
Julia Rubin and Thomas Thüm (Eds.):
7th International Workshop on Formal Methods and Analysis
in Software Product Line Engineering (FMSPLE’16)
EPTCS 206, 2016, pp. 17–31, doi:10.4204/EPTCS.206.3

Conflict Detection for Edits on Extended Feature Models
using Symbolic Graph Transformation

Frederik Deckwerth Géza Kulcsár Malte Lochau Gergely Varró

Andy Schürr

TU Darmstadt
Real-Time Systems Lab

{frederik.deckwerth|geza.kulcsar|malte.lochau|gergely.varro|andy.schuerr}@es.tu-darmstadt.de

Feature models are used to specify variability of user-configurable systems as appearing, e.g., in
software product lines. Software product lines are supposed to be long-living and, therefore, have
to continuously evolve over time to meet ever-changing requirements. Evolution imposes changes
to feature models in terms of edit operations. Ensuring consistency of concurrent edits requires ap-
propriate conflict detection techniques. However, recent approaches fail to handle crucial subtleties
of extended feature models, namely constraints mixing feature-tree patterns with first-order logic
formulas over non-Boolean feature attributes with potentially infinite value domains. In this paper,
we propose a novel conflict detection approach based on symbolic graph transformation to facilitate
concurrent edits on extended feature models. We describe extended feature models formally with
symbolic graphs and edit operations with symbolic graph transformation rules combining graph pat-
terns with first-order logic formulas. The approach is implemented by combining eMoflon with an
SMT solver, and evaluated with respect to applicability.

1 Introduction

In many of nowadays’ application domains, software systems must be extensively user-configurable in
order to meet diverse customer needs. The inherent variability of those systems imposes new kinds
of challenges to developers throughout the entire product life cycle. Software product line engineering
constitutes a promising paradigm to cope with the additional complexity arising in variant-rich software
systems [11]. As a consequence, software product lines (SPLs) have recently found their way from
academia into real-world application domains, such as mobile devices, automotive and security [30]. An
SPL comprises a family of similar, yet well-distinguished (software) products, whose commonality and
variability are defined in terms of features. Each feature, therefore, corresponds to (1) a user-visible
configuration option in the problem domain of the SPL, as well as (2) dedicated engineering artifacts
within the solution space, composable into automatically derivable implementation variants. Feature
models are frequently used to specify the set of relevant features of an SPL, together with dependencies
among the features, constraining their valid combinations within product configurations. In particular,
FODA feature diagrams are widely used during domain analysis, as they provide an intuitive graphical
layout in terms of a tree-like hierarchical structuring of feature nodes [16]. Over 20 years of research
has been spent to date on developing techniques for efficiently validating crucial consistency properties
of feature models in an automated way [5]. Most of those approaches are limited to feature models
with Boolean feature parameters by applying respective constraint-solving capabilities, cf., e.g., [20, 6].

http://dx.doi.org/10.4204/EPTCS.206.3

18 Conflict Detection for Edits on Extended Feature Models

However, various extensions to feature models have been proposed in order to capture all issues that
are relevant for the configuration of real-world applications. One major extension of feature models
adds complex cross-tree constraints involving non-Boolean feature attributes, e.g., to denote numerical
configuration information such as extra-functional properties [24]. Until now, no generally accepted
definition of feature models extended with non-Boolean feature attribute constraints exists. Instead, most
recent approaches rely on ad-hoc representations of feature attribute constraints, e.g., being restricted to
cases that can be encoded into well-known constraint satisfaction problems [6, 17, 9].

Designing an SPL for a particular application domain from scratch usually requires enormous do-
main analysis efforts and respective upfront investments. Hence, an SPL is supposed to be inherently
long-living and, therefore, has to evolve over time to prevent software aging, imposed by ever-changing
customer needs, platform changes, new legal restrictions etc. [23]. SPL evolution, first of all, induces
edit operations to feature model specifications by means of changes applied to the feature diagram [19].
Moreover, certain changes that occur frequently during evolution might be extracted as reusable change
patterns [25]. In order to ensure consistency and to prevent structural decay, a formal framework for fea-
ture model evolution by means of continuous edit operation chains is required. This becomes even more
challenging in the presence of non-Boolean feature attribute constraints, as potential conflicts among edit
operations involving both feature-tree patterns and complex cross-tree constraints are hard to detect.

In this paper, we propose a formalization of feature models with complex constraints involving non-
Boolean feature attributes using symbolic graphs as introduced in [22]. Symbolic graphs constitute a
natural extension to typed graphs for a concise representation of modeling languages mixing graphical
syntax and first-order logic formulas. This way, we are able to handle feature diagrams with cross-tree
constraints incorporating (1) logic formulas combined with arbitrary background theories, e.g., linear
and non-linear arithmetics, and (2) attributes with potentially infinite value domains like integers, real
numbers, strings, etc. As a consequence, edit operations applied to extended feature models affecting
both the feature diagram and the complex cross-tree constraints are seamlessly expressible in terms of
symbolic graph transformation rules. Thereupon, we apply a recently proposed conflict notion [18] for
symbolic graph transformation rules to ensure consistency of concurrent feature model edits.

To summarize, we make the following contributions:(i) We formalize extended feature models using
symbolic graphs, naturally integrating graph patterns and logic formulas. (ii) We define edit operations
on extended feature models by means of symbolic graph transformation rules. (iii) We apply a recent
conflict detection notion to analyze potential conflicts among concurrent edits. (iv) We evaluate the
applicability of our approach, based on an implementation combining our graph transformation tool
eMoflon with the Z3 SMT solver.

2 Background and Motivation

2.1 Feature Models

The variability of an SPL is commonly expressed in terms of features. A feature represents a distinct
user-visible configuration option in the problem domain of an SPL [11]. A feature model is used to
restrict the possible feature combinations by introducing logical dependencies among features. A feature
combination that fulfills these dependencies is called a valid configuration. The configuration space is
the set of all valid configurations defined by a feature model. Feature models are frequently denoted
graphically as FODA feature diagrams [16], which organize features into a hierarchical tree structure
that can be enriched with additional cross-tree edges between features.

Frederik Deckwerth, Géza Kulcsár, Malte Lochau, Gergely Varró, Andy Schürr 19

lock

authMeth mSec

token knowledge biometric

keycard transponder PIN password fingerprint iris

high low

Alternative Or

Optional

Mandatory

Figure 1: Feature model of an SPL for an electronic lock

lock

authMeth
level : R

mSec

token
level : R

knowledge
level : R

minLen : R

biometric
level : R

keycard transponder PIN password fingerprint iris

high low
level : R

token.level=(keycard ? 10 : 0)+(transponder ? 20 : 0)

authMeth.level=(token ? token.level : 0)+(knowledge ? knowledge.level : 0)+(biometric ? biometric.level : 0)

knowledge.level=(PIN ? knowledge.minLen : 0)+(password ? knowledge.minLen · 4.3 : 0)

biometric.level=(fingerprint ? 30: 0)+(iris ? 40 : 0)

authMeth.level≥3·low.level

low.level≥20
authMeth.level≥low.level

Alternative Or

Optional

Mandatory

Figure 2: Extended feature model of an SPL for an electronic lock

Figure 1 shows a feature model representing an electronic lock in FODA notation. The feature lock
can be equipped with different authentication devices for unlocking: token-based devices using a keycard
or a transponder, knowledge-based devices for entering a PIN or a password, as well as biometric devices
using fingerprint or iris-scan. The parent-child relationship between feature nodes induces configuration
constraints, i.e., the selection of a child feature requires the selection of its parent feature. Sibling features
may be arranged in groups introducing further restrictions on valid combinations.
• An alternative-group ensures that exactly one of the child features is present whenever the parent

feature is present in a configuration (e.g. either PIN or password).
• An or-group claims that at least one child feature has to be present if the parent feature is present

in a configuration. In the example, an or-group is used to describe that at least a token-based, a
knowledge-based or a biometric device has to be present in a valid lock.
• An optional-group consists of a single child feature that may be selected if the parent feature is

selected in a configuration. For example, the feature mission security (mSec) may be selected to
ensure that a valid lock configuration complies with high or low security regulations.
• A mandatory-group also consists of one child feature and requires this feature to be present when-

ever its parent feature is present, e.g., a lock always has an authentication method (authMeth).
In addition, cross-tree edges define dependencies between hierarchically unrelated features, e.g., in

terms of binary require and exclude edges. For example, if the feature high is present in a configuration,
a biometric authentication device must be part of the configuration, too.

2.2 Extended Feature Models

In many real-world applications, it is often required to capture configuration options going beyond
Boolean features of FODA feature diagrams. For example, it might be desirable to explicitly include the
security levels of different authentication devices into the configuration process by introducing numerical

20 Conflict Detection for Edits on Extended Feature Models

measures for these characteristics. To handle extensions like non-Boolean configuration information, ex-
tended feature models (EFMs) have been proposed [11]. EFMs extend basic FODA feature diagrams by
feature attributes to augment features with additional non-Boolean configuration information. A further
extension of EFMs is feature multiplicity denoted by cardinality annotations, which is out of scope here.

A feature attribute has a possibly infinite value domain. As a generalization of binary cross-tree
edges, dependencies among feature attributes are denoted as complex cross-tree constraints. A complex
cross-tree constraint is expressed by a first-order logic formula over features and feature attributes that
has to evaluate to true in a valid configuration. A valid EFM configuration consists of two parts: (i) a
feature selection corresponding to a valid configuration and (ii) a value assignment to the attributes of
the selected features, satisfying all complex cross-tree constraints relevant for those attributes.

In Figure 2, the EFM of the electronic lock is presented, extending the feature diagram from Figure 1
with feature attributes and complex cross-tree constraints. Therein, feature attributes together with their
value domains are shown in the boxes of their corresponding feature nodes. We denote complex cross-
tree constraints as rounded boxes containing the first-order logic formulas. In our example, each complex
cross-tree constraint is related to a feature and has to evaluate to true only if its related feature is selected
in a configuration. This relation may be expressed by adding further guard expressions over the related
features to the constraint [17, 6, 9]; however, for better readability, we omit those additional clauses in
our example, but rather indicate those relationships by dashed lines. In particular, the feature knowledge
is extended by a feature attribute minLen, the value of which can be explicitly selected by the user
during configuration to adjust the minimal length required for a PIN or a password. In addition, each
feature representing an authentication method is extended with a real-valued feature attribute level. In
contrast to minLen, the values of those feature attributes are not explicitly assignable by the user during
configuration, but are rather implicitly derived from the selected authentication devices through complex
cross-tree constraints. The complex cross-tree constraints in Figure 2 restrict the accumulated level value
of the selected authentication devices (≥ 20 if only low is configured, 3 · low.level if high is selected).
As feature attributes are only present in a configuration if the corresponding feature is selected, we
use a default expression to define values for the case if the corresponding feature is not selected in a
configuration. For example, the default expression token ? token.level : 0 evaluates to the value of
token.level if the feature token is selected and it evaluates to 0 otherwise. By using complex cross-tree
constraints, subtle dependencies among features and their attributes are expressible. As an example, a
lock with a single keycard device is only valid if the option mission security (mSec) is unselected. This
is because authMeth.level would evaluate to 10 which is smaller than the security level 20 required by
the constraints low.level ≥ 20 and authMeth.level ≥ low.level. As a further example, if high mission
security is selected, the lock requires at least one further device in addition to a biometric device in order
to fulfill the complex cross-tree constraint authMeth.level≥ 3 · low.level.

2.3 Concurrent Evolution of Extended Feature Models

As illustrated by our running example, the non-Boolean feature attributes and their corresponding cross-
tree constraints add additional complexity of EFM compared to FODA diagrams, to be handled by the
product-line engineer. This gets even worse by the fact that a product line is meant to be long-living,
thus, requiring continuous feature model evolution [19]. The respective evolution steps (e.g., reflecting
change requests from the customer, etc.) lead to edit operations on feature models for adding, removing
or changing features, attributes and constraints [29].

Figures 3 and 4 show examples for three different feature model edits performed on an excerpt of
the EFM presented in Figure 2, referred to as FM. The intention of the edit (a) (shown on the left of

Frederik Deckwerth, Géza Kulcsár, Malte Lochau, Gergely Varró, Andy Schürr 21

FM mSec

high low
level : R

authMeth.level≥3·low.level

low.level≥20
authMeth.level≥low.level

FMa mSec
minLevel : R

high

authMeth.level≥3·mSec.minLevel

mSec.minLevel≥20
authMeth.level≥mSec.minLevel

FMb mSec

high low
level : R

authMeth.level≥3·(low.level+10)

low.level+10≥20
authMeth.level≥low.level+10

FMab FMbamSec
minLevel : R

high

authMeth.level≥3·(mSec.minLevel+10)

(mSec.minLevel+10) ≥20
authMeth.level≥ (mSec.minLevel+10)

Figure 3: Non-conflicting evolutions of lock EFM

FM mSec

high low
level : R

authMeth.level≥3·low.level

low.level≥20
authMeth.level≥low.level

FMb mSec

high low
level : R

authMeth.level≥3·(low.level+10)

low.level+10≥20
authMeth.level≥low.level+10

FMc mSec

high low
level : R

authMeth.level≥3·low.level·10

low.level·10≥20
authMeth.level≥low.level·10

FMbc mSec

high low
level : R

authMeth.level≥3·((low.level·10)+10)

(low.level·10)+10≥20
authMeth.level≥(low.level·10)+10

FMcb mSec

high low
level : R

authMeth.level≥3·(low.level+10)·10

(low.level+10)·10≥20
authMeth.level≥(low.level+10)·10

Figure 4: Conflicting evolutions of lock EFM

Figure 3) is to replace the low feature and its level feature attribute by a new feature attribute minLevel
with the same assertions, but assigned to the feature mSec. The resulting EFM FMa (left of Figure 3) is a
more compact EFM, with a similar configuration semantics as FM. The edit (b) (right of Figure 3) adds
a constant value 10 to the value of low.level. The resulting EFM is FMb (right of Figure3). The aim of
the edit (c) (on the right of Figure 4) is to refactor the feature model by scaling a feature attribute value
without altering the conditions imposed by the other complex cross-tree constraints. The result of scaling
the low.level feature attribute by factor 10 is FMc, shown on the right of Figure. 4. In practice, evolution
scenarios of extended feature models usually comprise many of such presumably local edits, potentially
even applied concurrently by different stakeholders [1]. It is inevitable to provide means that helps the
developers to distinguish between concurrent edits whose results can be merged without obstructing
feature diagram consistency, and those being potentially conflicting and require manual intervention.
This situation gets even more demanding in the presence of complex cross-tree constraints, as handling
concurrent EFM edits involves both feature tree patterns as well as logical reasoning on complex cross-
tree constraints. For example, the edits (a) and (b) can be merged such that they result in the same EFM
FMab, independent of their application order. This is not obvious because, after edit (a), the low.level
attribute is removed and edit (b) is applied to the new mSec.minLevel attribute to obtain the same result.
On the contrary, edits (b) and (c) are not arbitrarily serializable and, thus, manual prioritization might be
required.

3 Symbolic Graphs and Graph Transformation for EFM Evolution

In this section, we propose the use of a formal, symbolic technique to describe extended feature models
and their evolution to reason about the consistency of concurrent edit operations performed on arbitrary

22 Conflict Detection for Edits on Extended Feature Models

Feature

- sel: Boolean

NatFeatureAttribute

- val: BigInteger

Group

- type: GroupType

ExcludeRelation

«enumeration,EEnum»
GroupType

 ALT = 0
 OR = 1
 OPT = 2
 MAN = 3

RealFeatureAttribute

- val: BigDecimal

+features 0..*

+req 0..*

+nat

0..*
+groups 0..*

+real

0..* +rootFeature

+ex 2

Figure 5: The EFM metamodel

extended feature models. The modeling process consists of the following two phases: (i) Extended
feature models are described as symbolic graphs [22], which combine a graph with a first-order logic
formula, to concisely represent the feature tree structure together with the complex cross-tree constraints
(Section 3.1). (ii) Edit operations on extended feature models are formalized as symbolic graph transfor-
mation rules, which provide a declarative technique to manipulate symbolic graphs (Section 3.2).

3.1 Defining Extended Feature Models as Symbolic Graphs

To define a graph-based modeling language for EFM, we specify a metamodel for feature models with
feature attributes. We extend this language with first-order logic for complex cross-tree constraints. A
metamodel defines the abstract syntax for a graph-based modeling language. Figure 5 shows the EFM
metamodel denoted as a class diagram that provides the building blocks for specifying EFMs. Nodes in
the metamodel define classes (e.g., Feature). Classes can have attributes of a certain sort specifying the
value domain of the attribute (e.g., attribute sel is of sort Boolean). Classes can be connected by associa-
tions which are denoted as arrows. Associations have cardinalities to restrict the number of participating
instances. The EFM metamodel (Figure 5) contains the class Feature, which has an attribute sel of sort
Boolean representing whether a feature is selected in a configuration. Groups are modeled by the class
Group, which has an attribute type of enumeration-sort GroupType that defines the type of the group,
i.e., alternative (ALT), or (OR), optional (OPT), or mandatory (MAN). The classes RealFeatureAttribute
and NatFeatureAttribute for modeling feature attributes have an attribute val for representing the infinite
domain of real and natural numbers, respectively. Further classes for feature attribute domains may be
added to the metamodel if required, e.g., StringFeatureAttribute. The class Group has association fea-
tures to the contained child features. A parent feature is modeled by association groups to the contained
groups. The association req is used to define require edges. The exclude edges are modeled by the class
ExcludeRelation that has the association ex to the two excluding features.

A diagram specified in the modeling language defined by a metamodel is referred to as an instance
model of the metamodel. The nodes and edges in an instance model define objects and links, being
instances of classes and associations of the metamodel defining their corresponding types. Instances of
attributes are called attribute slots providing a location (e.g., in the memory) for a concrete attribute
value of the domain defined by the sort of the corresponding attribute in the metamodel. By defining
instance models of the EFM metamodel, we can model configurations of an EFM by creating instances
of Feature, Group, Real- and NatFeatureAttribute, etc., and assigning attribute values to each attribute
slot. However, to represent an EFM instance prior to its configuration, attribute values must be defined
symbolically in terms of logic formulas, rather than by concrete value assignments. This leads to the
notion of symbolic instance models. A symbolic instance model constitutes a natural extension of models
by combining their graph-based syntax with first-order logic formulas. We denote a symbolic instance

Frederik Deckwerth, Géza Kulcsár, Malte Lochau, Gergely Varró, Andy Schürr 23

mSec:F
sel=smsec

o:G
type=to

m:G
type=tm

high:F
sel=shigh

low:F
sel=slow

hiLev:R
val=vhi

loLev:R
val=vlow

Φccs:=[(shigh ⇒(vameth ≥ 3 · vlow))∧((slow ⇒(vlow ≥ 20)∧(vameth ≥ vlow))]

ΦFM:=[Φopt ∧ Φman ∧ Φccs]

Φopt:=[(to = OPT)]

Φman:=[(tm = MAN)]

FM

Figure 6: Symbolic instance model of lock EFM

f : F

g1 : G g2 : G¬∃
C-1

a : N

f1 : F f2 : F¬∃
C-2

a : R

f1 : F f2 : F¬∃
C-3

Figure 7: EFM well-formedness constraints

model as a pair 〈M,ΦM〉 consisting of an instance model M, whose attribute values are replaced by
variables, and a first-order logic formula ΦM to constrain those variables.

Figure 6 shows a symbolic instance model representing an excerpt of the EFM shown in Figure 2. The
model is denoted as an object diagram where objects are represented as nodes labeled with an identifier
for the object followed by a colon and the corresponding class of the object. Attribute slots of an object
are denoted below the horizontal line and are labeled with the corresponding attribute followed by the
assigned variable. Due to space restrictions, we abbreviate class and object names, where F stands for
Feature, G for Group, R for RealFeatureAttribute and ameth for authMeth. The corresponding types
of the links are not shown as they are unambiguously defined by the classes of the source and target
objects. For better readability, the formula ΦFM is partitioned in the conjunction of the terms Φopt, Φman,
and Φccs, where ∧, ∨,⇒ and⇔ denotes the logical connectives as usual. The term Φopt sets the types
of the group o to optional (OPT) and the term Φman sets the type of group m to mandatory (MAN).
The complex cross-tree constraints are defined in Φccs. To guarantee that a symbolic model of an EFM
is well-formed, we define further well-formedness constraints to forbid certain patterns in a symbolic
instance model. The EFM well-formedness constraints are shown in Figure 7:
C-1 No Feature is contained in two Groups.
C-2 No NatFeatureAttribute is contained in two different Features.
C-3 No RealFeatureAttribute is contained in two different Features.

In general, a well-formedness constraint ¬∃C consists of a pattern C. A symbolic EFM instance
〈FM,ΦFM〉 satisfies a well-formedness constraint ¬∃C if no matching for C in FM exists, i.e., no map-
ping of the elements of C to the elements of a subgraph of FM with identical graph structure and types.
For instance, the symbolic EFM instance model in Figure 6 is well-formed.

3.2 Defining EFM Edits by Symbolic Graph Transformation

We define EFM edits by the rule-based technique of graph transformation. Graph transformation (GT)
provides a pattern-based manipulation of graph-based models [12]. Applying a transformation rule to an
instance model replaces a part of that instance model. A symbolic GT rule r = (LHS,RHS,Φ) consists of
a left-hand side pattern (LHS), a right-hand side pattern (RHS) and a first-order logic formula Φ [22]. The
LHS of a rule defines the application context to be matched in a symbolic instance model for applying
the rule. Figure 8 depicts the EFM edit rules specifying the symbolic graph transformation rules for the
EFM edits presented in Section 2.3. The LHS pattern of rule ra, depicted in Figure 8a (left to the arrow),
specifies that a symbolic instance model has to contain at least one feature (to match f1) that is parent of
a group (to match man) that has a child feature (to match f2) with a RealFeatureAttribute (to match a2).

The application of a rule r at a matching of the LHS in a symbolic instance model replaces the

24 Conflict Detection for Edits on Extended Feature Models

f1 : F
sel=s1

man : G
type=tman

f2 : F
sel=s2

a2 : R
val=v2

f1 : F
sel=s1

a1 : R
val=v1

Φa:=[(tman=MAN) ∧ (s1 ⇒ (v1=v2))]

(a) Edit rule ra (b) Edit rules rb (top) and rc (bottom)

Figure 8: The EFM edit rules

matching of the LHS by the RHS and adding the formula of the rule by conjuncting its image with the
formula of the model. More specifically, a rule r is applied at a matching m to a symbolic instance model
〈M,ΦM〉 leading to the symbolic instance model 〈M′,Φ′M〉 (denoted as 〈M,ΦM〉 r@m

=⇒ 〈M′,Φ′M〉) by

(i) removing elements from M that can be mapped to LHS but not to RHS,
(ii) adding elements that can be mapped to RHS but not to LHS resulting in the model M′, and

(iii) constructing the resulting formula Φ′M as the conjunction ΦM ∧σ ′(Φ) of the formula ΦM and the
image σ ′(Φ) of the formula Φ that is obtained by substituting the variables in Φ according to the
mapping of the variables from RHS to M′.

If the resulting formula Φ′M is satisfiable and the resulting model M′ does not contain dangling links (i.e.,
links whose source or target object was deleted), the rule application returns the symbolic instance model
〈M′,Φ′M〉 and the rule application is invalid otherwise. Figure 9 shows the result of applying edit rule
ra (Figure 8a) to the EFM FM (Figure 6). The rule ra is applied at the matching given by the following
object mapping: (f1→mSec), (man→m), (f2→ low), and (a2→ loLev). The rule is applied by

(i) removing objects m, low, and lowLev and their links and attribute slots with no image in RHS,
(ii) creating a new RealFeatureAttribute minLevel and assigning the new variable vmin to minLevel.val,

(iii) obtaining new formula ΦFMa as conjunction of ΦFM and σ ′(Φa).

The formula σ ′(Φa) is obtained by substituting the variables in the formula Φa of the rule according to the
following mapping: (s1→ smsec), (tman→ tm), (s2→ slow), and (v2→ vlow). The rule application is valid
as there are no dangling links and the resulting formula ΦFMa is satisfiable. Note that although we delete
the objects with their attribute slots, variables and their corresponding formulas are not deleted. Attribute
values are changed by assigning a new variable to an attribute slot, whose value is defined by adding a
new first-order clause. Based on the representation of EFM edits as symbolic graph transformation rules,
we can apply a recently proposed criterion [18] to detect conflicting pairs of edit operations. Two (edit)
rules r1 and r2 are non-conflicting if

(i) for all symbolic models M and all matchings m1 and m2, such that rules r1 and r2 can be applied to
M, the rule applications lead to the symbolic models M1 and M2, respectively, and

(ii) there exist matchings m′1 and m′2 for applying r1 to M2 and r2 to M1, such that the resulting se-

quences M r1@m1=⇒ M1
r2@m′2=⇒ M12 and M r2@m2=⇒ M2

r1@m′1=⇒ M21 lead to equivalent results M12 and M21.

Two rules are conflicting if there exists a model and matchings with no such sequences.

Frederik Deckwerth, Géza Kulcsár, Malte Lochau, Gergely Varró, Andy Schürr 25

mSec:F
sel=smsec

o:G
type=to

high:F
sel=shigh

hiLev:R
val=vhi

minLevel:R
val = vmin

Φccs:=[(shigh ⇒(vameth ≥ 3 · vlow))∧((slow ⇒(vlow ≥ 20)∧(vameth ≥ vlow))]

ΦFM:=[Φopt ∧ Φman ∧ Φccs]

Φopt:=[(to = OPT)]

Φman:=[(tm = MAN)]

σ′(Φa):=[(tm=MAN)∧
(smsec ⇒ (vmin = vlow))]

ΦFMa:=[ΦFM∧ σ′(Φa)]

FMa

Figure 9: The result FMa, from applying rule r1 to FM

4 A Conflict Detection Approach

In this section, we present a conflict detection approach that operates on rules at specification time by
performing an analysis on all pairs of rules and categorizing them as conflicting or non-conflicting. The
analysis is carried out as follows: (i) For each pair of rules, (symbolic) instance models (i.e., minimal
application contexts [14]) are constructed by gluing together the left-hand sides of the rules along all
their possible type-conforming subgraphs. These instance models are considered as representatives for a
possible conflict (Section 4.1). (ii) The pair of rules under investigation is applied in both possible orders
on each instance model representative (minimal application context), and the equivalence of the results of
these rule application sequences is checked. If any of these checks fails (i.e., reveals the non-equivalence
of the resulting instance models), then the analyzed pair of rules is conflicting (Section 4.2).

4.1 Constructing Minimal Instance Models

For each pair of rules, we construct instance models as minimal application contexts by gluing together
the left-hand sides of the rules along all their possible type-conforming subgraphs. Formally, a minimal
application context (AC,m1,m2) of rules r1 = (LHS1,RHS1,Φ1) and r2 = (LHS2,RHS2,Φ2) is a minimal
instance model AC together with the matchings m1 and m2 of the left-hand sides LHS1 and LHS2 to the
minimal application context AC, respectively. The construction process might produce minimal instance
models that violate the EFM well-formedness constraints. These invalid instance models are filtered out
and not considered anymore in the further analysis. Figure 10 shows all minimal application contexts for
the rules ra and rb constructed as possible gluings (shown by the bold framed elements) of the left-hand
sides LHSa and LHSb. For example, the minimal instance model ACa (Figure 10a) is built by gluing the
nodes f2 and a2 (and the edge between them) in the left-hand side LHSa to the nodes fx and ax (and to
the corresponding edge) of the left-hand side LHSb, respectively. The remaining part (i.e., f1 and man)
of that minimal instance model ACa originates from the left-hand side LHSa and these elements do not
have corresponding elements in LHSb. The minimal instance model ACe is not a well-formed EFM as
features f2 and fx share the same feature attribute a2x, thus, violating the constraint C-3.

4.2 Applying Rules on Minimal Contexts

For each minimal application context (〈AC, true〉,m1,m2) of the rules r1 and r2, we have to check whether
we can derive application sequences

〈AC, true〉 r1@m1=⇒ 〈AC1,Φ1〉
r2@m′2=⇒ 〈AC12,Φ12〉 and 〈AC, true〉 r2@m2=⇒ 〈AC2,Φ2〉

r1@m′1=⇒ 〈AC21,Φ21〉

26 Conflict Detection for Edits on Extended Feature Models

f1 : F
sel=s1

man : G
type=tman

f2x : F
sel=s2x

a2x : R
val=v2x

(a) ACa

f1x : F
sel=s1x

man : G
type=tman

f2 : F
sel=s2

a2 : R
val=v2

ax : R
val=vx

(b) ACb

f1x : F
sel=s1x

man : G
type=tman

f2 : F
sel=s2

a2x : R
val=v2x

(c) ACc

f1 : F
sel=s1

man : G
type=tman

f2x : F
sel=s2x

a2 : R
val=v2

ax : R
val=vx

(d) ACd

f1 : F
sel=s1

man : G
type=tman

f2 : F
sel=s2

a2x : R
val=v2x

fx : F
sel=sx

(e) ACe

Figure 10: Minimal application contexts of the rule ra and rb

such that the resulting symbolic instance models 〈AC12,Φ12〉 and 〈AC21,Φ21〉 are equivalent. If such a
sequence exists for all minimal application contexts of the two rules, the rules are non-conflicting.

Deriving application sequences. First, the rules r1 and r2 are applied at the matchings m1 and m2 to
〈AC, true〉. If at least one rule application is invalid, the presence of this minimal application context in
a model cannot lead to a conflict. Otherwise the rule applications lead to the symbolic instance models
〈AC1,Φ1〉 and 〈AC2,Φ2〉. In the second step, the application sequences are derived by finding matchings
m′1 and m′2 such that r1 and r2 are applicable to 〈AC2,Φ2〉 and 〈AC1,Φ1〉, leading to the symbolic instance
models 〈AC21,Φ21〉 and 〈AC12,Φ12〉, respectively. If at least one of the matchings m′1 or m′2 does not exist
such that the rules can be applied, r1 and r2 are conflicting and the analysis can be stopped.

Checking equivalence of the results. Two symbolic instance models are equivalent if they have
isomorphic graph parts and equivalent logic formulas. As the mapping of the graph parts determines the
mapping of the variables as well, we have to bind those variables in 〈AC12,Φ12〉 and 〈AC21,Φ21〉 that
are not assigned to any attribute slot and do not originate from 〈AC, true〉. These auxiliary variables can
potentially be assigned to any value (i.e., the values are only constrained by the formula) and are bound
in the formulas by existential quantification. Figure 11 shows this technique for rules ra and rb with
minimal application context (〈ACa, true〉,ma,mb). The application sequences

〈ACa, true〉 ra@ma=⇒ 〈ACa
a ,Φa〉

rb@m′b=⇒ 〈ACa
ab,Φab〉 and 〈ACa, true〉 rb@mb=⇒ 〈ACa

b ,Φb〉
ra@m′a=⇒ 〈ACa

ba,Φba〉

are derived. To compare the resulting symbolic instance models, v1 and v′c in 〈ACa
ab,Φab〉 and 〈ACa

ba,Φba〉,
respectively, have to be bound as they are auxiliary variables, i.e., they are not assigned to an attribute
slot and do not appear in 〈ACa, true〉. Binding v1 leads to the expression ∃v1 : Φab being equivalent to

(tman=MAN)∧ (s1⇒ (v′x−10 = v2x)),

as there exists a value for v1 only if v1 = v′x−10. Binding v′x leads to ∃v′x : Φba equivalent to

(tman=MAN)∧ (s1⇒ (v1 = v2x +10)).

Thereupon, we check whether ACc
ab and ACc

ba are isomorphic, which is the case (simply mapping f1 to f1
and a1 to a1). Based on the mapping of the objects, we can find a variable mapping σab→ba: (s1→ s1),
(tman→ tman), (v2x→ v2x), and (v′x→ v1). In order to show that the formulas are equivalent, we have to
check σab→ba(∃v1 : Φab)⇔∃v′x : Φab that is

(tman=MAN) ∧ (s1 ⇒ (v1 − 10 = v2x)) ⇔ (tman=MAN) ∧ (s1 ⇒ (v1 = v2x + 10)),

which always holds. For the minimal application context ACb, it can be shown in the same way that no
conflict occurs. ACd does not lead to a conflict as the application of rule ra is invalid as it would produce

Frederik Deckwerth, Géza Kulcsár, Malte Lochau, Gergely Varró, Andy Schürr 27

ACc
f1 : F
sel=s1

man : G
type=tman

f2x : F
sel=s2x

a2x : R
val=v2x

ACc
a f1 : F

sel=s1

a1 : R
val=v1

Φa:=[(tman=MAN)∧
(s1 ⇒ (v1 = v2x))]

ACc
b f1 : F

sel=s1

man : G
type=tman

f2x : F
sel=s2x

a2x : R
val=v′x

Φb:=[v′
x = v2x + 10]

ACc
ab f1 : F

sel=s1

a1 : R
val=v′x

Φab:=[(tman=MAN)∧
(s1 ⇒ (v1 = v2x))∧
(v′

x = v1 + 10)]

ACc
ba f1 : F

sel=s1

a1 : R
val=v1

Φba:=[(tman=MAN)∧
(s1 ⇒ (v1 = v′

x)∧
(v′

x = v2x + 10))]

r a
@
m
a

r
b @

m
b

rb@m′
b ra@m′

a

Figure 11: Conflict detection for rules ra and rb

O
ur

 A
pp

ro
ac

h

SMT Logic

Graph

Transformation

powered by
 Democles

Reasoning

1

2

3

DC

SMT

CPA

Z3

〈AC, true〉

〈AC1,Φ1〉 〈AC2,Φ2〉

r 1
@
m

1
r
2 @

m
2

〈AC1,Φ1〉 〈AC2,Φ2〉

〈AC12,Φ12〉 〈AC21,Φ21〉'

r
1
@
m

′ 1

r
2
@
m

′2

(∃v1, . . . , vn : Φ12) ⇔ (∃v′1, . . . , v′m : Φ21)

Figure 12: Implementation architecture

dangling links: the link between f2x and ax becomes dangling after deleting f2x by the rule application.
The minimal application contexts ACc and ACe are not well-formed as both violate well-formedness
constraint C-3, i.e. they share a feature attribute. Consequently, rules ra and rb are not conflicting as
there exists no minimal application context that causes a conflict. The proposed approach is based on the
fact that the application of a graph transformation rule only affects the part of a model that is included in
the application context of the rule. In order to ensure that symbolic graph transformation rules applied to
symbolic instance models have only local effects, we require that the application of a rule to a symbolic
instance model only adds constraints concerning fresh variables. More specifically, a symbolic graph
transformation rule r = (LHS,RHS,Φ) can be handled by our approach if the expression ∀v1, . . . ,vn : Φ

is satisfiable, where v1, . . . ,vn are those variables appearing in the LHS part of the rule. The domain of
any fresh variable is unaffected by this restriction. Hence, we can modify the value of any attribute by
assigning a fresh variable to the corresponding attribute slot that can be constrained arbitrarily.

5 Implementation and Evaluation

The proposed approach is implemented by combining graph transformation with an SMT solver. We
used our model transformation tool eMoflon [3] to apply rules and the Z3 SMT solver [21] to carry
out logic reasoning. The Z3 SMT solver supports quantification and equality for non-linear arithmetics
over real and natural numbers. Figure 12 shows the architecture of our implementation, which consists
of three basic modules. The first module performs critical pair analysis (CPA) À, which is a standard
conflict detection technique [12] to derive the initial pair of rule applications. In our approach, CPA
serves as a filter to reduce the number of minimal application contexts to be further analysed. The
direct confluence (DC) module Á searches for a second pair of rule applications that lead to isomorphic

28 Conflict Detection for Edits on Extended Feature Models

ra rb rc

ra 7

rb (7) (7)
rc (7) 7 (7)

(a) CPA

ra rb rc

ra 7

rb 3 3

rc (7) 7 3

(b) Our approach

Table 1: Conflict detection accuracy results

CPA [%] DC [%] SMT [%] Total [ms]

ra – ra 97 3 0 17
ra – rb 3 31 66 201
ra – rc 1 1 98 10924
rb – rb 1 32 67 97
rb – rc 1 30 69 97
rc – rc 1 32 67 91

Table 2: Execution times of conflict detection

graphs. If such a second rule application pair is found, the variable mapping is handed over to the SMT
module Â that creates the formula and invokes the SMT solver for the equivalence check. We evaluate
our approach by comparing it to CPA, the prevalent standard approach to conflict detection. In our
evaluation, the accuracy (i.e., the number of recognized non-conflicting rule pairs) and the execution
time of both approaches have been assessed.

Table 1 shows the accuracy results for the two conflict detection approaches. A pair of non-conflicting
rules is denoted by 3, a 7 marks a conflicting pair of rules, and (7) denotes false positives, namely, pairs
of rules that are recognized as conflicting by the algorithms, although they are non-conflicting according
to our definition. The upper right of the tables has been grayed out as conflict analysis is order-insensitive.
As shown in Table 1a, CPA categorizes all pairs of the edits ra, rb and rc as conflicting. Note that CPA
only considers the graph part and reports a conflict whenever one of the two analyzed edit rules reassigns
a variable that is in the matching of the other rule. In this way, CPA is sound (i.e., it recognizes every
conflicting pair of rules) but less precise as it does not take the semantics of the changes into account.
The accuracy results of our approach are presented in Table 1b. Our technique categorizes 3 pairs of rules
as non-conflicting. Only the pair ra – rc is incorrectly considered as a conflict. In this case, the SMT
solver was unable to determine the equivalence of the formulas, i.e., the SMT solver returns UNKNOWN
(due to undecidability of first-order logics). Such cases are reported as conflicts (even if edit rules may
be non-conflicting) in order to guarantee the soundness of our approach.

Table 2 presents the measured execution times for each pair of edits. Measurements were performed
on a computer with an Intel Core i-7-2600-3.4GHz processor. Analysis was run 100 times for each
pair of rules. To compensate the just-in-time optimization performed by the Java virtual machine, only
the last 50 runs were included in the presented measurement results. The first three columns show the
percentage of overall execution time for the three modules, and the last column contains the average of
overall execution times in the last 50 runs. The improved conflict detection approach is in average 4 times
slower than CPA, where approximately 2/3 of the additional time is used by the SMT solver. However,
the overall execution times are in most cases (except for ra – rc) below 200 ms. The outlier ra – rc is
caused by the fact that the SMT solver is unable to check the equivalence of the formulas and timeouts
after 10 seconds. The pair ra – ra constitutes another extreme, where the most time is spent for CPA and
the SMT solver is not even executed. The considerable time spent on CPA can be explained by the fact
that the left-hand side of edit rule ra has the largest pattern in our setup, thus, gluing the pattern with itself
produces the highest number of minimal application contexts. For ra – ra, no logic reasoning is required
as accidentally, for the first minimal context, the derivation of the second pair of rule applications is not
possible due to dangling links. Thus, the rules are in conflict.

Threats to validity. We conducted our experiments on a selected case study from the security system
domain, including sample edit operations observed in a real-world application scenario. However, con-
cerning the significance of those results with respect to other application domains, further experiments

Frederik Deckwerth, Géza Kulcsár, Malte Lochau, Gergely Varró, Andy Schürr 29

have to be conducted. Regarding the scalability of the approach, the complexity of the underlying ana-
lysis problem is mainly caused by the number and size of the rules under consideration. We assume that
in a typical application scenario, the number of the rules might be much larger than in our experiments,
but the size of the rules is presumably similar. Note that the approach operates on rule level, therefore,
its run-time complexity is only influenced by the rule size but is independent of the size of the feature
model. Concerning the overall soundness of the approach, our improved conflict detection used in this
paper has been proven sound in our previous work [18]. Finally, threats to external validity may arise
from the usage of off-the-shelf SMT solver capabilities. However, Z3 is a well-established SMT solver
which is widely used in many projects and known for producing reliable results.

6 Related Work

Formalization of Extended Feature Models. Recent approaches for formalizing feature model config-
uration semantics either rely on translations into equivalent constraint problems, including SAT [4, 20],
CSP [6], and BDD [1], or on algebraic representations, e.g., using set theory [27]. Extending feature
models with non-Boolean feature attributes and constraints already has been proposed by Kang et al. in
the initial FODA feasibility study in [16] and was further elaborated by Czarnecki et al. [11]. In Passos
et al. [24], a systematic study on the usage of non-Boolean features in various case studies is presented.
However, no generally accepted syntax and semantics for non-Boolean features exist.

Benavides et al. [6] propose a direct translation of feature models with non-Boolean feature attributes
into an equivalent CSP representation. In contrast, Bürdek et al. [9], as well as Karatas et al. [17] propose
a transformation (of a restricted sublanguage) of non-Boolean feature constraints into Boolean feature
model fragments for applying existing constraint solvers [9, 17]. Both approaches are limited to attributes
over finite value domains and a restricted set of algebraic operations on attributes within constraints.
Edits on Feature Models. McGregor was one of the first who pointed out the necessity of continuous
evolution of software product lines due to their inherently long-living nature [19]. Following this obser-
vation, various researchers have proposed approaches for systematically evolving software product lines,
starting from changes in terms of edit operations to the underlying feature model. For instance, Elsner
et al. identify different types of product-line evolution scenarios based on frequent changes observed
in evolving real-world systems [13]. Similar to our approach, the EvoFM approach of Botterweck et
al. support the specification and modularization of feature model edits in terms of change rules [8, 7].
In contrast, Seidl et al. define modify patterns on feature models in terms of model deltas and provide
a mapping onto solution space artifacts affected by the changes [28]. However, both approaches are
limited to predefined collections of basic syntactic edit operations on feature models with no support for
Boolean features and respective constraints.

Concerning the semantic impact of feature model changes, the approach of Alves et al. ensures the
preservation of feature model configuration semantics by proposing a catalog of sound feature model
refactoring patterns [2]. More generally, Thüm et al. present an approach for reasoning about the seman-
tic impact of arbitrary feature model edits using a SAT solver [29]. Henard et al. present a framework for
feature model mutation aiming at generating effective product samples for product-line testing [15]. The
framework comprises basic mutation operators to inject local changes into the SAT-based representation
of feature models for simulating faulty product-line changes. Again, all those approaches are limited
to feature models with Boolean features and corresponding constraints. Concerning extended feature
models, Quinton et al. recently proposed an approach for ensuring consistency-preserving evolutions
of cardinality-based feature models, again, on the basis of a translation into SAT-based representations,

30 Conflict Detection for Edits on Extended Feature Models

whereas non-Boolean attributes are out of scope [26].
Conflict Detection on Graph Transformation Rules with Attributes. The approach of Cabot et al. [10]
presents a fully-fledged graph transformation tool framework which also incorporates a conflict detection
technique for attributed graph transformation rules. Nevertheless, the approach is based on a preceding
translation of the rules into OCL expressions and, consequently, the used formalism and techniques
are not suitable in our symbolic setting. Critical Pair Analysis has been extended to attributed graph
transformation on term-attributed graphs in [14]. Although this approach can handle arbitrary attribute
domains, the transformation of term-attributed graphs requires term unification to be performed at every
derivation step, which restricts the practical applicability of the approach. Contrary, in the symbolic case,
the formula is constructed stepwise at the syntactic level and is validated afterwards using SMT solvers.

7 Conclusion

In this paper, we presented a systematic approach for detecting conflicts of concurrent edit operations
on extended feature models based on symbolic graph transformation to support the consistent evolu-
tion of long-living software product lines. The approach has been implemented by combining the graph
transformation tool eMoflon with the Z3 SMT solver. Our experiments show a promising improvement
concerning accuracy. We observed a remarkable reduction of false positives compared to a conventional
conflict detection approach based on Critical Pair Analysis. For future work, we plan to conduct experi-
ments using larger rule sets gained from an industrial case study from the automation domain [9]. Also,
we plan to investigate the possible conflicts of more than two parallel edit operations. In the unattributed
case, pairwise analysis suffices, however, it is an open problem in the presence of attributes.

References
[1] Ebrahim Khalil Abbasi, Arnaud Hubaux & Patrick Heymans (2011): A Toolset for Feature-Based Configu-

ration Workflows. In: Proc. of SPLC’11, IEEE, pp. 65–69, doi:10.1109/SPLC.2011.41.
[2] Vander Alves, Rohit Gheyi, Tiago Massoni, Uirá Kulesza, Paulo Borba & Carlos Lucena (2006): Refactoring

Product Lines. In: Proc. of GPCE’06, doi:10.1145/1173706.1173737.
[3] A. Anjorin, M. Lauder, S. Patzina & A. Schürr (2011): eMoflon: Leveraging EMF and Professional CASE

Tools. In: 3. Workshop Methodische Entwicklung von Modellierungswerkzeugen (MEMWe2011).
[4] Don Batory (2005): Feature Models, Grammars, and Propositional Formulas. In: Proc. of SPLC’05, pp.

7–20, doi:10.1007/11554844 3.
[5] David Benavides, Sergio Segura & Antonio Ruiz-Cortés (2010): Automated Analysis of Feature Models 20

Years later: A Literature Review. Information Systems 35, doi:10.1016/j.is.2010.01.
[6] David Benavides, Pablo Trinidad & Antonio Ruiz-Cortés (2005): Automated Reasoning on Feature Models.

In: CAiSE, pp. 491–503, doi:10.1007/11431855 34.
[7] G. Botterweck & A. Pleuss (2014): Evolution of Software Product Lines. In: Evolving Software Systems,

pp. 265–295, doi:10.1007/978-3-642-45398-4 9.
[8] G. Botterweck, A. Pleuss, D. Dhungana, A. Polzer & S. Kowalewski (2010): EvoFM: Feature-driven Plan-

ning of Product-line Evolution. In: ICSE Workshop on Product Line Approaches in Software Engineering,
ACM, pp. 24–31, doi:10.1145/1808937.1808941.

[9] Johannes Bürdek, Sascha Lity, Malte Lochau, Markus Berens, Ursula Goltz & Andy Schürr (2013): Staged
Configuration of Dynamic Software Product Lines with Complex Binding Time Constraints. In: Proceedings
of the Eighth International Workshop on Variability Modelling of Software-Intensive Systems, VaMoS ’14,
ACM, New York, NY, USA, pp. 16:1–16:8, doi:10.1145/2556624.2556627.

http://dx.doi.org/10.1109/SPLC.2011.41
http://dx.doi.org/10.1145/1173706.1173737
http://dx.doi.org/10.1007/11554844_3
http://dx.doi.org/10.1016/j.is.2010.01
http://dx.doi.org/10.1007/11431855_34
http://dx.doi.org/10.1007/978-3-642-45398-4_9
http://dx.doi.org/10.1145/1808937.1808941
http://dx.doi.org/10.1145/2556624.2556627

Frederik Deckwerth, Géza Kulcsár, Malte Lochau, Gergely Varró, Andy Schürr 31

[10] Jordi Cabot, Robert Clarisó, Esther Guerra & Juan de Lara (2010): A UML/OCL Framework for the Analysis
of Graph Transformation Rules. SoSyM 9(3), pp. 335–357, doi:10.1007/s10270-009-0129-0.

[11] Krysztof Czarnecki & Ulrich Eisenecker (2000): Generative Programming: Methods, Tools, and Applica-
tions. Addison-Wesley Professional.

[12] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange & Gabriele Taentzer (2006): Fundamentals of Algebraic Graph
Transformation. Springer, doi:10.1007/3-540-31188-2.

[13] Christoph Elsner, Goetz Botterweck, Daniel Lohmann & Wolfgang Schröder-Preikschat (2010): Variability
in Time - Product Line Variability and Evolution Revisited. In: VaMoS’10, ACM.

[14] Reiko Heckel, Jochen Malte Küster & Gabriele Taentzer (2002): Confluence of Typed Attributed Graph
Transformation Systems. In: Proc. of ICGT’02, Springer, pp. 161–176, doi:10.1007/3-540-45832-8 14.

[15] C. Henard, M. Papadakis, G. Perrouin, J. Klein & Y. Le Traon (2013): Assessing Software Product Line Test-
ing Via Model-Based Mutation: An Application to Similarity Testing. In: ICST, Verification and Validation
Workshops (ICSTW’13), pp. 188–197, doi:10.1109/ICSTW.2013.30.

[16] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak & Spencer A. Peterson (1990): Feature
Oriented Domain Analysis (FODA). Technical Report, CMU.

[17] Ahmet Serkan Karataş, Halit Oğuztüzün & Ali Doğru (2010): Mapping Extended Feature Models to Con-
straint Logic Programming over Finite Domains. In: SPLC’10, Springer, pp. 286–299, doi:10.1007/978-3-
642-15579-6 20.

[18] Géza Kulcsár, Frederik Deckwerth, Malte Lochau, Gergely Varró & Andy Schürr (2015): Improved Con-
flict Detection for Graph Transformation with Attributes. In: Proc. of GaM’15, EPTCS, pp. 97–112,
doi:10.4204/EPTCS.181.7.

[19] John McGregor (2003): The Evolution of Product Line Assets. Technical Report CMU/SEI-2003-TR-005,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.

[20] Marcı́lio Mendonça, Andrzej Wasowski & Krzysztof Czarnecki (2009): SAT-based Analysis of Feature Mod-
els is Easy. In: 13th SPLC, pp. 231–240, doi:10.1145/1753235.1753267.

[21] Leonardo de Moura & Nikolaj Bjørner (2008): Z3: An Efficient SMT Solver. In: Tools and Algorithms for
the Construction and Analysis of Systems, Springer, pp. 337–340, doi:10.1007/978-3-540-78800-3 24.

[22] Fernando Orejas & Leen Lambers (2012): Lazy Graph Transformation. Fundam. Inf. 118(1-2), pp. 65–96,
doi:10.3233/FI-2012-706.

[23] David Lorge Parnas (1994): Software Aging. In: Proc. of ICSE’94, Los Alamitos, CA, USA, pp. 279–287,
doi:10.1109/ICSE.1994.296790.

[24] Leonardo Passos, Thorsten Berger, Marko Novakovic, Krzysztof Czarnecki, Yingfei Xiong & Andrzej Wa-
sowski (2011): A Study of non-Boolean Constraints in Variability Models of an Embedded Operating System.
In: SPLC WS, pp. 21–28, doi:10.1145/2019136.2019139.

[25] Leonardo Passos, Leopoldo Teixeira, Nicolas Dintzner, Sven Apel, Andrzej Wasowski, Krzysztof Czarnecki,
Paulo Borba & Jianmei Guo (2015): Coevolution of Variability Models and Related Software Artifacts. Em-
pirical Software Engineering, pp. 1–50, doi:10.1007/s10664-015-9364-x.

[26] Clément Quinton, Andreas Pleuss, Daniel Le Berre, Laurence Duchien & Goetz Botterweck: Consistency
Checking for the Evolution of Cardinality-based Feature Models. In: Proc. of SPLC’14, ACM, pp. 122–131,
doi:10.1145/2648511.2648524.

[27] Pierre-Yves Schobbens, Patrick Heymans & Jean-Christophe Trigaux (2006): Feature Diagrams: A Survey
and a Formal Semantics. In: Proc. of RE’06, doi:10.1109/RE.2006.23.

[28] Christoph Seidl, Florian Heidenreich & Uwe Aßmann (2012): Co-evolution of Models and Feature Mapping
in Software Product Lines. In: SPLC, ACM, pp. 76–85, doi:10.1145/2362536.2362550.

[29] Thomas Thüm, Don Batory & Christian Kästner (2009): Reasoning About Edits to Feature Models. In: Proc.
of ICSE’09, IEEE Computer Society, Washington, DC, USA, pp. 254–264, doi:10.1109/ICSE.2009.5070526.

[30] David M. Weiss (2008): The Product Line Hall of Fame. In: SPLC, IEEE, p. 395, doi:10.1109/SPLC.2008.56.

http://dx.doi.org/10.1007/s10270-009-0129-0
http://dx.doi.org/10.1007/3-540-31188-2
http://dx.doi.org/10.1007/3-540-45832-8_14
http://dx.doi.org/10.1109/ICSTW.2013.30
http://dx.doi.org/10.1007/978-3-642-15579-6_20
http://dx.doi.org/10.1007/978-3-642-15579-6_20
http://dx.doi.org/10.4204/EPTCS.181.7
http://dx.doi.org/10.1145/1753235.1753267
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.3233/FI-2012-706
http://dx.doi.org/10.1109/ICSE.1994.296790
http://dx.doi.org/10.1145/2019136.2019139
http://dx.doi.org/10.1007/s10664-015-9364-x
http://dx.doi.org/10.1145/2648511.2648524
http://dx.doi.org/10.1109/RE.2006.23
http://dx.doi.org/10.1145/2362536.2362550
http://dx.doi.org/10.1109/ICSE.2009.5070526
http://dx.doi.org/10.1109/SPLC.2008.56

	1 Introduction
	2 Background and Motivation
	2.1 Feature Models
	2.2 Extended Feature Models
	2.3 Concurrent Evolution of Extended Feature Models

	3 Symbolic Graphs and Graph Transformation for EFM Evolution
	3.1 Defining Extended Feature Models as Symbolic Graphs
	3.2 Defining EFM Edits by Symbolic Graph Transformation

	4 A Conflict Detection Approach
	4.1 Constructing Minimal Instance Models
	4.2 Applying Rules on Minimal Contexts

	5 Implementation and Evaluation
	6 Related Work
	7 Conclusion

