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Progress in the behavioral analysis of software product lines at the family level benefits from further
development of the underlying semantical theory. Here, we propose a behavioral equivalence for
feature transition systems (FTS) generalizing branching bisimulation for labeled transition systems
(LTS). We prove that branching feature bisimulation for an FTS of a family of products coincides
with branching bisimulation for the LTS projection of each the individual products. For a restricted
notion of coherent branching feature bisimulation we furthermore present a minimization algorithm
and show its correctness. Although the minimization problem for coherent branching feature bisim-
ulation is shown to be intractable, application of the algorithm in the setting of a small case study
results in a significant speed-up of model checking of behavioral properties.

1 Introduction

Notions of behavioral equivalence, like bisimulation, play an important role in the analysis of large
systems in general and thus of (software) product lines in particular. Abstractions based on behavioral
equivalences compress, via abstraction operations and minimization algorithms, a model’s state space
prior to verification. Subsequently, verification can be done in less time, using less memory.

Compared to single system verification, SPLE adds variability as yet another dimension to the com-
plexity of behavioral analysis. In general, the number of possible products of a product line is exponential
in the number of features. This calls for dedicated modelingand analysis techniques that allow to specify
and reason about an entire product line at once. In this paperwe consider the model of feature transition
systems [5, 6], which facilitates efficient family-based verification. Dedicated techniques generally use
variability knowledge about valid feature configurations to deduce results for products from a family
model, as opposed to enumerative product-based verification, in which every product is examined indi-
vidually. For example, in [7] behavioral pre-orders of FTS are given with respect to specific products to
define abstractions based on simulation quotients that preserve LTL properties. We refer to [19] for an
overview of verification strategies in SPLE and the trade-off of product-based vs. family-based analysis.

In [3,4] we applied tailored property preserving reductions to a product line modeled with mCRL2 [8]
and we verified by means of model checking a number of behavioral properties of the product line. The
mCRL2 toolset provides specific support for reduction modulo branching bisimulation [14]. This led
us to investigate a feature-oriented notion of branching bisimulation inspired by the research reported
in [7] (which focuses on a notion of simulation). In this paper, we propose a definition of what is
coined branching feature bisimulation, extending the definition in [14], and we seek to adapt the efficient
algorithm of [15] to compute, given an FTS, a minimal FTS thatis branching feature bisimilar.

In our pursuit to transfer the results of [7] to the case of branching bisimulation, a number of issues
arises due to the presence of feature expressions, though. One such issue for FTS is that minimization in
the number of states is not the same as minimization in the number of transitions, a situation that does not
occur with LTS. Our effort here is to reduce in the number of states. In order to make our minimization
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algorithm work, we restrict to so-called coherent rather than arbitrary branching feature bisimulation
relations. We will prove that our algorithm reduces an FTSS to a minimal FTSSmin for which there
exists a coherent branching feature bisimulation relationfor S andSmin. Moreover, no smaller FTSS′

exists which is also coherent branching feature bisimilar toS. However, as we will argue by a reduction of
graph coloring, the minimization problem is NP-complete for coherent branching feature bisimulations
(and we suspect this is the case for branching feature bisimulation as well). Still, as an evaluation of the
approach for a relatively small toy example illustrates, overall a substantial reduction in computation time
is achieved for bisimulation-enhanced family-based analysis as compared to enumerative product-based
analysis. In particular, for properties involving a limited number of features, verification time using the
family FTS is only a third to a quarter of the time needed to verify all product LTS.

Behavioral equivalences also form the basis of conformancenotions as used for model elaboration by
iterative refinement of partial behavioral models. In SPLE,this allows to relate fully configured product
behavior to family models with optional behavior reflectingproduct variability. Examples are approaches
based on process algebra [20] and on modal transition systems (MTS) [1,2,10]. In [20], a so-called vari-
ant process algebra is introduced, which allows to model family behavior that subsumes the behavior
of all possible product variants. Special-purpose bisimulation relations then allow to compare variants
among each other and against the family. In SPLE, MTS are one of the models used to specify family
behavior encompassing all possible product behavior, represented by those LTS that are implementations
of the MTS (obtained by refinement of admissible behavior). In [10], weak and strong refinement for
MTS as defined in [16] (based on weak and strong bisimulation)are shown to be inadequate for applica-
tions in SPLE (mainly due to the lack of support for unobservable actions and for preserving branching
behavior, respectively) and a novel notion of refinement is introduced preserving the branching structure.
It moreover preserves properties expressed in 3-valued weak µ-calculus. However, its definition is not
operational and algorithms for conformance checking conformance are thus infeasable.

The paper outline is as follows. Building on definitions and an algorithm for branching bisimulation
of LTS reviewed in Section 2, we introduce in Section 3 the notion of branching feature bisimulation
and show its soundness for branching bisimulation with respect to all products. The algorithm for min-
imizing modulo coherent branching feature bisimulation isgiven in Section 4, which also provides an
NP-completeness proof for the minimization problem. A validation of the approach, based on a toy
example of a product line of coffee/soup vending machines isreported in Section 5. Finally, Section 6
briefly wraps up with concluding remarks and future work.

2 Branching bisimulation for labeled transition systems

Strong bisimulation is a cornerstone of the theory of LTS [17], but is often too fine a behavioral equiv-
alence for verification purposes. Application of its minimization algorithm typically reduces the system
under verification only in a limited way. Having this in mind,various weaker notions have been studied
in the literature [11, 12]. In the context of model checking,branching bisimulation as proposed for LTS
by Van Glabbeek & Weijland enjoys a number of appealing properties [13]. We recall and illustrate
its definition, and discuss the outline of a minimization algorithm that returns the smallest LTS that is
branching bisimilar to a given one. To this end, we fix an alphabet of actionsA, distinguish a symbol
τ /∈A, referred to as the silent action, and letAτ =A∪{τ}.

Definition 1. A labeled transition system is a tripleS= (S,→, s∗) with set of states S, transition relation
→⊆ S×Aτ ×S, and initial state s∗ ∈ S.
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(a) For s,s′ ∈ S, we write s=⇒ s′ if ∃n∃s0 · · ·sn : s0 = s∧
(
∀i, 16 i 6 n: si−1

τ
−→ si

)
∧sn = s′.

(b) A symmetric relation R⊆ S×S is called a branching bisimulation relation if∀s,s′, t ∈ S,α ∈ Aτ

such that R(s, t) and s
α
−→ s′, it holds that R(s, t̂ ), R(s′, t ′) and t =⇒ t̂

(α)
−−→ t ′ for somêt, t ′ ∈ S.

(c) Two states s, t of S are called branching bisimilar if R(s, t) for some branching bisimulation rela-
tion R. Notation s≃b t.

Note the notation̂t
(α)
−−→ t ′ used in part (b) of this definition. Following [14], we havet̂

(α)
−−→ t ′ if either

t̂
α
−→ t ′ or α = τ andt̂ = t ′, an elegant trick to allow the transitions

τ
−→ s′ to be matched byt = t̂ = t ′, i.e.

by no transition fort in caseR(s′, t).
In Figure 1 at the left-hand side,s0 andt0 are not branching bisimilar: Clearly states1 is not branching

bisimilar to statet0 sinces1 has nob-transition. But then, the transitiont0
a
−→ t2 cannot be matched by

the transition sequences0 =⇒ s1
a
−→ s2 because the intermediate states1 cannot be related to statet0,

as specifically required by the definition. However, foru0 andv0 at the right-hand side, the transition
v0

a
−→ v1 can be matched byu0 =⇒ u1

a
−→ u4, since in this casev0 andu1 are branching bisimilar. It is

noted thatu0 andv0, but alsos0 andt0, are weakly bisimilar in the sense of Milner [17].

s0

s1 s2

s3

τ b

a

t0

t1 t2 t3

t4

τ a b

a

u0

u1 u2 u3

u4 u5

τ a b

a b

v0

v1 v2

a b

Figure 1: Two non-branching bisimilar states and two branching bisimilar states

An efficient minimization algorithm for branching bisimulation is due to Groote & Vaandrager [15],
based on the partition refinement algorithm of Paige & Tarjan[18]. It involves the notions of a partition
of the set of states, and of a splitter: Consider a finite LTSS= (S,−→ ,s∗) over the action setAτ .

• A partition ofS is a collectionB= { Bi | i ∈ I } of subsets ofSthat disjointly coversS, i.e.
⋃

i∈I Bi =
S, andBi ∩B j =∅ if i 6= j, for all i, j ∈ I . The elements of a partition are referred to as blocks.

• For a partitionB, blocksB,B′ ∈B, andα ∈Aτ we letposα(B,B
′) = { s∈B | ∃ŝ∈B∃s′ ∈B′ : s =⇒

ŝ
α
−→ s′ }, andnegα(B,B

′) = { s∈ B | ∀ŝ∈ B∀s′ ∈ B′ : (s ; ŝ) ∨ (ŝ
α
9 s′) }.

• For blocksB,B′ of a partitionB, the blockB′ is called a splitter ofB for an actionα ∈ Aτ if both
posα(B,B

′) 6=∅ andnegα(B,B
′) 6=∅.

A simplified version of the algorithm of [15] for minimization modulo branching bisimulation starts with
the trivial partitionB= {S} and iterates

while splitterB′ of block B∈B for α ∈Aτ existsdoB := (B\{B}) ∪ {posα(B,B
′), negα(B,B

′)} end

Thus, starting from the trivial partition{S}, having the complete set of statesSas a single block, we keep
refining the partition based on a splitter. Clearly, the algorithm terminates for a finite LTS in at most|S|
many steps. We refer to [15] for a proof of the following result.
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Theorem 2. AssumeBmin is the partition obtained upon termination after applying the algorithm to the
LTSS = (S, −→ , s∗). Define the LTSSmin = (Bmin,→min, B∗) by letting B

α
−→min B′ if there exist s∈ B,

s′ ∈ B′ such that s
α
−→ s′ for B,B′ ∈ B, α ∈ Aτ with B 6= B′ or α 6= τ , and by choosing B∗ such that

s∗ ∈ B∗. ThenSmin is the smallest LTS that is branching bisimilar toS.

In the simplified algorithm sketched above, major part of thecomputation is spent on unfolding of the
relation=⇒ . The algorithm of [15] reduces this by eliminatingτ-cycles and by keeping track, per block,
of so-called bottom states. The complexity of the Groote & Vaandrager algorithm isO(mlogm+m·n),
with n the number of states andm the number of transitions. Typically, for an LTSm≪ n2. It is known
that branching bisimulation preserves the fragment of the modal µ-calculus consisting of CTL∗ minus
the next operator [9]. Therefore, exploiting this fact in practical situations, significant reduction of the
state space and corresponding speed-up of subsequent verification can be obtained by applying hiding of
action followed by the minimization algorithm for branching bisimulation.

In the sequel of this paper, we seek to apply the idea of branching bisimulation (i.e. allowing silent
moves through bisimulation equivalent states but through no other) and its minimization techniques to
the setting of FTS, where not only actions but also feature expressions decorate the transitions.

3 Branching bisimulation for feature transition systems

We fix a finite non-empty setF of features, a subsetP⊆ 2F of products, and again a setAτ including the
silent actionτ . We letB(F) denote the set of boolean expressions overF. We refer to elements ofB(F)
as feature expressions. For a productP∈ P, we useχ(P) to denote its characteristic formula. The notion
of a feature transition system (FTS) was proposed in [6].

Definition 3. A feature transition system (FTS)S is a triple S = (S, θ , s∗), with S the set of states,
θ : S×Aτ ×S→ B(F) the transition constraint function, and s∗ ∈ S the initial state.

For statess,s′ ∈ S, an actionα ∈Aτ and a satisfiable feature expressionψ ∈ B(F), we writes
α |ψ
−−→ s′ if

θ(s,α ,s′) = ψ . We say that a productP∈ P satisfies a feature expressionϕ ∈ B(F) if ϕ is valid when
the boolean variables corresponding to the features ofP are assigned the valuetrue and those not inP
the valuefalse, denoted byP |= ϕ . The equivalence relation∼P onB(F) is given byϕ ∼P ψ iff ∀P∈ P:
P |= ϕ ⇔ P |= ψ . We let B̂(F) = B(F)/∼P. For an FTSS = (S, θ , s∗), we define the reachability
functionρ : S→ B(F) for S to be such that

∀P∈ P : P |= ρ(s) iff ∃n∃s0 · · ·sn∃α1 · · ·αn∃ψ1 · · ·ψn :

s0 = s∗∧ (∀i,16 i 6 n : si−1
αi |ψi
−−−→ si ∧P |= ψi)∧sn = s

for all s∈ S. We note that, for the ease of presentation in this paper, thedefinition of an FTS above is
slightly more abstract compared to the original definition given in [6].

Next, we introduce a notion of branching feature bisimulation for FTS, generalizing the notion of
branching bisimulation given by Definition 1 for LTS.

Definition 4. LetS= (S, θ , s∗) andS′ = (S′, θ ′, s′∗) be two FTS.

(a) For s,s′ ∈ S, and satisfiableη ∈ B(F), we write s
η
=⇒ s′ if ∃n∃s0, . . . ,sn∃η1, . . . ,ηn : s= s0 ∧

∀i,1 6 i 6 n: si−1
τ |ηi
−−→ si ∧ s′ = sn ∧η =

∧
16i6n ηi. Furthermore, we write s

(α|ψ)
−−−→ s′ in case

s
α |ψ
−−→ s′ or α = τ ∧s= s′∧ψ = true.
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(b) A symmetric relation R⊆ S× B̂(F)×S is called a branching feature bisimulation relation forS if
for s, t ∈ S,α ∈Aτ such that R(s, ϕ̂, t) the so-called transfer condition holds:

s
α |ψ
−−→ s′ implies ∃n∃ t̂1, . . . , t̂n∃ t ′1, . . . , t

′
n∃η1, . . . ,ηn∃ψ1, . . . ,ψn∃ϕ1, . . . ,ϕn∃ϕ ′

1, . . . ,ϕ ′
n :

∀i,16 i 6 n: t
ηi
=⇒ t̂i

(α|ψi)
−−−→ t ′i ∧R(s, ϕ̂i, t̂i)∧R(s′, ϕ̂ ′

i , t
′
i ) and

∀P∈ P : P |= ϕ ∧ψ ⇒ P |=
∨

16i6n ηi ∧ψi ∧ϕi ∧ϕ ′
i

(c) Two states s, t ∈ S are called branching feature bisimilar with respect toS if R(s, t̂rue, t) for some
branching feature bisimulation R forS. Notation s≃bf t.

(d) A branching feature bisimulation relation R forS and S′ is called coherent if R(s, ϕ̂ ,s′) implies
ρ(s)⇒ ϕ , for all s∈ S,ϕ ∈ B(F), and s′ ∈ S′. NotationS≃cbf S

′.

The specific subset of coherent branching feature bisimulations will be used as a yardstick of comparison
in the minimization algorithm discussed in Section 4. Intuitively, the feature expressionρ(s) captures all
products that can reach states. Coherency requires thatϕ does not exclude part of these products. So
the ‘products ofs’ are not split byϕ , but treated as a coherent set of products.

Figure 2 depicts the general situation for the transfer condition where a transitions
α |ψ
−−→ s′ is matched

by n transition sequences fromt in total, viz. t
η1
=⇒ t̂1

(α |ψ1)
−−−−→ t ′1 to t

ηn
=⇒ t̂n

(α|ψn)
−−−−→ t ′n. Moreover, for a

productP for which states admits the transition labelledα , i.e. a product satisfying the constraintϕ
derived fromR as well as the feature expressionψ derived from the transition, it is required that statet
provides a related transition sequence labeledα for this product as well. Thus, for somei, 16 i 6 n,
P meetsηi andψi , thus can move fromt to t̂i and t ′i , while P is included by the constraintϕi for the
relation onsandt̂i and by the constraintϕ ′

i on s′ andt ′i .

s

s′

t

t̂1

t ′1

t̂i

t ′i

t̂n

t ′n

ϕ

ϕ1

ϕ ′
1

ϕi

ϕ ′
i

ϕn

ϕ ′
n

α|ψ

η1

(α|ψ1)

ηi

(α|ψi)

ηn

(α|ψn)

Figure 2: Transfer diagram for branching feature bisimilarity

Figure 3 below shows an example of two FTS (withoutτ-moves) at the left-hand side. At first sight
the relationR= { (s0, t̂rue, t0), (s1, ϕ̂1, t1), (s2, ϕ̂2, t1), (s3, t̂rue, t2) } may look like a branching feature

bisimulation. However, a closer inspection of the transition t1
b|(ϕ1∧ψ1)∨(ϕ2∧ψ2)
−−−−−−−−−−−→ t2 reveals that this

means that we need the formulasϕi ∧ ((ϕ1∧ψ1)∨ (ϕ2∧ψ2))⇒ ψi ∧ true to hold for i = 1,2. However,
this only holds whenϕ1∧ϕ2 ⇒ (ψ1 ⇔ ψ2); in that caseR is indeed a branching feature bisimulation.
Reversely, if a product meetsϕ1∧ϕ2∧ψ1∧¬ψ2, there will be a transition fort1 for that product, but not
for s2 as shown by the two LTS at the right-hand side of Figure 3. It isclear that with a transition from
states0 to states2 but without a transition between statess2 ands3, on the one hand, and with a path from
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t0 to t2, on the other hand, the underlying LTS for the two FTS (and therefore the FTS themselves as we
shall see) cannot be bisimilar.

s0

s1

s2

s3 t0 t1 t2

a|ϕ1

a|ϕ2

b|ψ1

b|ψ2

a|ϕ1∨ϕ2

b|(ϕ1∧ψ1)∨ (ϕ2∧ψ2)

s0

s1

s2

s3 t0 t1 t2

a

a

b a

b

Figure 3: Bisimilar FTS assumingϕ1∧ϕ2 ⇒ (ψ1 ⇔ ψ2) and non-bisimilar LTS

For branching feature bisimulation we have a strict correspondence with branching bisimulation for all
products using the notion of a projection of an FTS. The projection results in an LTS.

Definition 5. Given an FTSS= (S, θ , s∗) and a product P∈ P, the projectionSP of S for the product P

is the LTSSP = (S, −→P , s∗), where s
α
−→P s′ if someψ ∈ B(F) exists such that s

α |ψ
−−→ s′ and P|= ψ , for

s,s′ ∈ S andα ∈Aτ .

We uses≃P t to denote thats andt are branching bisimilar states for the projected LTSSP.

Theorem 6. LetS be an FTS with states s and t. It holds that s≃bf t iff s≃P t for all P ∈ P.

Proof. SupposeR⊆ S× B̂(F)×S is a branching feature bisimulation relation withR(s, t̂rue, t). Pick
P∈ P. DefineRP = { (s′, t ′) | ∃ϕ : R(s′, ϕ̂ , t ′)∧P |= ϕ }. We claim thatRP is a branching bisimulation
relation withRP(s, t). ClearlyRP is symmetric andRP(s, t), sinceR(s, t̂rue, t) andP |= true. In order to
verify the transfer condition forRP, supposeRP(s′, t ′) ands′

α
−→P s′′. Pick, with appeal to the definitions

of RP andSP, feature expressionsϕ ,ψ such that (i)R(s′, ϕ̂ , t ′) andP |= ϕ , and (ii)s′
α |ψ
−−→ s′′ andP |= ψ .

SinceR is a branching feature bisimulation, we can findt̂i , ti , ηi , ψi , ϕi andϕ ′
i , for i = 1, . . . ,n, such that

t ′
ηi
=⇒ t̂i

(α|ψi)
−−−→ t ′i ∧R(s′, ϕ̂i , t̂i), R(s′′, ϕ̂ ′

i , t ′i ) and P |=
∨

16i6n ηi ∧ψi ∧ϕi ∧ϕ ′
i

for i = 1, . . . ,n. Choosei such thatP |= ηi ∧ψi ∧ ϕi ∧ ϕ ′
i . Sincet ′

ηi
=⇒ t̂i

(α|ψi)
−−−→ t ′i , P |= ηi ∧ψi ∧ ϕi,

andR(s′′, ϕ̂ ′
i , t

′
i ), we have by definition ofSP andRP thatt ′ =⇒ t̂

(α)
−−→P t ′′i andRP(s′′, t ′i ). Thus,RP satisfies

the transfer condition, as was to be shown.
To prove the reverse implication, pick for eachP ∈ P, a branching bisimulation relationRP such

thatRP(s, t). DefineR⊆ S×B(F)×Sby R= { (s′, ϕ̂, t ′) | ∀P∈ P : P |= ϕ ⇔ RP(s′, t ′) }. We verify that
R is a branching feature bisimulation. Clearly,R(s, t̂rue, t). In order to check the transfer condition forR,

supposeR(s′, ϕ̂ , t ′) ands′
α |ψ
−−→ s′′. Then it holds, for allP ∈ P with P |= ϕ , thatRP(s′, t ′). Moreover,

for all P ∈ P with P |= ψ , we haves′
α
−→P s′′. Thus, for allP ∈ P with P |= ϕ ∧ψ , we can pickt̂P, t ′P

andηP,ψP such thatP |= ηP∧ψP, t ′
ηP
=⇒ t̂P

(α|ψP)
−−−−→ t ′P andRP(s′, t̂P) andRP(s′′, t ′P).

Suppose{ P∈P | P |= ϕ ∧ψ }= { P1, . . . , Pk }. Also, for i = 1, . . . ,k, let t̂i, t ′i andηi,ψi be shorthand
for t̂Pi , t

′
Pi

andηPi ,ψPi , respectively. SincePi |= χ(Pi), RPi(s
′, t̂i) andRPi(s

′′, t ′i ), it holds thatR(s′, ϕ̂i , t̂i) and

R(s′′, ϕ̂ ′
i , t ′i ) for ϕi,ϕ ′

i ∈ B(F) such that̂χ(Pi)⇒ ϕi andχ̂(Pi)⇒ ϕ ′
i . We conclude that, fori = 1, . . . ,k, it

holds thatt ′
ηi
=⇒ t̂i

(α|ψi)
−−−→ t ′′i , R(s′, ϕ̂i, t̂i) andR(s′′, ϕ̂ ′

i , t
′
i ) while P |= ϕ ∧ψ ⇒ P |=

∨
16i6n ηi ∧ψi ∧ϕ ∧ϕ ′,

which verifies the transfer condition forR.
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The theorem asserts the soundness of branching feature bisimulation for FTS with respect to branching
bisimulation for the projected LTS for all products. In the sequel, we propose an algorithm for mini-
mization of an FTS modulo branching feature bisimulation and compare, in a case study, verification of
properties against the minimized FTS to verification of properties against the minimized product LTS.

4 Minimization modulo coherent branching feature bisimulation

When minimizing an FTSS we look for an FTSS′ satisfyingS≃bf S
′ and such that it is the smallest in

‘size’. For branching bisimulation for LTS it is the case that a branching bisimilar LTS with the minimal
number of states also has the minimal number of transitions (after removal ofτ-loops). Algorithms for
branching bisimulation reduction make use of this fact by looking for the unique LTS with the minimal
number of states. Unfortunately, this is not true for branching feature bisimulation, as is demonstrated
in Figure 4: The FTST andU are both branching feature bisimilar to FTSS, and both have the minimal
number of states. However,U has twice as many transitions asT.

S
s1 s2 s3 s4

T
t1 t2 t3

U

u2

u1

u3

a|true τ|true a|true

a|true a|true

a| fa|¬ f

a|¬ f

a| f

Figure 4: Three branching feature bisimilar FTS

We see that the property of feature bisimulation that allowsto merge multiple transitions with the same
label and different feature expressions into a single transition now hinders us, since it also allows to split
transitions. To avoid this problem we restrict tocoherentbisimulations (cf. Definition 4d). Thus, we
require that states ofS can only be related to states of the reducedS′ for (supersets of) their reachability
set. Unfortunately, this recipe does not guarantee that a minimal FTS is found, as Figure 5 below shows,
but among all coherent branching feature bisimilar FTS our algorithm is able to find the smallest one,
see Theorem 12.

S
s1

s2 s3

s4

T
t1

t2

U

u3

u1

u2τ|true
a| f

a|¬ f

a|trueτ|¬ f

τ|true

a|¬ f

a| f

Figure 5: Minimal branching feature bisimilar vs. minimal coherent branching feature bisimilar

In Figure 5, FTST is branching feature bisimilar to FTSS, and has the minimal number of states and
transitions. However, when restricting to coherent branching feature bisimulation relations, FTSU is the
smallest FTS that can be obtained fromS such thatS ≃cbf U. Note that the relationR with R(s2, f̂ , t1)
andR(s2,¬ f̂ , t2) is not coherent, sinceρ(s2) = truedoes not implyf nor¬f . We will adapt the reduction
algorithm described in Section 2 for minimization modulo coherent branching feature bisimulation.

Before describing the algorithm, we first show that the problem of coherent branching feature bisim-
ulation minimization is NP-hard by reducing the chromatic number problem to it: given a graph, what
is the minimum number of colors to color the nodes such that adjacent nodes have different colors? To
verify the construction, we need an auxiliary result.
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Lemma 7. LetS= (S, θ , s0) be an FTS with states s and t. If R(s, ρ(s)∧ρ(t), t) for a branching feature
bisimulation relation R, thenS≃cbf S

′ with states s and t related to a single state ofS′.

Proof. LetS′ = (S′, θ ′, s′∗) with S′ = (S\{s, t})∪{r} for somer /∈S, with θ ′(u,a,v) = θ(u,a,v) for u,v∈
S′, u,v 6= r andθ ′(u,a, r) = θ(u,a,s)∨θ(u,a, t) for u 6= r, θ ′(r,a,v) = θ(s,a,v)∨θ(t,a,v), for v 6= r, and
θ ′(r,a, r) =

∨
q,w∈{s,t}θ(q,a,w), and finally withs′∗ = s∗ if s∗ 6= s, t, ands′∗ = r otherwise. Using thatR

is a branching feature bisimulation withR(s,ρ(s)∧ρ(t), t), one constructs a coherent branching feature
bisimulationR′ such thatR′(s,ρ(s), r) andR′(t,ρ(t), r).

Next we set the stage for a reduction of graph coloring to coherent branching feature bisimulation min-
imization. Consider an undirected graphG = (V,E) with nodes inV and edges inE. Let A = {a},
F = { fv | v∈V } andP = { Pv | v∈V }. The FTSSG = (SG, θG, s1) of G is such thatSG = {s1, s2}∪
{ sv | v ∈ V } for distinct statess1 ands2, θ(s1,a,v) =

∨
u∈V { fu | (u,v) ∈ G } ∨ fv for all v ∈ V, and

θ(v,a,s2) = fv, and finally such thatθ(s,a,s′) = falsein all other cases.

Theorem 8. LetS′G be the minimal FTS that is coherent branching feature bisimilar to the FTSSG given
above. Then the number of states inS′G is equal to the chromatic number ofG plus2.

Proof. Let Γ be a set of colors. Supposeγ : V → Γ is a coloring ofG using all colors. Then the FTS
({s1,s2}∪Γ, θγ , s1), whereθγ (s1,a,C) =

∨
γ(u)=C θ(s1,a,su), θγ (C,a,s2) =

∨
γ(u)=C fu is coherent bran-

ching feature bisimilar toSG via the relationRsuch thatR(si , t̂rue,si) for i = 1,2, andR(su,ρ(su),γ(u)).
Reversely, an FTSS′ that is coherent branching feature bisimilar toSG can only identify statessu,sv

for u,v ∈ V. Hence such an FTS induces a coloring forG: Pick for each statesv a singles′ ∈ S′ such
that R(sv,ϕ ,s′) for a coherent branching feature bisimulationR relating S andS′. If statessu and sv

correspond to the same state ofS′, there can be no edge betweenu andv in G. For if (u,v) is an edge
in G, we haves1

a
−→ u

a
−→ s2 ands1

a
−→ v9 in the projection ofSG for the productpu, but s1

a
−→ u9

ands1
a
−→ v

a
−→ s2 in the projection ofSG for the productpv.

It follows that the FTSS′G that is minimal coherent branching feature bisimilar toSG corresponds to a
minimal coloring ofG. Moreover, the number of states different from the images ofs1 ands2 corresponds
to the number of colors needed.

Note how, in the proof above, the coherence condition ‘ifR(s,ϕ ,s′) thenρ(s)⇒ ϕ ’ enforces that for the
minimal FTSS′G the products that can reachs in SG are not split over multiple states inS′G. From the
theorem we obtain the following result.

Corollary 9. Constructing a minimal coherent branching feature bisimilar FTS is NP-complete.

Before we provide an algorithm for minimization of an FTS modulo coherent branching feature bisimu-
lation, we slightly generalize the notion of a partition as used in Section 2, to allow a state to belong to
separate groups of products.

A collection B = { Bi | i ∈ I } of non-empty subsets of a setS is called asemi-partitionof S if
(i)

⋃
i∈I Bi = S, and (ii) for j 6= i : B j \Bi 6= ∅. Thus,B coversSand noB j is strictly contained in aBi.

Also, for a semi-partition its elements are referred to asblocks. We say that a semi-partitionB′ is a
refinement of a semi-partitionB if every block ofB′ is a subset of a block ofB. Likewise, we say that
B is coarser thanB′. A semi-partitionB of S induces a relation∼B onS(not necessarily an equivalence
relation), where two elements ofSare related iff they are included in the same block ofB.
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Given an FTSS = (S, θ , s∗), we first do some preprocessing. We eliminate unreachable states and
strengthen the transition constraint with the reachability condition for its source state:

S:= { s∈ S| ρ(s) 6∼P false} and θ(s,α ,s′) := θ(s,α ,s′)∧ρ(s)

We define the setAf of so-called featured labels byAf = { (α ,ψ) | ∃s, t ∃α : θ(s,α , t) = ψ ∧ψ 6∼P

false}. For a semi-partitionB of S, B,B′ ∈B and featured label(α ,ψ) ∈Af we let

non-neg(α ,ψ)(B,B
′) = { s∈ B | ∀P∈ P, P |= ρ(s)∧ψ : ∃n∃s0, . . . ,sn ∈ B∃s′ ∈ B′∃ψ1, . . . ,ψn,ψ ′ :

s0 = s∧ (∀i,16 i 6 n: si−1
τ |ψi
−−→ si ∧P |= ψi)∧sn

(α|ψ ′)
−−−→ s′∧P |= ψ ′ },

and define its subsetpos(α ,ψ)(B,B
′) to include alls ∈ non-neg(α ,ψ)(B,B

′) for which ψ ⇒ ρ(s) and

sn
α |ψ ′

−−→ s′ for sn ∈ B, s′ ∈ B′ as above. Moreover, we defineneg(α ,ψ)(B,B
′) = B\non-neg(α ,ψ)(B,B

′).
We know for sure that two statessandt of a blockB are behaviorally different, ifs∈ pos(α ,ψ)(B,B

′) and
t ∈ neg(α ,ψ)(B,B

′). Therefore, we say thatB′ is asplitter of B with respect to(α ,ψ) if B 6= B′ or α 6= τ ,
andpos(α ,ψ)(B,B

′),neg(α ,ψ)(B,B
′) 6= ∅ (meaning there is at least one state in thepos-set that must do

an actualτ-step to reachB′). If B is a semi-partition ofSandB′ is a splitter ofB with respect to(α ,ψ),
then the semi-partitionB′ is obtained fromB by replacing blockB by B1 = non-neg(α ,ψ)(B,B

′) and
B2 = B\pos(α ,ψ)(B,B

′). However, in the case thatB1 or B2 is a subset of another block in the partition
(apart fromB), it is not added to ensure thatB′ is a semi-partition.

The minimization algorithm starts from the trivial semi-partition {S}, and keeps refining the semi-
partition until no splitters are left. This results in the coarsest semi-partition, but still a block may
be covered completely by other blocks. Therefore, as post-processing, we remove as many blocks as
possible from the semi-partition, while preserving the semi-partition properties, to find the smallest semi-
partition (e.g. using an algorithm for the minimum set coverproblem).

B := {S} ;

while a splitterB′ for a blockB with respect to a featured label(α ,ψ) existsdo

B :=B\{B} ;

if non-neg(α ,ψ)(B,B
′)⊆ B′′ for no B′′ ∈B thenB :=B∪{non-neg(α ,ψ)(B,B

′)} end;

if B\pos(α ,ψ)(B,B
′)⊆ B′′ for no B′′ ∈B then B :=B∪{B\pos(α ,ψ)(B,B

′)} end

Bmin := smallest subset ofB coveringS;

It is easy to see that the algorithm terminates: Note that after each iteration at least two states have been
permanently split from each other. Since there are less than|S|2 possible pairs of states inS, termination
will occur in at most|S|2 iterations. In the theorem below, we call a semi-partitionC a stablepartition
with respect to a blockB′ if for no block B and for no featured label(α ,ψ), B′ is a splitter ofB with
respect to(α ,ψ). The semi-partitionC is itself called stable ifC is stable with respect to all its blocks.

Lemma 10. For an FTSS = (S, θ , s∗), Bmin obtained from the algorithm is the smallest stable semi-
partition refining{S}.

Proof. We show by induction on the number of iterations of the algorithm that each stable partition
refines the current semi-partitionB. LetC be a stable semi-partition. Clearly the statement holds initially,
each semi-partition refines{S}. SupposeC refines semi-partitionB obtained after a number of iterations
and suppose a splitterB′ of a blockB exists with respect to a featured label(α ,ψ). It suffices to show
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that any blockC of C is included in a block ofB′, the semi-partition obtained by splittingB. Pick a block
of B containingC. If this block is different fromB, we are done. So, supposeC ⊆ B. We have to show
that eitherC⊆ non-neg(α ,ψ)(B,B

′) or C⊆ B\pos(α ,ψ)(B,B
′).

Supposes, t ∈C with s∈ pos(α ,ψ)(B,B
′) andt ∈ neg(α ,ψ)(B,B

′). We derive a contradiction. Pick a
productP∈ P such thatP |= ψ . Such a product exists by definition ofAf . Chooses0, . . . ,sn ∈ B, s′ ∈ B′,

ψ1, . . . ,ψn,ψ ′ ∈ B(F) such thats0 = s, si−1
τ |ψi
−−→ si for 16 i 6 n, sn

(α|ψ ′)
−−−→ s′, and moreoverP |= ψi , for

16 i 6 n, andP |= ψ ′. LetC0, . . . ,Cn,C′ be the blocks ofC such thatsi ∈Ci ands′ ∈C′. Note thatCi ⊆B,
for 0 6 i 6 n, andC′ ⊆ B′. Using the fact thatC is stable we can construct a sequencet0, . . . , tm ∈ B,

t ′ ∈ B′, ϕ1, . . . ,ϕm,ϕ ′ ∈ B(F) such thatt0 = t, ti−1
τ |ϕi
−−→ ti for 1 6 i 6 m, tn

(α|ϕ ′)
−−−→ t ′, and moreover

P |= ϕi for 16 i 6 m, andP |= ϕ ′. This contradictst ∈ neg(α ,ψ)(B,B
′), and proves the induction step.

Finally, we observe thatBmin itself is a stable semi-partition that refines{S}.

Lemma 11. Let S = (S, θ , s∗) be an FTS, andS′ = (S′, θ ′, s′∗) be an FTS such thatS ≃cbf S
′ by a

relation R. Then R defines a stable semi-partitionC of S such that s∼C t iff ∃r ∈ S′ : R(s,ρ(s), r)∧
R(t,ρ(t), r).

Proof. We have to show thatC is stable indeed. Suppose that there are blocksB,B′ in C such thatB′ is
a splitter ofB with respect to a featured label(α ,ψ). This means there are statess andt in B such that
s∈ pos(α ,ψ)(B,B

′) andt ∈ neg(α ,ψ)(B,B
′). We pickP∈ P such thatP |= ρ(s)∧ρ(t)∧ψ . By definition

of the pos-set there exists0, . . . ,sn ∈ B, s′ ∈ B′, ψ1, . . . ,ψn,ψ ′ ∈ B(F) such thats0 = s, si−1
τ |ψi
−−→ si

for 1 6 i 6 n, sn
(α|ψ ′)
−−−→ s′, and moreoverP |= ψi , for 16 i 6 n, andP |= ψ ′. Sincesn ∈ B we have,

by construction ofC, both R(sn,ρ(sn), r) andR(t,ρ(t), r) for suitabler ∈ S′. Therefore, there exists a
feature bisimulation relationR′ on S such thatR′(sn,ρ(sn)∧ ρ(t), t). Using the transfer condition of
this relation we can construct a sequencet0, . . . , tm ∈ B, t ′ ∈ B′, ϕ1, . . . ,ϕm,ϕ ′ ∈ B(F) such thatt0 = t,

ti−1
τ |ϕi
−−→ ti for 16 i 6 m, tn

(α |ϕ ′)
−−−→ t ′, and moreoverP |= ϕi for 16 i 6 m, andP |= ϕ ′. This contradicts

t ∈ neg(α ,ψ)(B,B
′), and proves thatC is stable.

We are now in a position to prove the correctness of the minimization algorithm.

Theorem 12. Assume thatB is the partition obtained upon termination after applying the algorithm to
the FTSS= (S, θ , s∗). Define the FTSSmin = (B, θmin, B∗) by letting (i)θmin(B,α ,B′) =

∨
{ θ(s,a,s′) |

s∈ B, s′ ∈ B′ } with B 6= B′ or α 6= τ , and (ii) by choosing B∗ such that s∗ ∈ B∗. ThenSmin is the smallest
FTS that is coherent branching feature bisimilar toS.

Proof. By Lemma 10 we have thatBmin is the smallest stable semi-partition refining{S}. It suffices
to show, using Lemma 7, that a coherent branching feature bisimulation for S andSmin exists. Since,
by Lemma 11 we have that every coherent branching feature bisimulation relation fromS to an FTSS′

induces a stable semi-partition on{S}, implying thatSmin is indeed minimal.

Thus, given an FTSS, we continue to refine the trivial semi-partition until no more splitter can be found.
Splitting a block is done cautiously: (i) it must eliminate asplitter and (ii) it must yield a semi-partition
again. The final semi-partition that is reached induces an FTSSmin that is the smallest FTS that is coherent
branching feature bisimilar toS. The next section reports on a small case study using this approach.
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5 Experimental evaluation

We extended the example SPL of a coffee vending machine described in [1–4] with a soup component
running in parallel. The complete SPL consists of 18 features and 118 products and the FTS modeling it
contains 182 states and 691 transitions. The details of thisSPL can be found in Appendix A. Basically,
each product contains the well-known beverage component and optionally a soup component, and allows
the insertion of either euros or dollars (returned upon a cancel) in either of its components. The user
chooses a beverage (sugared or not) among those offered (at least coffee, cappuccino only for euros) or
else a type of soup (at least one among chicken, tomato, pea).The user must place a cup to get soup. A
cup detector is optional (mandatory for dollars). When present, soup is only poured if a cup was placed,
else soup may be spilled. Placing a cup may need to be repeatedif not detected. A soup order may be
canceled until a cup is detected. Optionally, a shared ringtone may ring after delivery (mandatory for
cappuccino), after which the user takes a cup (with a drink orsoup) and can again insert money in either
component. Concrete features have an associated cost (zerofor abstract features) and the total cost of a
product, summing the costs of the features it includes, doesnot exceed the fixed upper bound of 35.

We used the mCRL2 toolset to verify the 12 properties listed in Appendix A against this SPL, both
product-by-product and by using the FTS-based family approach described in [3, 4], and both with and
without branching (feature) bisimulation minimization. For the approach with bisimulation we applied
branching feature bisimulation to the FTS, resulting in a reduced FTS, which we projected to obtain the
reduced LTS for each product. The results are shown in Table 1. For the product-by-product approaches,
generating the projections for all products is included in the computation time, and so is the time for
bisimulation reduction in case of the approaches with bisimulation. To even out effects caused by other
processes running whilst performing the experiments, all computation times are averaged over 5 runs.

Regarding the product-by-product approach, performing bisimulation reduction for the product LTS
reduces the computation time by about 8%. For property 2 (The SPL is deadlock-free), the computation
time with bisimulation is significantly larger than for other properties. In this case abstraction does not
reduce the LTS. A similar observation holds for properties 1(If a coffee is ordered, it is eventually
poured), 5a (If a beverage is ordered, then eventually it is canceled or a cup is taken) and 5b (If soup is
ordered, then eventually it is canceled, a cup is taken or thecustomer has bad luck), which are false, but
deemed true after applying bisimulation reduction. They state that something eventually happens, which
is not true in reality since the two components are running inparallel, thus abstraction creates infinite
loops that allow postponing that something indefinitely. Applying bisimulation reduction causes these
loops to be abstracted from completely, making the properties true for the reduced system. However,
standard tricks, like the explicit signaling of the end of a cycle, could be applied to alleviate this problem.

Now consider the FTS-based family approach. Without applying bisimulation reduction, the total
computation time increases by almost 50% with respect to theproduct-by-product approach. Hence, for
this SPL, FTS-based verification with mCRL2 is not beneficialcompared to regular enumerative veri-
fication. However, if we apply bisimulation reduction, thenthe FTS-based computation times decrease
by>70%. Only property 2 still needs more computation time than in the product-based approach (again
because abstraction is not beneficial for the verification).Note that in case less actions are involved in a
property, it is possible to abstract from larger parts of theFTS, implying faster verification. This effect
was much less in the product-by-product approach. Hence, the more local a property, the more beneficial
it is to perform FTS-based family verification in combination with branching feature bisimulation reduc-
tion using mCRL2. Obviously, this observation needs to be confirmed by experimenting with different
SPL, but based on this example the techniques proposed in this paper look rather promising.
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P
R
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R-

T
IE

S
PRODUCT-BY-PRODUCT FTS-BASED FAMILY APPROACH

WITHOUT BISIMULATION WITH BISIMULATION WITHOUT BISIMULATION WITH BISIMULATION

TIME (s) RESULT TIME (s) RESULT TIME (s) RESULT TIME (s) RESULT

1 42.04 FALSE 38.18 TRUE 52.96 FALSE 13.60 TRUE

2 41.78 TRUE 41.65 TRUE 53.86 TRUE 53.69 TRUE

3a 42.32 TRUE 37.76 TRUE 70.57 TRUE 7.70 TRUE

3b 42.01 TRUE 37.78 TRUE 59.96 TRUE 7.98 TRUE

4a 40.62 TRUE 38.00 TRUE 24.18 TRUE 8.65 TRUE

4b 40.20 TRUE 37.88 TRUE 20.78 TRUE 10.68 TRUE

5a 42.38 FALSE 38.51 TRUE 66.08 FALSE 18.59 TRUE

5b 42.34 FALSE 38.09 TRUE 69.95 FALSE 14.92 TRUE

6 43.63 TRUE 39.17 TRUE 105.35 TRUE 29.72 TRUE

7a 42.45 TRUE 38.19 TRUE 71.07 TRUE 13.84 TRUE

7b 42.35 TRUE 38.04 TRUE 79.05 TRUE 9.48 TRUE

8 42.82 TRUE 39.09 TRUE 80.69 TRUE 20.47 TRUE

TOT 504.94 462.34 754.50 209.32

Table 1: Experimental evaluation results (time in seconds)

6 Concluding remarks

We have defined a novel notion of branching feature bisimilarity for FTS and an algorithm to minimize
an FTS modulo coherent branching feature bisimulation. This complements and formalizes part of the
feature-oriented modular verification approach of SPL withmCRL2 that we outlined in [3,4]. An initial
application of the minimization algorithm to a simplistic SPL promises significant verification speed-ups.

It remains to establish the subset of the modalµ-calculus that is preserved by (coherent) branching
feature bisimulation, i.e. what properties are respected by our reduction technique. It is known that
branching bisimulation preserves modalµ-formula without the next operator [9]. Theorem 6 may be used
to lift the result to branching feature bisimulation, if thepropertyS |= ϕ iff SP |= ϕ is to hold. We leave
this to future work. It would also be interesting to see whether the minimization algorithm’s complexity
can be reduced, possibly by lifting some optimizations fromthe Groote & Vaandrager algorithm for LTS
to our FTS setting, or split multiple blocks based on a singlesplitter.

Finally, we plan to evaluate our modular verification approach on a more realistic SPL. By expanding
the SPL of a coffee vending machine to examples growing in size, we may see if the exponential blow-up
forecast by the NP-completeness result of Theorem 8 can be traced, in particular to observe at what point
reduction time outweighs the gain of family-based verification. As noted by one of the reviewers, family-
based verification approaches perform better on larger models (both in terms of states and variability),
whereas reduction techniques are difficult to apply on real,industrial models. We hope that the idea,
sketched in [3], to exploit the inherent modular structure of SPL to guide the abstraction, will prove
fruitful in finding balance in this trade-off and help to comeup with automated support to reduce a system
given a property. For this it is useful to reconstruct the experiments reported in [7] and to compare the
performance gain. Also a study of the relationship of the preorder proposed in [7] to the equivalences
put forward here, is an interesting topic of research that may increase our understanding of the interplay
between variability and internal behaviour.
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A Example SPL

Here we provide the details of the example SPL used for the experiments described in Section 5. It is an
extension of the coffee vending machine described in [1–4] with a soup component running in parallel
with the usual beverage component. It has the following listof functional requirements:

• Each product contains a beverage component. Optionally, also a soup component is present.

• Initially, either a euro must be inserted, exclusively for European products, or a dollar must be in-
serted, exclusively for Canadian products. The money can beinserted in either of the components.

• Optionally, money inserted in a component can be retrieved via a cancel button, after which money
can be inserted in this component anew.

• If money was inserted in the beverage component, the user hasto choose whether (s)he wants
sugar, by pressing one of two buttons, after which (s)he can select a beverage.

• The choice of beverage (coffee, tea, cappuccino) varies, but coffee must be offered by all products
whereas cappuccino may be offered solely by European products.

• Optionally, a ringtone may be rung after delivering a beverage. However, a ringtone must be rung
by all products offering cappuccino.

• After the beverage is taken, money can be inserted again in the beverage component.

• If money was inserted in the soup component, the user has to choose a type of soup (chicken,
tomato, pea). The types of soup offered vary, but at least onetype must be offered by all products
with a soup component.

• The soup component does not contain cups to serve the soup in.Hence, the user has to place a
cup to pour the soup in. Optionally, a cup detector may be present in the soup component. It is
required that all Canadian products with a soup component are equipped with a cup detector.

• If cup detection is present, the chosen type of soup will onlybe delivered after a cup has been
detected by the soup component. However, the cup detector may fail to detect an already placed
cup, after which the user will have to place it again. If a cancel option is available, the user may
cancel the order as long as no cup has been detected.

• If cup detection is not present, the soup will be delivered immediately after a type of soup was
chosen, regardless of whether a cup was placed. If no cup was placed there will be no soup to take.

• Optionally, a ringtone (shared with the beverage component) may be rung after delivering soup.

• If a cup was present, money can be inserted again in the soup component after the soup is taken.

These yield the attributed feature model in Figure 6 and the behavioral models in Figures 7 and 8.

http://dx.doi.org/10.1109/LICS.1988.5119
http://dx.doi.org/10.1109/LICS.1988.5119
http://dx.doi.org/10.1137/0216062
http://dx.doi.org/10.1145/2580950
http://dx.doi.org/10.1145/2648511.2648520
http://dx.doi.org/10.1145/2648511.2648520
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Figure 6: Feature model of family of coffee vending machines

In the attributed feature model, mandatory (core) featuresare marked by a closed bullet, optional features
by an open one. Exactly one of the featuresE andD is selected, while at least one of the featuresCS, PS
andTSis selected. As to cross-tree constraints, featuresP andD exclude each other, featureP requires
featureR, and the simultaneous selection of featuresD andSCrequires featureU . The value of the cost
attribute of the concrete features is put inside a small circle (i.e.cost(X) = 10). Finally, as an additional
constraint, we require that the total costs of all selected features does not exceed the threshold 35.
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Figure 7: FTS of beverage component
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The FTS of the beverage component contains 14 states and 23 transitions and that of the soup component
contains 13 states and 28 transitions, for a total of 182 states and 691 transitions in parallel composition.
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Figure 8: FTS of soup component

As reported in Section 5, we used the mCRL2 toolset to verify 12 properties against this SPL. These
properties are listed next, together with their formalization in the mCRL2 variant of the modalµ-calculus.

1. If a coffee is ordered, then eventually coffee is poured:[ true∗ .coffee] (muX. [ ! pour_coffee]X)

2. The SPL is deadlock-free:[ true∗ ]〈true〉 true
3a. A machine that accepts Euros does not accept Dollars:

[true∗.(insertBev(Euro) || insertSoup(Euro)).true∗.(insertBev(Dollar) || insertSoup(Dollar))] false
3b. A machine that accepts Dollars does not accept Euros:

[true∗.(insertBev(Dollar) || insertSoup(Dollar)).true∗.(insertBev(Euro) || insertSoup(Euro))] false
4a. A cup can only be taken out of the beverage component aftera beverage was ordered:

[ (! coffee&& ! tea&& ! cappuccino)∗ . take_cup] false
4b. A cup can only be taken out of the soup component after soupwas ordered:

[ (! tomato&& ! chicken&& ! pea)∗ . take_soup] false
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5a. If a beverage is ordered, then eventually the beverage iscanceled or a cup is taken out of the bev-
erage component:[ true∗ .(coffee|| tea || cappuccino) ](muX. [ (! cancelBev&& ! take_cup) ]X)

5b. If soup is ordered, then eventually the soup is canceled,a cup is taken out of the soup component
or the customer has bad luck:
[ true∗ .(tomato|| chicken|| pea) ](muX. [ (! cancelSoup&& ! take_soup&& ! bad_luck) ]X)

6. If the machine has a soup component, then a beverage can be ordered without inserting more
money after soup was ordered:[ true∗.(insertSoup(Euro) || insertSoup(Dollar)) ]〈true∗.(tomato||
chicken|| pea).(! insertBev(Euro) && ! insertBev(Dollar))∗ .(coffee|| tea || cappuccino)〉 true

7a. A beverage cannot be ordered without inserting more money if a previous beverage order is still
pending:[true∗.(coffee|| tea|| cappuccino).(!insertBev(Dollar) &&! insertBev(Euro))∗ .(coffee||
tea|| cappuccino)] false

7b. Soup cannot be ordered without inserting more money if a soup order is pending:[ true∗.(tomato||
chicken|| pea). (! insertSoup(Dollar) && ! insertSoup(Euro))∗ . (tomato|| chicken|| pea) ] false

8. In a machine with cup detection, soup can only be poured after detecting a cup:[ true∗ .cup_present]
[true∗.(take_soup||bad_luck).(! cup_present)∗.(pour_tomato||pour_chicken||pour_pea)] false
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