data updates is presented. The calculus is usedto provide an operational semantics
for a system where data and updates interact concurrently. The operational semantics of the calculus
also tracks the provenance of data with respect to updates. This provides a new formal semantics
extending provenance diagrams which takes into account theexecution of processes in a concurrent
setting. Moreover, a sound and complete model for the calculus based on ideals of series-parallel
DAGs is provided. The notion of provenance introduced can beused as a subjective indicator of the
quality of data in concurrent interacting systems.

1 Introduction

There is a growing trend to publish data openly on the Web. This movement is gaining significant
momentum as the governments of several countries and numerous other organisations adopt common
principles for publishing data [2]. Data published according to these principles is referred to as Linked
Data, due to the use of URIs to establish links between published data. By establishing links between
arbitrary data sets, significant problems emerge that are ofa different flavour to those associated with
traditional closed databases.

Many of the new problems which emerge in this scenario are dueto the the decentralised nature of
the published data. Some significant challenging problems include: the efficient execution of distributed
queries and processes which exploit multiple data sources;the impossibility of enforcing a global schema
on data; the lack of boundaries for data ensuring the impossibility of complete results; and establishing
global standards for data formats and protocols.

This work considers another essential problem, which reflects the diversity of published data. The
challenge considered here is that each piece of data published has a varying degree of trust or relevance.
A user may consider data published by the BBC to be more trustworthy than data published on a personal
blog. However, if the blog is run by a political activist thatthe consumer of data approves of, then the
blog may be more relevant. Thus data should not be associatedwith a specific trust measure. Instead,
some extra information about the data should be tracked, i.e. the provenance of data. From the extra
information provided by the provenance of data, the consumer may judge the quality of the associated
data according to their own policy.

Provenance can track several characteristics of the originof data. Characteristics include “who” has
influenced the data, “where” the data has been located, and “how” the data is produced [7]. For Linked
Data, a basic notion of “where” provenance called a named graph, which indicates where the data is
located now, is the recognised standard [5]. In related work, a model extending named graphs is used
to track more comprehensive “where” and “who” provenance [8]. The related work associates trees of
identifiers for agents and locations with data. This allows ahistory of where the data has been published
and who published it to be tracked.

http://dx.doi.org/10.4204/EPTCS.91.3
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


32 A Provenance Tracking Model for Data Updates

This work focuses on a form of “how” provenance. This form of “how” provenance tracks causal
relationships between stored data and data that was used to produce the data [6]. For instance, due to
a change in usage of a building, data about the building may beupdated. The updates may replace or
extract information from the original data. Thus “how” provenance can be used to determine how old
data influenced the new data with respect to an update.

The notion of “how” provenance investigated is strongly related to event based models of causal-
ity [3, 16]. This model clarifies, for the first time, the relationship between concurrent process and the
provenance diagrams that they produce. An operational semantics formalises the operational behaviour
of processes while recording the provenance associated with the resulting data. The model presented
provides insight that may be used to refine the definition of provenance diagrams. Provenance diagrams
that arise from concurrent updates are guaranteed to be in a particular (series-parallel) form. This insight
is a contribution to the effort to establish a common notion of a provenance diagram [15]. Furthermore,
the model presented is proven to be sound and complete. The formal model provides a foundation for in-
vestigating problems associated with tracking and exploiting the provenance of data, including querying
provenance [4, 1], and employing trust metrics [10].

2 Causal Dependencies in Provenance Diagrams

This work focusses on a particular aspect of provenance tracking. The aspect considered is a form of
“how” provenance, which indicates how old data contributedto producing new data. The consensus in
the provenance community is that provenance diagrams whichrecord this information form a directed
acyclic graph (DAG), where the edges are transitively closed. A standard format for representing prove-
nance, called the Open Provenance Model [15], encompasses this notion of provenance. The informal
definitions provided by the standard are as follows.

For this work,artefactsare data tuples. Thewas derived fromrelation between artefacts is such that
if there is an edge from artefact

✞

✝

☎

✆
d2 to artefact

✞

✝

☎

✆
d1 , then there is a causal relationship that indicates that

✞

✝

☎

✆
d1 needs to have been generated to enable

✞

✝

☎

✆
d2 to be generated. The standard defines a multi-step was

derived from relation. This is simply the transitive closure of thewas derived fromrelation, indicating
that an artefact had an influence on another artefact.

A provenance diagram that indicates the provenance of two stored pieces of data, where the stored
data is indicated by an over line, is presented in Fig. 1. The example is used throughout this work and
concerns monuments adjacent to the venue of the workshop.

✞

✝

☎

✆
(Turner loc Tate)

✞

✝

☎

✆
(Turner loc London)

✞

✝

☎

✆
(Turner loc Baltic)

OO 22❢❢❢❢❢❢❢❢❢❢❢❢❢❢

(Turner loc UK)

OO
ll❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

(Turner loc Tate)

OO

Figure 1: The Turner Prize is held at the Tate Britain in London. However, in 2011 it was held in The
Baltic Gallery in Gateshead, but returned to the Tate Britain in 2012. The data in the above diagram is
about the location of the Turner Prize. Edges are causal relationships indicating the data consumed to
produce new data as the location of the Turner Prize is updated.

http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Tate_Britain
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/London
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Baltic_Centre_for_Contemporary_Art
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/United_Kingdom
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Tate_Britain


G. Ciobanu & R. Horne 33

3 A Syntax and Semantics for Provenance Tracking Data Updates

This section introduces the syntax and semantics for a concurrent interacting system that tracks prove-
nance. The provenance community have introduced provenance structures based on DAGs; therefore a
process model which gives rise to DAGs is considered [15]. Unfortunately, many models of concurrency
are based on traces or trees rather than DAGs, such as in the calculus and provenance structures intro-
duced in [18]. This limitation is addressed by providing a non-interleaving semantics, inspired by [9].

3.1 An Abstract Syntax for Processes

The grammar for processes is provided in Fig. 2. The conceptsare summarised and made precise by the
operational and denotational semantics presented in this work.

a name x variable

λF x | a variable or name

dF λ | λλ | λλλ | . . . data tuple

PF I skip
| d consume data
| d stored data
|

✄

✂

�

✁d artefact
| P ; P seq
| P | P par
| P⊕P choose
| ∃x.P exists

Figure 2: The syntax of processes.

The data tuples. The basic unit of information considered in this work is a tuple of names. Tuples are
commonly used to convey data. Linked Data is based on RDF which involves triples of names [2, 13].
RDF makes use of URIs for names, since URIs provide a globallyrecognised naming system. In Linked
Data, often RDF triples are extended to quadruples of URIs where the extra URI indicates where the triple
is located [5]. This provides a basic notion of “where” provenance. This notion of “where” provenance
is extended in [8].

The artefacts. A data tuple can be stored, represented asd. Stored data can then be consumed in an
interaction with the processd. The result is an artefact

✄

✂

�

✁d used to explicitly track interactions which
have occurred. An artefact is used to record a data tuple involved in an interaction. Artefacts are used to
capture “how” provenance.

The multiplicatives. There are two multiplicative operators. The “par” multiplicative represents the
parallel composition of processes where interactions between processes are permitted. The “seq” multi-
plicative represents the strict sequential composition ofprocesses, where the first process must terminate
before the second process begins, hence the second process is causally dependent on the first process.
There is one unit for the multiplicatives, namely skip, which represents a successful action with no side
effects.



34 A Provenance Tracking Model for Data Updates

I ; Q≡ Q ; I ≡ Q | I ≡ Q P | (Q | R) ≡ (P | Q) | R P; (Q ; R) ≡ (P ; Q) ; R Q| R≡ R | Q

(P⊕Q)⊕R≡ P⊕ (Q⊕R) P⊕Q≡ Q⊕P P⊕P≡ P

(P⊕Q) ; R≡ (P ; R)⊕ (Q ; R) P ; (Q⊕R) ≡ (P ; Q)⊕ (P ; R) (P⊕Q) | R≡ (P | R)⊕ (Q | R)

∃x.(P⊕Q) ≡ ∃x.P⊕∃x.Q ∃x.I ≡ I

∃x.(P | S) ≡ ∃x.P | S ∃x.(S ; Q) ≡ S ; ∃x.Q ∃x.(P ; S) ≡ ∃x.P ; S

whereS is a process wherex does not appear free

Figure 3: The structural congruence, which can be applied atany point in a derivation.

The additives. There are two additives:⊕ represents a choice between two branches;∃ represents a
choice between all possible name substitutions for the bound variable.

3.2 Operational Semantics of Processes

Deductive systems are typically presented using inferencerules applied at the base of a syntax tree, as in
the sequent calculus. However, such systems are unsuited tosystems which mix commutative and non-
commutative operators [11]. For this reason, a deep inference style of presentation is adopted, where
inference rules can be applied at an arbitrary depth in a formula.

A structural congruence which extendsα-conversion is introduced, in Fig. 3, which is used to rear-
range processes. The structural congruence ensures that the order of composition matters for sequential
composition, but does not matter for parallel composition.For simplicity, both parallel composition and
sequential composition share the same unit. The structuralcongruence handles contraction for choice,
using idempotency. The other rules of the structural congruence determine how operators distribute over
each other. Distributivity properties are used in related models of concurrency [9, 12]. Note that this
selection of rules is not minimal; however they are used in Sec. 5 to rewrite processes into normal forms,
thereby simplifying the completeness proof.

A deductive system is presented in Fig. 4. Deductions may be applied at any depth in a process,
as with the structural congruence. Deductions are presented with the premise above the line and the
conclusion below the line.

✄

✂

�

✁d
interact

d | d

(P | Q) ;
(

P′ | Q′
)

sequence
(

P ; P′
)

|
(

Q ; Q′
)

P
choice

P⊕Q

P
{a/x
}

exists
∃xP

Figure 4: The deductive system for processes. All deductions can be applied in any context.

The interact rule. The interact rule only applies to tuples. The rule indicatesthat a stored tuple is
consumed by the process which deletes that triple. The result of the interaction is an artefact that records



G. Ciobanu & R. Horne 35

the consumed tuple.

The sequence rule. The sequence rule reorders processes composed in parallel.The premise is more
deterministic than the conclusion. The premise decides which part of the process will execute first;
whereas the conclusion leave open several other opportunities. This rule allows parts of a process to travel
to the intended location where they will interact. This ruleappears in related models of concurrency [9,
11, 17].

The additives. The premises of the additives indicate the branch that is chosen. For choice, either the
left or the right branch is chosen. For exists, any name may besubstituted for the bound variable. This
kind of choice is known as external choice in process calculi, where exists is an infinite external choice.

4 A Process Calculus for Provenance Tracking Updates

This section identifies a sub-grammar of processes that model certain systems. The systems modelled
are those which involve stored data composed in parallel with updates. The updates involve the removal
of some stored data satisfying a query, followed by the insertion of some new stored data.

The operational semantics for processes are provided by therules of the system in the previous
section. A system can evolve to a given state if and only if thenew state entails the original state. Notice
that implication is in the opposite direction to the evolution of the system. The direction of implication
is in line with related approaches to operational semantics[14].

DataF I
| d
| Data | Data

UpdateF Query; Data
| Update⊕Update
| ∃x.Update

QueryF I
| d
| Query|Query
| Query⊕Query
| ∃x.Query

SystemF I
|

✄

✂

�

✁d
| Update
| d
| System; System
| System| System

Figure 5: Sub-algebras of processes for data, queries, updates and systems.

Data. Data simply represents zero or more stored data atoms. The following presents two stored triples
in RDF format, which consist of three URIs: the subject, property, and object.

(Sage rdf:type ConcertHall) | (Baltic rdf:type ArtGallery)

Note that all names are active URIs which link to real published Linked Data. The reader is invited to
follow the URIs to witness the examples in a real context.

http://dbpedia.org/resource/The_Sage_Gateshead
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/resource/Category:Concert_halls
http://dbpedia.org/resource/Baltic_Centre_for_Contemporary_Art
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/resource/Category:Modern_art_museums


36 A Provenance Tracking Model for Data Updates

Queries. Parallel composition| and choice⊕ are exploited to model the following queries. As in [13],
the existential quantifier is used to select URIs which occurin data. The following pattern uses choice
to select between two objects. This example discovers a concert hall located in either Newcastle or
Gateshead.

∃x.((x rdf:type ConcertHall) | ((x loc Newcastle)⊕ (x loc Gateshead)))

Note that a tighter operational semantics could be providedby using a tensor product to join queries [13].
A tensor product ensures both parts of a query are answered atomically. Unfortunately, the calculus for
Linked Data in [13] has an interleaving semantics, which would give rise to trees of provenance diagrams
as in [18]. Future work would be to combine the strengths of both calculi.

Updates. The following is an example of an update which applies to somestored data. The existential
quantification discovers a name which is used in the delete statement and the data stored after the delete.
The Baltic Art Gallery is a converted flour mill. The update turns a depiction of the old flour mill into a
depiction of the new art gallery.

(Mill depiction photo) | ∃x.
(

(Mill depiction x) ; (Baltic depiction x)
)

The above process is provable from the following process, using the exists, sequence and interact rules.
This means that the system above can evolve to the system below.

✞

✝

☎

✆
(Mill depiction photo) ; (Baltic depiction photo)

Notice that the original stored triple appears as an artefact, which the new triple is dependent on. This
provides “how” provenance that indicates the old triple used to create the new triple.

Distinctions between execution paths. There are multiple ways of evaluating processes. Different
methods of evaluation can give rise a different provenance. Here three distinct executions of the same
process are presented to demonstrate the complexity of provenance tracking in a concurrent setting.

An example which involves two updates executed in parallel is presented below. It is a common
misconception that The Sage and Baltic Art Gallery are prominent monuments in Newcastle. In reality
they are located in Gateshead on the opposite bank of the river Tyne1. The updates transform the location
of these monuments from Newcastle to Gateshead.

(Sage loc Gateshead) |
(

(Sage loc Gateshead) ; (Sage loc Newcastle)
)

|

(Baltic loc Gateshead) |
(

(Baltic loc Gateshead) ; (Baltic loc Newcastle)
)

The process below yields the process above, using the sequence rule. The two updates occur indepen-
dently, hence each provenance is independent.

(✞

✝

☎

✆
(Sage loc Gateshead) ; (Sage loc Newcastle)

)

|
(✞

✝

☎

✆
(Baltic loc Gateshead) ; (Baltic loc Newcastle)

)

The process below yields both process above. This suggest that the two updates were combined before
they were applied, hence data produced by each update is dependent on the artefact of the other update.
Therefore the process below has stronger dependencies thanthe process above.
(✞

✝

☎

✆
(Sage loc Gateshead) |

✞

✝

☎

✆
(Baltic loc Gateshead)

)

;
(

(Sage loc Newcastle) | (Baltic loc Newcastle)
)

Indeed the above process can be refined further to impose a sequential dependency on the artefacts. Thus
the execution of the concurrent processes greatly affects the form of “how” provenance.

1Indeed the venue of FOCLASA 2012 is also in Gateshead, ratherthan in Newcastle.

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/resource/Category:Concert_halls
http://dbpedia.org/property/location
http://dbpedia.org/resource/Newcastle_upon_Tyne
http://dbpedia.org/property/location
http://dbpedia.org/resource/Gateshead
http://yago-knowledge.org/resource/Baltic_Centre_for_Contemporary_Art
http://xmlns.com/foaf/0.1/depiction
http://news.bbc.co.uk/media/images/38128000/jpg/_38128982_hovis300.jpg
http://yago-knowledge.org/resource/Baltic_Centre_for_Contemporary_Art
http://xmlns.com/foaf/0.1/depiction
http://dbpedia.org/resource/Baltic_Centre_for_Contemporary_Art
http://xmlns.com/foaf/0.1/depiction
http://yago-knowledge.org/resource/Baltic_Centre_for_Contemporary_Art
http://xmlns.com/foaf/0.1/depiction
http://news.bbc.co.uk/media/images/38128000/jpg/_38128982_hovis300.jpg
http://dbpedia.org/resource/Baltic_Centre_for_Contemporary_Art
http://xmlns.com/foaf/0.1/depiction
http://news.bbc.co.uk/media/images/38128000/jpg/_38128982_hovis300.jpg
http://dbpedia.org/resource/The_Sage_Gateshead
http://dbpedia.org/property/location
http://dbpedia.org/resource/Gateshead
http://dbpedia.org/resource/The_Sage_Gateshead
http://dbpedia.org/property/location
http://dbpedia.org/resource/Gateshead
http://dbpedia.org/resource/The_Sage_Gateshead
http://dbpedia.org/property/location
http://dbpedia.org/resource/Newcastle_upon_Tyne
http://dbpedia.org/resource/Baltic_Centre_for_Contemporary_Art
http://dbpedia.org/property/location
http://dbpedia.org/resource/Gateshead
http://dbpedia.org/resource/Baltic_Centre_for_Contemporary_Art
http://dbpedia.org/property/location
http://dbpedia.org/resource/Gateshead
http://dbpedia.org/resource/Baltic_Centre_for_Contemporary_Art
http://dbpedia.org/property/location
http://dbpedia.org/resource/Newcastle_upon_Tyne
http://dbpedia.org/resource/The_Sage_Gateshead
http://dbpedia.org/property/location
http://dbpedia.org/resource/Gateshead
http://dbpedia.org/resource/The_Sage_Gateshead
http://dbpedia.org/property/location
http://dbpedia.org/resource/Newcastle_upon_Tyne
http://dbpedia.org/resource/Baltic_Centre_for_Contemporary_Art
http://dbpedia.org/property/location
http://dbpedia.org/resource/Gateshead
http://dbpedia.org/resource/Baltic_Centre_for_Contemporary_Art
http://dbpedia.org/property/location
http://dbpedia.org/resource/Newcastle_upon_Tyne
http://dbpedia.org/resource/The_Sage_Gateshead
http://dbpedia.org/property/location
http://dbpedia.org/resource/Gateshead
http://dbpedia.org/resource/Baltic_Centre_for_Contemporary_Art
http://dbpedia.org/property/location
http://dbpedia.org/resource/Gateshead
http://dbpedia.org/resource/The_Sage_Gateshead
http://dbpedia.org/property/location
http://dbpedia.org/resource/Newcastle_upon_Tyne
http://dbpedia.org/resource/Baltic_Centre_for_Contemporary_Art
http://dbpedia.org/property/location
http://dbpedia.org/resource/Newcastle_upon_Tyne


G. Ciobanu & R. Horne 37

The Turner Prize revisited. The operational behaviour which gives rise to the provenance diagram in
the introduction can now be expressed. The initial configuration is expressed below. It shows two stored
triples, an update that moves the exhibition from the Tate Britain to the Baltic and broadens London to
the UK, and an update which moves the exhibition back from theBaltic to the Tate Britain.

(Turner loc London) | (Turner loc Tate) |
((Turner loc Tate) | (Turner loc London)) ;

(

(Turner loc Baltic) | (Turner loc UK)
)

|
(

(Turner loc Baltic) ; (Turner loc Tate)
)

By applying the sequence rule several times the processes can be rearranged as follows.
(

(Turner loc Tate) | (Turner loc Tate) | (Turner loc London) | (Turner loc London)
)

;
(((

(Turner loc Baltic) | (Turner loc Baltic)
)

; (Turner loc Tate)
)

| (Turner loc UK)
)

Finally, by applying the interact rule the delete operations and stored data cancel each other out. The
interaction produce the artefacts that record the provenance of the data.

(✞

✝

☎

✆
(Turner loc Tate) |

✞

✝

☎

✆
(Turner loc London)

)

;
((✞

✝

☎

✆
(Turner loc Baltic) ; (Turner loc Tate)

)

| (Turner loc UK)
)

The next section provides a denotational semantics where the denotation of above process is exactly the
provenance diagram in the introduction.

5 A Denotational Semantics for the Provenance Tracking Calculus

This section provides a denotational semantics for the calculus. A denotational semantics provides a
sound and complete model which increases confidence in the definition of the calculus. In this case, the
semantics of the calculus fulfils an additional purpose. It also makes explicit the connection between cer-
tain terms of the calculus and provenance diagrams. Furthermore, a restriction on provenance diagrams
that track series-parallel computations is highlighted.

The denotational semantics, similarly to provenance diagrams, is based on directed acyclic graphs
(DAGs). The denotation relies on some technical apparatus.Firstly, DAGs are restricted by a forbidden
minor property, which guarantees that each DAG arises from applying series and parallel composition
to smaller DAGs. Secondly, homomorphisms between DAGs are defined such that the inference rules
of the calculus hold. By taking ideals of series-parallel DAGs with respect to these homomorphism, a
sound and complete model is obtained.

5.1 Series-Parallel DAGs and theN-free Condition

This section recalls some standard definitions which are used to build a denotational semantics. The
definition of a DAG is standard, as are the definitions of the transitive closure of a graph and the notion
of a graph homomorphism. Transitive DAGs are used because provenance diagrams are transitive, and
graph homomorphism are used to compare the structure of suchdiagrams.

Definition 5.1. A DAG D= (V,E) is a digraph with no directed cycles. Let A= (V,E) and B= (V′,E′) be
graphs. A graph homomorphism is given by a function on vertices f: V→ V′ such that if(u,v) ∈ E then
( f (u), f (v)) ∈ E′. Two graphs are isomorphic iff there exists a bijective homomorphism whose inverse

http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/London
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Tate_Britain
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Tate_Britain
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/London
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Baltic_Centre_for_Contemporary_Art
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/United_Kingdom
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Baltic_Centre_for_Contemporary_Art
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Tate_Britain
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Tate_Britain
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Tate_Britain
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/London
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/London
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Baltic_Centre_for_Contemporary_Art
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Baltic_Centre_for_Contemporary_Art
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Tate_Britain
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/United_Kingdom
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Tate_Britain
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/London
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Baltic_Centre_for_Contemporary_Art
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Tate_Britain
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/United_Kingdom


38 A Provenance Tracking Model for Data Updates

function is also a homomorphism. A transitive digraph is such that if there exists a path from u to v, then
there exists an edge from u to v. A transitive closure of a digraph (V,E) is a minimal transitive digraph
(V,E′) such that there exists an injective graph homomorphism from(V,E) to (V,E′). A graph(V,E) is a
sub-graph(V′,E′) if and only if V⊆ V′ and E= E′∩V×V.

Several series-parallel digraphs are studied in [19]. Heretransitive series-parallel DAGs are defined.
The series-parallel restriction on transitive DAGs is required because this work considers provenance
diagrams which arise from the execution of series-parallelprocesses.

Definition 5.2. The trivial DAG with no vertices is a series-parallel DAG, and the DAG with a single
vertex and no edges is a series-parallel DAG. If G0 = (V0,E0) and G1 = (V1,E1) are series-parallel
graphs with disjoint vertices, then the following are series-parallel DAGs.

• G0 ‖G1 defined by(V0∪V1,E0∪E1).

• G0 ; G1 defined as the transitive closure of(V0∪V1,E0∪E1∪ (L×R)), where L is the source nodes
of G0 and R is the sink nodes of G1.

In structural graph theory it is studied how graph classes either can be defined by forbidden minors,
or by being glued together from simple starting graphs (as inthe definition above). A forbidden minor
is a sub-graph with a particular form; the forbidden minor for series-parallel DAGs has anN-shape, as
proven in [19].

Theorem 5.3(Forbidden minor). A transitive DAG is series-parallel if and only if it does nothave a
sub-graph isomorphic to N= ({v0,v1,v2,v3} , {(v2,v0), (v3,v0), (v3,v1)}).

Notice that use of transitive DAGs is motivated, by provenance diagrams; while the series-parallel
restriction is motivated by concurrent processes. Thus themodel studies structures which respect both
provenance and the processes which track the provenance.

5.2 Interacting Series-Parallel DAGs Labelled with Data

The notion of a series-parallel DAG is extended with labels.The labels allow data to be accommodated
in the model. Also the notion of a homomorphism is extended toallow interactions between data and
operations on data which give rise to artefacts.

The definition of a labelled graph is standard. A special kindof homomorphism is defined on labelled
DAGs. This smoothing homomorphism is bijective, but does not define an isomorphism. Thus vertices
are preserved, but extra edges may appear.

Definition 5.4. Fix Σ as the set of labels which are either tuples d, stored tuplesd or artefacts
✄

✂

�

✁d . A
labelled graph(V,E,µ) is such that(V,E) is a graph andµ : V→ Σ is a labelling function from vertices
to labels. Let A= (V,E,µ) and B= (V′,E′,µ′) be labelled DAGs. A labelled homomorphism f from A to
B is such that f is a graph homomorphism from(V,E) to (V′,E′) and for all vertices u,µ(u) = µ′( f (u)).
A smoothing homomorphism is a bijective labelled homomorphism.

The notation of a smoothing homomorphism defined above is used to characterise the sequence rule.
To capture both the sequence rule and the interact rule, interaction homomorphisms are introduced. The
definition involves a coherence condition which captures the conditions under which an interaction may
occur. Two vertices can interact if they have complementarylabels and they are in parallel with each
other. This leads to the following definition.



G. Ciobanu & R. Horne 39

Definition 5.5. For a labelled graph A= (V,E,µ), define u⌢d v in A such that there is no directed path
between u and v, and eitherd = µ(u) = µ(v) or µ(u) = µ(v) = d. Let A= (V,E,µ) and B= (V′,E′,µ′) be
labelled DAGs. An interaction homomorphism f from A to B is a labelled graph homomorphism such
that f is onto and, if f(u) = f (v), one of the following hold: either u⌢d v in A andµ′( f (u)) =

✄

✂

�

✁d ; or
u= v andµ(u) = µ′ ( f (u)).

The following example demonstrates two compatible vertices mapped to the same vertex by an in-
teraction homomorphism.

a b b

d

``❅❅❅❅
OO

d

OO

b

OO

a

OO

−→

a b b
✄

✂

�

✁d

aa❇❇❇❇
OO ==⑤⑤⑤⑤

b

OO

a

aa❇❇❇❇

Note that the diagrams in examples represent equivalence classes of labelled graphs up to labelled graph
isomorphism. Thus only the labels and not the underlying vertices are indicated. The same practice is
followed when presenting provenance diagrams.

The homomorphisms defined over labelled DAGs are used to generate ideals. Ideals are sets of
labelled series-parallel DAGs closed with respect to either smoothing or interacting homomorphisms.

Definition 5.6. A smoothing/interacting ideal I is a set of labelled series-parallel DAGs such that if A∈ I
and there exists a smoothing/interacting homomorphism f: A→ B, then B∈ I. For any set of labelled
series-parallel DAGs P the smoothing/interacting ideal closure of P, denotedιsP/ιiP, is the least ideal
containing P, defined as the intersection of all smoothing/interacting ideals I such that P⊆ I.

These ideals are employed to denote processes in the next section. Ideal closure is essential for the
denotation of parallel composition.

5.3 Correctness of the Denotational Semantics

The denotational semantics for processes is defined using the ideals introduced in the previous section.
Most operations on ideals are the obvious point-wise extension of the corresponding operator. The main
subtlety is that parallel composition introduces new possibilities for both smoothing and interaction,
which are not represented by the point-wise parallel composition of ideals. Thus the ideal closure is em-
ployed to denote parallel composition. Valuations are usedto represent substitutions, which are required
to denote existential quantification.

Definition 5.7 (denotation). A valuation v is a mapping from variables to names. Let v[x 7→ a] be the
valuation which is the same as v except at x where it maps to a. The effect of a valuation on a label is
defined as follows.

✄

✂

�

✁d
v
=
✞

✝

☎

✆dv
(

d
)v
= dv (λ0..λn)v = λv

0..λ
v
n av = a xv = v(x)

The denotation of a process with respect to a valuation v satisfies the following, where h∈ {s, i}, ǫ is the
set containing the empty labelled graph, and e(l,v) is the equivalence class of labelled graph with one



40 A Provenance Tracking Model for Data Updates

vertex labelled with lv with respect to labelling isomorphism.

~v, I�h = ǫ ~v, l�h = e(l,v) ~v,∃xP�h =
⋃

a∈Names

~v[x 7→ a],P�h

~v,P⊕Q�h = ~v,P�h∪~v,Q�h ~v,P ; Q�h =
{

A ; B | (A,B) ∈ ~v,P�h× ~v,Q�h
}

~v,P‖Q�h = ιh
{

A‖B | (A,B) ∈ ~v,P�h× ~v,Q�h
}

All the operations used in the denotational semantics preserve ideals, as verified by the following
proposition. Therefore the denotational semantics is a well defined mapping from processes to ideals.

Proposition 5.8. The following are ideals:ǫ, e(l,v), the union and intersection of sets of ideals, and the
point-wise sequential composition of ideals.

Soundness of the calculus defined in Sec. 3 with respect to thedenotation is straight forward. The
proof follows from checking that all equations of the structural congruence hold as set equality of ideals,
and that all deductive rules hold as set inclusions of ideals.

Theorem 5.9(soundness). If P yields Q, then,~v,P�i ⊆ ~v,Q�i for all valuations v.

Completeness of the calculus with respect to the denotationis more challenging. The proof follows
from interpolation lemmas. An interpolation lemma establishes that if there is a strict inclusion between
the denotation of processes then there must be a finite sequence of deductions that can be applied to
transform one process into the other process. The trick is torewrite processes into a normal form and
deal with each deductive rule one by one.

Firstly consider series-parallel terms, which are processes which does not feature any choice or exists.
Two interpolation lemmas apply to series-parallel terms. The first interpolation lemma, stated below,
deals only with the sequence rule. This lemma is closely related to the interpolation lemma established
in [9], where a similar calculus without interactions is considered. Thus only smoothing ideals are
treated.

Lemma 5.10(sequence interpolation). Given two series-parallel terms P and Q, if~v,P�s⊆ ~v,Q�s for
all valuations v, then either:~v,P�s = ~v,Q�s for all valuations v; or there exists R such that~v,P�s ⊂

~v,R�s⊆ ~v,Q�s for all valuations v, and P yields R is provable using only thesequence rule.

The above result is extended to interacting homomorphism inthe following interpolation lemma.
The proof of this lemma is an important technical contribution of this work. It shows that, for any strict
inclusion between the denotation of series-parallel process, either the sequence rule or the interact rule
can be applied.

Lemma 5.11(interaction interpolation). Given two series-parallel terms P and Q, if~v,P�i ⊆ ~v,Q�i for
all valuations v, then: either~v,P�s ⊆ ~v,Q�s for all valuations v; or there exists R such that~v,P�i ⊂
~v,R�i ⊆ ~v,Q�i for all valuations v and P yields R is provable using only the interact rule.

Proof. Assume thatP and Q are series-parallel terms such that~v,P�i ⊂ ~v,Q�i for all valuationsv.
Also assume that~v,P�s 1 ~v,Q�s for some valuationv. SinceP, Q are series-parallel terms, there exist
series-parallel DAGsD0= (V0,E0,µ0), D1 = (V1,E1,µ1) such thatιiD0 = ~v,P�i andιiD1= ~v,Q�i. Also,
since~v,P�i ⊂ ~v,Q�i, there exists an interacting homomorphismf : D1→ D0.

There must be at least one interaction in the homomorphismf exhibited above, i.e. there exists
m,n ∈ V1 such thatf (m) = f (n), m⌢d n and f (m) = w ∈ V0 such thatµ0(w) =

✄

✂

�

✁d . Suppose otherwise,



G. Ciobanu & R. Horne 41

then for allm,n ∈ V1 if f (m) = f (n) thenm= n, and sof is bijective, since interacting homomorphisms
are surjective. Hencef is a smoothing homomorphism fromD1 to D0, so~v,P�s⊂ ~v,Q�s contradicting
the above assumption.

A DAG D2 = (V2,E2,µ2) is constructed to differ from D0 only by the interaction exhibited by
f . Firstly, takeV0, remove vertexw and include verticesm and n, so V2 = V0 \ {w} ∪ {m,n}. Let
E0 \w be the set of edges inE0 without the vertexw and defineE2 = (E0 \w)∪ {(x,m) | (x,w) ∈ E0} ∪

{(m, x) | (w, x) ∈ E0} ∪ {(x,n) | (x,w) ∈ E0} ∪ {(n, x) | (w, x) ∈ E0}. Retain all the labels ofµ0 except atm
andn, so if x=m or x= n thenµ2(x) = µ1(x) and otherwiseµ2(x) = µ0(x).

Construct two homomorphisms fromg: D2→ D0 andh: D1→ D2 as follows.

g(x) =

{

f (x) if x=m or x= n
x otherwise

h(x) =

{

x if x=mor x= n
f (x) otherwise

Clearly f = g◦h. Furthermore, bothg andh are interacting homomorphisms by the following arguments.
Check thatg is a graph homomorphism, by case analysis. Only one case is presented. By definition of
E2, if (m, x) ∈ E2 then (m, x) ∈ {(m, x) | (w, x) ∈ E0}, thus (g(m),g(x)) = (w, x) ∈ E0. Also check thatg is
an interaction homomorphism, as follows: Ifg(x) = g(y) then eitherx= y, or x=m andy= n. Clearly,
m and n are not connected inE2 and bothµ2(m) = µ1(m) and µ2(n) = µ1(n) hold, som⌢d n in D2

andµ0( f (m)) = µ0(w) =
✄

✂

�

✁d . Check thath is a graph homomorphism. Only one case is presented. If
(m, x) ∈ E1 then (w, f (x)) ∈ E0 since f is a graph homomorphism, thus (m, f (x)) ∈ {(m, x) | (w, x) ∈ E0}

so (m, f (x)) ∈ E2, by definition. Now consider whenh(x) = h(y) either x = y or x,y < {m,n}, hence
f (x) = f (y), thusx⌢d y since f is an interacting homomorphism. Suppose, without loss of generality,
thatx=mandy< {m,n}, som= f (x), butm<V0 contradicting the definition off . Thush is an interaction
homomorphism.

Furthermore, the constructed DAG,D2, is series-parallel. Suppose otherwise, then there existsan
N-shape isomorphic to a sub graph ofD2. Now consider the image of theN-shape underg. Either zero
or one nodes in theN-shape aremor n so the image of theN shape is anN-shape inD0. By Theorem 5.3,
this contradicts the fact thatD0 is series-parallel. Now, suppose that bothm andn are in theN-shape.
Sincem⌢d n in D2, m andn are not connected, so anN-shape must be of the form{(m, x), (n, x), (n,y)}
or {(x,m), (x,n), (y,n)}. However (m, x) ∈ D2 iff (w, x) ∈ D0 iff (n, x) ∈ D2 and (x,m) ∈ D2 iff (x,w) ∈ D0

iff (x,n) ∈ D2, so neither shapes are sub-graphs ofD2. ThusD2 is N-free, hence by Theorem 5.3,D2 is a
series-parallel DAG.

Since,D2 is a series-parallel DAG, there exists a series-parallel term Rsuch that~v,R�i = ιiD2. Since
g : D2→ D0 exhibiting an interaction andh: D1→ D2, the following inequalities hold~v,P�i ⊂ ~v,R�i
and~v,R�i ⊆ ~v,Q�i . Sinceµ2(w) =

✄

✂

�

✁d , the sub-term
✄

✂

�

✁d must appear in the processP = S
{ ✄

✂

�

✁d
}

, for
some contextS{ }. Also, sincem⌢d n and, the edges ofD0 differs from those ofD2 only in that the
edges connected tow in D0 are instead connect to bothmandn in D2, the following holdsR≡ S

{

d‖d
}

.
Thus the interact rule proves thatP yieldsR, as required. �

To clarify the significance of the interpolation lemmas consider the running example. The initial
configuration of processes is denoted by the following DAG (D1).

D1 : (Turner loc Tate) (Turner loc Tate) (Turner loc London) (Turner loc Baltic)

(Turner loc London) (Turner loc Baltic)

OO 66❧❧❧❧❧❧❧❧❧❧❧❧❧

(Turner loc UK)

OOhh❘❘❘❘❘❘❘❘❘❘❘❘❘

(Turner loc Tate)

OO

http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Tate_Britain
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Tate_Britain
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/London
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Baltic_Centre_for_Contemporary_Art
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/London
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Baltic_Centre_for_Contemporary_Art
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/United_Kingdom
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Tate_Britain


42 A Provenance Tracking Model for Data Updates

There exists an interaction homomorphism fromD1 to the DAGD0 below, which appears also in Sec. 2.

D0 :
✞

✝

☎

✆
(Turner loc Tate)

✞

✝

☎

✆
(Turner loc London)

✞

✝

☎

✆
(Turner loc Baltic)

OO 44✐✐✐✐✐✐✐✐✐✐✐✐

(Turner loc UK)

OOjj❯❯❯❯❯❯❯❯❯❯❯❯

(Turner loc Tate)

OO

Now, by applying Lemma 5.11 three times, we can construct a series of DAGs cumulating inD2 pre-
sented below, such that the following properties hold. There exist interaction homomorphisms fromD1

to D2 and fromD2 to D0, and the process denoted byD0 yields the process denoted byD2 using the in-
teract rule three times. Furthermore, the homomorphism from D1 to D2 is a smoothing homomorphism.
Hence, by Lemma 5.10, the process denoted byD2 can be transformed using the sequence rule applied a
finite number of times into the process denoted byD1.

D2 : (Turner loc Tate) (Turner loc Tate) (Turner loc London) (Turner loc London)

(Turner loc Baltic)

OO 55❦❦❦❦❦❦❦❦❦❦❦❦❦❦

22❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

11❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝
(Turner loc Baltic)

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙

OO 55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

22❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

(Turner loc UK)

ll❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙

OO 55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

(Turner loc Tate)

OOii❙❙❙❙❙❙❙❙❙❙❙❙❙❙

Thereby the existence of the interaction homomorphism betweenD1 andD0 guarantees the existence of
a deduction from the process denoted byD0 to the process denoted byD1 using the interact and sequence
rules. Indeed the processes and deductions are presented inthe example at the end of Sec. 4, where the
first process in the example is denoted byD1, the second byD2 and the third byD0.

Every process can be written in a normal form, using the structural congruence, as a sum of series-
parallel process with all the existential quantification moved to the front of the process, i.e. for allP there
exist series-parallel processesAi such thatP ≡ ∃~x.Σi∈I Ai. It is then easy to show that a finite number
of choice and exists rules can be applied to prove any inequality between ideals. This establishes the
completeness of the calculus with respect to the denotation, stated as follows.

Theorem 5.12(completeness). If ~v,P�i ⊆ ~v,Q�i for all valuations v, then P yields Q.

Thus the model based on ideals of labelled series-parallel DAGs is a sound and complete model of
processes. The labelled DAGs are inspired by the guidelinesprovided for provenance diagrams [15];
while, the series-parallel processes are motivated by calculi which model systems which produce prove-
nance diagrams. Hence a formal connection between series-parallel DAGs and processes is established.
Specifically, provenance diagrams are the denotation of series-parallel processes consisting of only arte-
facts and stored data. Hence provenance diagrams are contained within a denotation for a provenance
tracking calculus. Due to soundness and completeness of thecalculus with respect to the denotation,
provenance diagrams can be considered in a new operational language based setting.

http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Tate_Britain
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/London
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Baltic_Centre_for_Contemporary_Art
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/United_Kingdom
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Tate_Britain
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Tate_Britain
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Tate_Britain
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/London
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/London
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Baltic_Centre_for_Contemporary_Art
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Baltic_Centre_for_Contemporary_Art
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/United_Kingdom
http://dbpedia.org/resource/Turner_Prize
http://dbpedia.org/property/location
http://dbpedia.org/resource/Tate_Britain


G. Ciobanu & R. Horne 43

6 Conclusion

Provenance is a key problem in processing data which is particularly important in systems that publish
data on the Web, such as the Web of Linked Data [8, 13]. Alreadycertain aspects of provenance are
gifted with deep theoretical results [10]. However, there is no sound and complete model for the as-
pects of provenance tracking considered in this work: specifically “how” provenance which indicates
causal relationships; and a provenance tracking calculus which produces such diagrams by recording
interactions between processes and stored data. The relationship between the diagrams and the calculus
is exhibited by providing a sound and complete denotationalsemantics which contains such provenance
diagrams.

The examples presented in this paper illustrate that tracking provenance is particularly challenging
in a concurrent setting. The causal aspects of data provenance are closely related to the operational se-
mantics of the systems involved. Hence when considering concurrent systems, models of concurrency
provide insight into problems associated with provenance in a concurrent setting. For instance, this
work demonstrates that provenance diagrams that arise fromconcurrent interactions form series-parallel
DAGs. Consequently, certain graph homomorphism problems,which can be employed to query prove-
nance diagrams, can be solved more efficiently for series-parallel digraphs [19]. This model is proposed
as a foundation for “how” provenance, which can be applied asa subjective measure of the quality of
data.

Acknowledgements. We thank the reviewers for feedback that improved the exposition. The work was
supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI,
project number PN-II-ID-PCE-2011-3-0919.

References

[1] Manish Kumar Anand, Shawn Bowers & Bertram Ludäscher (2010):Techniques for efficiently querying sci-
entific workflow provenance graphs. In: EDBT ’10, ACM, pp. 287–298, doi:10.1145/1739041.1739078.

[2] Christian Bizer, Tom Heath & Tim Berners-Lee (2009):Linked Data — The Story So Far. International
Journal on Semantic Web and Information Systems5(3), pp. 1–22, doi:10.4018/jswis.2009081901.

[3] Grard Boudol & Ilaria Castellani (1989):Permutation of transitions: An event structure semantics for CCS
and SCCS. In: Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency,
Lecture Notes in Computer Science354, Springer, pp. 411–427, doi:10.1007/BFb0013028.

[4] Peter Buneman, Adriane Chapman & James Cheney (2006):Provenance management in curated databases.
In: Proceedings of ACM SIGMOD International Conference on Management of Data, pp. 539–550, doi:10.
1145/1142473.1142534.

[5] Jeremy J. Carroll, Christian Bizer, Pat Hayes & Patrick Stickler (2005): Named graphs. Web Semantics:
Science, Services and Agents on the World Wide Web3(4), pp. 247–267, doi:10.1016/j.websem.2005.
09.001.

[6] James Cheney (2010):Causality and the Semantics of Provenance. In: Developments in Computational
Models, pp. 63–74, doi:10.4204/EPTCS.26.6.

[7] James Cheney, Laura Chiticariu & Wang-Chiew Tan (2009):Provenance in Databases: Why, How, and
Where. Found. Trends databases1(4), pp. 379–474, doi:10.1561/1900000006.

[8] Mariangiola Dezani, Ross Horne & Vladimiro Sassone (2012): Tracing where and who provenance in Linked
Data: a calculus. Theoretical Computer Science, doi:10.1016/j.tcs.2012.06.020.

http://dx.doi.org/10.1145/1739041.1739078
http://dx.doi.org/10.4018/jswis.2009081901
http://dx.doi.org/10.1007/BFb0013028
http://dx.doi.org/10.1145/1142473.1142534
http://dx.doi.org/10.1145/1142473.1142534
http://dx.doi.org/10.1016/j.websem.2005.09.001
http://dx.doi.org/10.1016/j.websem.2005.09.001
http://dx.doi.org/10.4204/EPTCS.26.6
http://dx.doi.org/10.1561/1900000006
http://dx.doi.org/10.1016/j.tcs.2012.06.020


44 A Provenance Tracking Model for Data Updates

[9] Jay L. Gischer (1988):The equational theory of pomsets. Theoretical Computer Science61(2-3), pp. 199–
224, doi:10.1016/0304-3975(88)90124-7.

[10] Todd J. Green, Grigoris Karvounarakis & Val Tannen (2007): Provenance semirings. In: PODS ’07, ACM,
pp. 31–40, doi:10.1145/1265530.1265535.

[11] Alessio Guglielmi (2007):A system of interaction and structure. ACM Transactions on Compututational
Logic 8, doi:10.1145/1182613.1182614.

[12] Tony Hoare, Bernhard Möller, Georg Struth & Ian Wehrman (2011): Concurrent Kleene Algebra and its
Foundations. Journal of Logic and Algebraic Programming80(6), pp. 266–296, doi:10.1016/j.jlap.
2011.04.005.

[13] Ross Horne & Vladimiro Sassone (2011):A Verified Algebra for Linked Data. In: FOCLASA, pp. 20–33,
doi:10.4204/EPTCS.58.2.

[14] Naoki Kobayashi & Akinori Yonezawa (1993):ACL – A Concurrent Linear Logic Programming
Paradigm. In: Proceedings of the 1993 International Logic Programming Symposium, MIT Press, pp.
279–294. Available athttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.2776&
rep=rep1&type=pdf.

[15] Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul Groth,Natalia Kwasnikowska,
Simon Miles, Paolo Missier, Jim Myers, Beth Plale, Yogesh Simmhan, Eric Stephan & Jan Van den Bussche
(2011): The Open Provenance Model core specification (v1.1). Future Gener. Comput. Syst.27(6), pp.
743–756, doi:10.1016/j.future.2010.07.005.

[16] Vaughan Pratt (1986):Modeling concurrency with partial orders. International Journal of Parallel Program-
ming15(1), pp. 33–71, doi:10.1007/BF01379149.

[17] Cristian Prisacariu (2010):Synchronous Kleene algebra. Journal of Logic and Algebraic Programming79(7),
pp. 608–635, doi:10.1016/j.jlap.2010.07.009.

[18] Issam Souilah, Adrian Francalanza & Vladimiro Sassone(2009): A Formal Model of Provenance in Dis-
tributed Systems. In: Workshop on the Theory and Practice of Provenance, pp. 1–11. Available athttp://
static.usenix.org/events/tapp09/tech/full_papers/souilah/souilah.pdf.

[19] Jacobo Valdes, Robert E. Tarjan & Eugene L. Lawler (1979): The recognition of Series Parallel digraphs. In:
STOC ’79, ACM, pp. 1–12, doi:10.1145/800135.804393.

http://dx.doi.org/10.1016/0304-3975(88)90124-7
http://dx.doi.org/10.1145/1265530.1265535
http://dx.doi.org/10.1145/1182613.1182614
http://dx.doi.org/10.1016/j.jlap.2011.04.005
http://dx.doi.org/10.1016/j.jlap.2011.04.005
http://dx.doi.org/10.4204/EPTCS.58.2
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.2776&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.2776&rep=rep1&type=pdf
http://dx.doi.org/10.1016/j.future.2010.07.005
http://dx.doi.org/10.1007/BF01379149
http://dx.doi.org/10.1016/j.jlap.2010.07.009
http://static.usenix.org/events/tapp09/tech/full_papers/souilah/souilah.pdf
http://static.usenix.org/events/tapp09/tech/full_papers/souilah/souilah.pdf
http://dx.doi.org/10.1145/800135.804393

	1 Introduction
	2 Causal Dependencies in Provenance Diagrams
	3 A Syntax and Semantics for Provenance Tracking Data Updates
	3.1 An Abstract Syntax for Processes
	3.2 Operational Semantics of Processes

	4 A Process Calculus for Provenance Tracking Updates
	5 A Denotational Semantics for the Provenance Tracking Calculus
	5.1 Series-Parallel DAGs and the N-free Condition
	5.2 Interacting Series-Parallel DAGs Labelled with Data
	5.3 Correctness of the Denotational Semantics

	6 Conclusion

