
M. Farrell, M. Luckcuck, M. Schwammberger, and
M. Gleirscher (Eds): Fifth International Workshop on
Formal Methods for Autonomous Systems (FMAS 2023)
EPTCS 395, 2023, pp. 130–143, doi:10.4204/EPTCS.395.9

© C. Bischopink
This work is licensed under the
Creative Commons Attribution License.

Enforcing Timing Properties in Motorway Traffic

Christopher Bischopink
Carl von Ossietzky University Oldenburg, Oldenburg

bischopink@informatik.uni-oldenburg.de

In previous work [4], we proposed a Runtime Enforcement Approach to deal with timing properties
in motorway traffic, which are present in form of Timed Multi-Lane Spatial Logic (TMLSL) formulae,
a logic tailored to express both spatial and timing properties. Employing communication between
the cars, we utilised a nondeterministic controller “guessing” which actions to execute next for each
car, before asking the local monitors of the cars for permission to execute the announced actions.
In this contribution, we consider a more reasonable controller that only considers sequences that
satisfy its own properties. This is done utilising region automata that one can generate from the cars’
specifications. In the approach, we also came along a minor decidability result for TMLSL.

1 Introduction

With the number of (at least partially) autonomous cars increasing on the roads around the globe, chal-
lenges and advantages in the specification and verification of their behaviour occur. If one assumes
that the cars are able to communicate with each other, a more detailed interplay between them is possible
than with human drivers and allows finding solutions for complicated traffic situations that human drivers
could easily miss.

The roads we consider here are motorways, formalised as traffic snapshots [9] with a logic to reason
about them called Multi-Lane Spatial Logic (MLSL) [9]. We extended this spatial logic towards Timed
Multi-Lane Spatial Logic (TMLSL) to also cover the timing aspect of a car’s specification in [3]. Based on
TMLSL, we proposed a runtime-enforcement approach in [4], employing a nondeterministic controller
that asked for the permission of other cars for the actions it wants to execute. Due to the nondeterminism,
completely unreasonable sequences that even violate the own car’s specification could be announced. In
the lack of a result that allow announcing/checking only reasonable sequences, the nondeterministic
controller still allowed us to show that the approach is complete.

In this work, we propose a more reasonable approach, utilising the region automaton of the cars’
specifications. Still, all cars announce sequences they want to achieve, but this time all announced
sequences would yield satisfying runs at least for the car that announces them. The announced sequences
are then checked by a central entity, e.g. a road-side unit, for a run that is satisfying for all cars and
informs the cars accordingly. We furthermore present a minor decidability result, eliminating one of the
causes for the semi-decidability of TMLSL [3].

Related Work In the context of MLSL, different topologies have been explored in addition to mo-
torway traffic, namely country roads [8] and urban traffic [17], as well as their satisfaction problems
[13][6] and controllers for cars in these topologies with different desirable properties such as liveness
and fairness [5, 18]. Other approaches in the context of autonomous or automated driving systems use
e.g. differential dynamic logic [12] or a specification with extended types of timed automata [10]. These
approaches mostly concentrate on a top-level view of the system under control. A more technical view
of the evolution of a cars dynamics in an adaptive cruise control setting is e.g. given in [1]. Runtime

http://dx.doi.org/10.4204/EPTCS.395.9
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


C. Bischopink 131

Enforcement [16] and runtime verification [7] are also well studied topics. To the best of our knowledge,
runtime enforcement approaches however are more intensively considered in more restricted settings
than motorway traffic, where the system evolves quiet dynamically to the input given. Another feature is
that in our case, the input and output of the system under control are different from each other.

2 Preliminaries

In this Section, we introduce the formal concepts our approach is build on. We start with the model of
motorway traffic, its logic and evolution in Sect. 2.1 and continue with the timing model used, Sect.2.2.
The combination of them is called TMLSL and covered in Sect. 2.3.

2.1 Spatial Model of and Logic for Motorway Traffic

Model The spatial model we use in the setting of motorway traffic was introduced in [9]. It allows
only traffic in one direction on a fixed set of lanes L = {1, . . . ,N} with an infinite extension each. On
these lanes, cars from the set of car identifiers I = {A,B, . . .} drive, each car C of them with a certain
speed spd(C), acceleration acc(C) and position on the lane, pos(C). There are two different types of
occupation a car can have on lanes, either a reservation res ∶ I→P(L), the space it physically occupies
(multiple lanes if it is changing lanes at this moment) or a claim clm ∶ I→P(L), the lane a car wishes to
change to, which is the equivalent of setting a turn signal. Altogether, this information is represented as
a traffic snapshot TS = (res,clm,pos,spd,acc).

In a traffic snapshot, there is no information present what the sizes of the cars and their braking
distances are, as pos only stores the rear end of each vehicle. We neglect the concept of a Sensor Function
here that makes this information available to us and simply assume that size and braking distance of each
car is known. Also omitted is the View that allows to only consider a finite extension of the infinite
extension of a traffic snapshot when evaluating formulae. A graphical representation of three traffic
snapshots is depicted in Fig. 1, where we also omitted showing concrete values for the position, speed
and acceleration of the cars.

As already hinted at, a traffic snapshot describes the situation on the road at one point in time only.
A situation on the road may evolve, which is handled in the model via transitions.

Transitions We divide the set of transitions usable in a traffic snapshot into transitions regarding the
discrete behaviour between lanes and transitions regarding the continuous behaviour along the lanes.
The first set consists of car C claiming a lane n resp. withdrawing all claims (c(C,n)/wd c(C)) and car
C reserving a lane resp. withdrawing all reservations except the one on lane n (r(C)/wd r(C,n)). The
second set is the one we focus more on, as it is considered more intensively in what follows, they handle
the change of a car’s acceleration to some value a (acc(C,a)) as well as the passing of t time units (t). In



132 Enforcing Timing Properties

1

2

A B 1

2

A B 1

2 A

A B

3 r(A)

Figure 1: A transition sequence with three traffic snapshots and two actions, taking place with two cars
on two lanes. Car A is faster than car B, so it comes closer when t = 3 time units pass. Afterwards, it
reserves its formerly claimed space (dashed copy of it on the neighbouring lane), one step further in an
attempt to overtake car B.

the following definition, ⊕ is the overriding operator of Z [19]:

T S tÐ→T S ′ ⇔ T S ′ = (res,clm,pos′,spd′,acc)

∧∀C ∈ I ∶ pos′(C) = pos(C)+ spd(C) ⋅ t + 1
2

acc(C) ⋅ t2

∧∀C ∈ I ∶ spd′(C) = spd(C)+acc(C) ⋅ t

T S
acc(C,a)
ÐÐÐÐ→T S ′ ⇔ T S ′ = (res,clm,pos,spd,acc′)

∧acc′ = acc⊕{C↦ a},

Over the set of actions, which are the transitions without the one where only time passes, we define
timed words of actions ω = ⟨(α0,t0), . . . ,(αn,tn)⟩, with αi an action and ⟨t0, . . . ,tn⟩ a real-time sequence.
For a formal account, we refer to [14].

A graphical representation of a transition sequence including two transitions (one discrete and one
continuous) is shown in Fig. 1. It can be interpreted as the timed word ω1 = ⟨(r(A),3)⟩.
Remark 1 (Dynamic behaviour of the cars). The model used for describing the dynamics of the cars
is a quiet simple one, ignoring many difficulties that one would encounter in the real world, such as
friction or variable acceleration capabilities based on the current speed. Still, we believe that it is a
good abstraction of the real world’s dynamics. Especially if one considers that the positions (plus size
and braking distance) could be over-approximations, this allows some degree of freedom in achieving a
behaviour to match the correct positions.

Logic To reason about the traffic situations formalised as traffic snapshots, the logic MLSL [9] was
introduced . Here, we consider a variant of MLSL called MLSLS (MLSL with scopes) [6], limiting the
range of cars over which car variables are evaluated to a finite range. Formulae of MLSLS are constructed
according to the grammar

ϕ ∶∶= γ = γ
′ ∣ free ∣ re(γ) ∣ cl(γ) ∣ l = k ∣ ∃c.ϕ ∣ ϕ1⌢ϕ2 ∣

ϕ1
ϕ2
∣ cs ∶ ϕ,

and standard Boolean combinations of such formulae, where γ and γ
′ are car variables, k ∈R and cs is a

(sub-)set of car variables.
The atoms that formulae are constructed from are the comparison of two car variables γ = γ

′, free
denotes a segment with free space that is not occupied by others, the reservation re(γ) of a car γ , the



C. Bischopink 133

claim cl(γ) of a car γ and the comparison l = k of the length l of the considered segment against some
value k. With ∃c.ϕ one asks for the existence of a car c that satisfies ϕ . The horizontal chop operator
(ϕ1⌢ϕ2) is used to determine if it is possible to divide the current segment into two parts along the lanes
s.t. in the first part ϕ1 and in the part directly ahead of it ϕ2 holds. The same can be specified with the

vertical chop operator ( ϕ1
ϕ2
), but the point to divide is in between two lanes this time. cs ∶ ϕ limits the

scope over which ϕ is evaluated to the finite domain cs and effects only formulae that use quantification
over the cars in their semantics and thus only ∃c.ϕ and free. In Sect. 3, we focus on length comparisons
l = k and simply abbreviate them as θ , as there can be multiple of them regarding the same segment.

A common abbreviation used is the somewhere modality ⟨ϕ⟩, expressing that there is a partition on
the road along and in between the lanes s.t. ϕ holds in some point of the partition.

For a formal definition, especially about the exact semantics of MLSLS formulae, we refer the reader
to [6], but would like to point out that MLSLS is, in contrast to pure MLSL, decidable.

2.2 Model and Logic of Time

The logic we consider here for the timing aspects is called State-Clock Logic (SCL) [15]. Formulae from
this logic are constructed over an alphabet of propositions Σ according to the grammar

ψ ∶∶= p ∣ ψ1∨ψ2 ∣ ¬ψ ∣ ψ1Uψ2 ∣ ψ1Sψ2 ∣ ⊳∼c ψ ∣ ⊲∼c ψ,

with ∼ ∈ {<,≤,=,≥,>} and p ∈ Σ.
Apart from well-known Boolean combinations of formulae and the usual until- and since operators

(U resp. S ), SCL allows to measure the time since (⊲)/ until (⊳) a formula ψ held/holds for the last/next
time and compare this difference with ∼ c.

The semantics of SCL formulae is evaluated on (usually infinite) timed sequences of states m =
⟨(s0,I0,),(s1,I1), . . .⟩ with si ⊆ Σ and ⟨I0,I1, . . .⟩ a monotonically increasing sequence of adjacent inter-
vals. Intuitively, the formula ⊳∼ c ψ holds at time point t in the ith state of m, written (m, i,t) ⊧⊳∼ c ψ iff
there is some state (s j,I j) at position j > i where ψ holds, all states in between i and j do not satisfy ψ

and the difference between the left border of the jth interval I j and t satisfies ∼ c . The analogous applies
for the operator ⊲∼ c ψ , the semantics of the remaining operators is as expected. Example for both syntax
and semantics are given in the next section, for a more formal account on the topic we refer the reader to
[15].

The decidability problem of SCL is known to be decidable. Given a SCL formula ψ , one can con-
struct a State-Clock (SC) Automaton Aψ = (P,CP ,L,L0,E,L,∆,F), with P the set of propositions used,
CP the set of clocks, L and L0 the (initial) locations of Aψ , a transition relation E ⊆ L×L, a labelling func-
tion L assigning the propositions valid in it to every location of L, another labelling function ∆ assigning
constraints over CP to every location of L and a family of Büchi acceptance sets F . From there on a
Region-AutomatonR(Aψ) [15][2] can be constructed. Having operators to compare the time to for both
the future and the past, SC automata have a history clock xp and a prophecy clock yp for each proposition
p ∈P in CP . Both types of clocks need to be respected when constructing the region automaton. A region
[ν] describes a class of clock valuations ν that cannot be distinguished by any SC automaton and can
be represented as a set of (in-)equalities over the set of clock variables xy, yp and the natural numbers
N. Iff the language ofR(Aψ) is not empty, the formula ψ is satisfiable. In [4], we extended State-Clock
automata with broadcast communication like the timed automata of UPPAAL [11]. For a formal account
on the broadcast communication used we refer to [17] and only point out that sending some data d over
a channel c is denoted as c!⟨d⟩ and receiving this data on the same channel is denoted as c?⟨d⟩. We



134 Enforcing Timing Properties

also allowed simple functions dealing with data structures and simple computations on the transitions of
communicating SC automata.

2.3 TMLSL

To express and reason about both spatial and timing properties in motorway traffic, we introduced TMLSL
[3]. The idea of this logic is to use MLSLS-formulae as the propositions that SCL formulae are build
from. The intuitive idea for the semantics is that a traffic snapshot TS with a timed word of actions ω is a
model for a formula ϕ , TS0,ω ⊧ϕ iff there is a timed sequence of states m(TS0,ω) that is propositionally
consistent and complete in the subformulae of ϕ , describes the evolution of TS along ω and is a model
of ϕ in the SCL-semantics, m(TS,ω) ⊧SCL ϕ . We now give an example for a TMLSL formula as well as
their satisfaction. For simplicity, we use car identifiers instead of car variables in the MLSLS propositions
in the formula.

Example 1 (TMLSL). Consider the TMLSL formula

ϕ1 = ⟨re(A)⌢ free∧ l = 21⌢re(B)⟩ Ô⇒⊳=5 ⟨re(A)⌢ free∧ l = 15⌢re(B)⟩

that specifies that when the distance between the reservations of the two cars A and B is equal to 21
distance units somewhere in the traffic snapshot, it needs to be equal to 15 distance units within exactly
5 time units. A satisfying sequence of states is

m = ⟨(⟨re(A)⌢ free∧ l = 21⌢re(B)⟩ ,[0,0]),(⟨re(A)⌢ free∧ l ≤ 21∧ l > 15⌢re(B)⟩ ,(0,5)),
(⟨re(A)⌢ free∧ l = 15⌢re(B)⟩ ,[5,7))⟩,

one that is not is

m′ = ⟨(⟨re(A)⌢ free∧ l = 21⌢re(B)⟩ ,[0,0]),(⟨re(A)⌢ free∧ l ≤ 21∧ l > 15⌢re(B)⟩ ,(0,5]),
(⟨re(A)⌢ free∧ l = 15⌢re(B)⟩ ,(5,7))⟩,

as the distance between the two cars reached the value 15 too late. The only difference between m and
m′ are the shapes of the second and third interval. Please note that we omitted some subformulae of ϕ1
in the sequences in an attempt to keep them readable.

Ex. 2 gives values for the positions, speeds and accelerations of the cars in the first traffic snapshot
TS of Fig. 1 and a timed word of actions ω s.t. applying ω to TS results in the timed sequence of states
m(TS0,ω) that satisfies ϕ1 written TS,ω ⊧ ϕ1, resp. m(TS0,ω) ⊧SCL ϕ1.

Remark 2. Using MLSLS formulae as the propositions of SCL rather than MLSL actions imposes some
difficulties, still some situations on the road can only be described using formulae rather than action.
Additionally, actions take zero time in the model, so one could argue that they are not observable from
the outside. So for the cars on the motorway that we want to control, we have MLSL actions as the input
to them, but the system produces evolutions of traffic snapshots as an output, which we observe through
MLSLS formulae.

Finite Semantics In [4], we introduced a finite semantics for TMLSL, suited for the finite sequences
that are usually available in runtime monitoring/enforcement and the reality on motorways. Intuitively,
a finite word of actions ω satisfies a formula ϕ in the finite semantics up to time t, TS,ω ⊧t ϕ iff there
exists at least one suffix m′ s.t. m(TS,ω).m′ ⊧SCL ϕ in the infinite semantics.



C. Bischopink 135

3 Decidability Results

Regarding the decidability of TMLSL, we point out that the logic is at least semi-decidable [3]. In
answering this question, we considered maximum values on the acceleration of the cars (from accmin to
accmax) and the speed (from 0 to spdmax), as in the real world there are (at least) physical bounds, too. We
do the same here. The decidability results of SCL and MLSLS do not directly transfer to TMLSL, as we
need to interpret the SCL-propositions, which are MLSLS-formulae, and the cars in the traffic snapshot
may not be able to behave as specified in TMLSL. One cause for only semi-decidability are the actions
regarding the dynamic behaviour along the lanes, the change of a car’s acceleration and the passing of
time. While it is easy to see what discrete actions need to be executed and when, given a timed sequence
of states m, it was unknown how many acceleration changes are needed to achieve cars behaving correct
with respect to the lengths constraints specified in m. In this paper, we give an algorithm that decides
this question. Before doing so, however, we start with an example (adjusted example of [3]):

Example 2. Consider a traffic snapshot with one lane and two cars A and B, B driving ahead of A, where
the distance between the two cars is equal to 21 and both of them have a speed of 4. For simplicity, we
furthermore assume that car B cannot change its acceleration, it is fixed at 0, the initial acceleration of
A does not matter. For this traffic situation, we have a specification expressing that the distance between
the two cars needs to be equal to 15 within 5 time units, formalised as the formula ϕ1 from Ex. 1.
Furthermore, assume that we have accmin = −10, accmax = 5 and spdmax = 13 as bounds on the dynamic
behaviour. In this example, there is no timed word of actions that allows the traffic snapshot to behave as
specified, if we only allow acceleration changes at one point in time, as we either obtain a speed to fast
or need to accelerate stronger than the specified bounds allow. If we allow acceleration changes at two
points, there is a solution: ω = ⟨(acc(A,0.75),0),(acc(A,−6),4)⟩. Letting one further time unit pass
results in a distance exactly 15.

As described in Sect. 2.1, the dynamics of each car C evolves according to the simple mechanical
equation pos′(C) = pos(C)+ spd(C) ⋅ t + 1

2 ⋅acc(C) ⋅ t2, with t being the time that elapses and pos′(C) the
new position of C. The speed evolves according to spd′(C) = spd(C)+ t ⋅acc(C).

For a finite timed sequence of states m = ⟨(s0,I0), . . . ,(sm,Im)⟩ and a number n of points in which we
can split the interval I = [0,t] = ⟨I0, . . . ,Im⟩, we define DYN(m,n,I) as the set of equations that describe
the solution space of m on the (timing) interval I for these n splitting points. In the equations listed
below, we only consider the length measurements/constraints that we need to satisfy in si, as the question
which discrete actions one need to execute between two phases is easy to answer. We summarise these
constraints as θm(t) for the length constraints that occur in the phase (si,Ii) of m with t ∈ Ii. Iff the
difference in the position of any two cars affected by it satisfies θm(t) at point t, we denote this as
∆pos(t) ⊧ θm(t). Please note that θm(t) can consist of an arbitrary number of constraint, e.g. when we
require that the distance between two cars is smaller than some value and greater than some other value,
for example when we want to exclude (potential) collisions while being quite close to the car in front.
Additionally, θm(t) can constrain the distance between more than two cars.



136 Enforcing Timing Properties

DYN(m,n,I) =
pos0(C) and spd0(C) are as in TS0, (1)

posn(C) = posn−1(C)+ spdn−1(C) ⋅ tn−1 ⋅
1
2
⋅accn−1(C) ⋅ t2

n−1, (2)

spdn(C) = spdn−1(C)+accn−1(C) ⋅ tn−1, (3)

∀t′ ∈ I ∶ ∆pos(t) ⊧ θm(t) and (4)

∀t′ ∈ I, ∀C ∈ cs ∶ spdt′(C) and acct′(C) remain in the specified bounds. (5)

An illustration of the solution space and a solution we are searching for for two cars is depicted in
Fig. 2. As one can see, we want to find out how many splitting points there need to be such that the
difference in the position of the cars satisfies the spatial constrains θi of each phase (si,Ii) of m as well as
the constraints on the speeds of the cars. The possible curves for the relative position that the evolution
yields are furthermore constrained by the maximal and minimal acceleration forces possible. Initial
values for the relative position and the speeds are fixed, as they are determined by the traffic snapshot
from which on we ask for a satisfying sequence of actions. In the figure, we have both a maximum and
a minimum spatial constraint on the distance between the cars in each of the phases. Please note that
also a single constraint (distance is e.g. greater than some value) or even no constraint (the distance
between the cars is not important in this phase) is possible. Despite being possible, the later one should
usually not occur because requiring collision freedom should always be included in a specification, which
immediately imposes length constraints.

If DYN(m,n,I) is satisfied, n splitting points are sufficient to obtain a satisfying sequence of actions
that satisfies the behaviour specified by m. We furthermore need a relaxed version DYN′(m,n,I), which
is equivalent to DYN, except that we alter equation (4) and remove the length constraint on the last phase
of m not reached. Please note that we can rewrite the equations (4) and (5) in an equivalent form that
does not use quantifiers, so we gain an easy to solve equation system not dealing with quantifiers over
infinite domains.

Later, we are interested how DYN′ behaves when answering the question whether or not there is
a solution to DYN. For this purpose, we denote with max_extension(DYN′) the maximal value x s.t.
DYN′(m,n,[0,x]) has a solution. Similarly, we denote with max_outcome_pos(DYN′) the largest inter-
val [y,y′] s.t. DYN′(m′,n,I) has a solution, where m′ is identical to m except that in the last phase, the
length constraints are replaced with [y,y′]. max_outcome_spd(DYN′) is the largest interval [z,z′] for the
speed that a car can have when exceeding I while DYN′(m,n,I) still has a solution.

Despite not focusing on that topic, we would like to mention that both max_outcome_pos(DYN′) and
max_outcome_spd(DYN′) are vectors, the first one over the differences in positions that are compared
in the phases and the second one over the cars.

Utilising the aforementioned equations, we now can give an answer to the question whether or not
there is a satisfying sequence of actions s.t. the cars behave as specified:

Theorem 1 (Number of Accelerations). Given a traffic snapshot TS and timed sequence of states m =
⟨(s0,I0), . . . ,(sn,In)⟩ with adjacent intervals Ii and sets si of lengths constraints θ between the cars to
achieve, one can decide after finitely many steps whether or not there is a sequence of acceleration
changes ω = ⟨(α0,t0), . . . ,(αn′ ,tn′)⟩ s.t. m(TS0,ω) =m.

We can decide this question using Alg. 1.



C. Bischopink 137

Time

pos0

0

∆pos

θmax
0

θmin
0

t

θmax
1

θmin
1

t′

Time

spdA
0

spdB
0
0

spd spdmax

tt′

0 Time

acc accmax

accmin

tt′

accB0

accA0 accB0

accA0

Figure 2: Dynamic Evolution of two cars on a timing interval with one additional acceleration change
for each car in between. For a sequence of actions that satisfies the specification, all values need to
stay inside the specified intervals. For the relaxed version DYN′, this does not apply for the last length
constraint (θ1 here).



138 Enforcing Timing Properties

Algorithm 1 Deciding Acceleration
Require: Input: sequence of states m = ⟨p1, . . . , pm⟩, Interval I = [0,t]

1: n← 0; i← 1;
2: while i ≤m do
3: m′← ⟨p1, . . . , pi⟩;
4: while max_extension(DYN′(m′,I,n)) ≠max_extension(DYN′(m′,I,n+1))
5: ∨max_outcome_pos(DYN′(m′,I,n)) ≠max_outcome_pos(DYN′(m′,I,n+1))
6: ∨max_outcome_spd(DYN′(m′,I,n)) ≠max_outcome_spd(DYN′(m′,I,n+1)) do
7: n← n+1;
8: end while
9: i← i+1;

10: end while
11: if DYN(m,I,n) has a solution then
12: return ⟨(acc0(C),t0), . . . ,(accn(C),tn)⟩ of DYN(m,I,n) (for each car C)
13: else
14: return no Solution existent.
15: end if

Lemma 1 (Termination and Correctness). Algorithm 1 terminates iff a solution is found and returns it or
there is no solution at all.

Proof. (sketched) Alg. 1 subsequently maximises the outcome that the dynamics (position and speed)
may have after each phase of m, iterating through prefixes m′ of m, solving DYN′ for this prefix. The first
line of the second while-condition (line 4) ensures that we have sufficiently many splitting points such
that we reach the right (time) border of the phase. Line 5 ensures that we maximise the difference in the
position between two cars at the end of the current phase pi, where line 6 maximises the differences in
their speeds. If none of these values increases any further within one iteration, no further iteration will.
Aborting then is possible because the outcome of the dynamics is strictly monotone in the number of
splitting points and thus has converged against a solution that is maximal for the phase.

This result is needed in the next section:

4 Enforcement

We now present our – in comparison to [4]– enhanced runtime enforcement approach, utilising the results
from the previous section.

In this section, we show how cars can find actions to execute in a distributed manner s.t. the overall
evolution of the traffic snapshot satisfies the specified properties up to some time bound. In distinction
to previous work [4], where the cars non-deterministically guessed actions to execute, they now only
propose timed sequences of states that are valid at least for their own properties. The proposed sequences
ΠC are afterwards – either by one of the cars or by another central entity – combined into a set of timed
sequences of states Π, where each sequence represents a combined behaviour of all cars. It is then
checked for the existence of a satisfying sequence of actions ω . If existent, the participating cars get
informed over the timed actions ωc they themself must execute to comply to ω .



C. Bischopink 139

As the sequences Π are in the end checked by a single entity, one could argue that it would be
easier to refrain from having the specification distributed over all cars. There are, however, several
benefits that one gains when using the more distributed approach. First of all, the whole specification
does not need to be known beforehand, neither to the other cars nor to the entity that checks if there
is a satisfying sequence of actions. Being able to handle such cases is one big strength of runtime
enforcement approaches. Additionally, only the specification up to some time bound needs to be known,
not the behaviour beyond that timed horizon, which might not be of interest to the others. Therefore,
each car knows its whole specification completely and the central entity/other cars just enough to fulfil
its/their task(s). While this argument mostly aimed at privacy concerns, we can also consider it in the
light of complexity: The size of the region automaton is exponential in the size of the corresponding SC
automaton, which itself is exponential in the size of the specification in SCL. When we considers that
only the behaviour up to some time bound is of interest to us, a central SC automaton or even worse,
region automaton, would be unnecessary large.

We now focus on the question wherefrom the cars know which timed sequences of states to announce.
This includes getting sequences of regions first (Lemma. 2) and computing a satisfying timed sequence
of states from them (Lemma. 3).

Before doing so, we would like to mention some results from [4]: Given an region automatonR(Aψ)
for a specification ψ in SCL, one can label some of the states as bad, these are the once that, if reached,
do not allow the run of the region automaton to be extended in a way that allow ψ to get satisfied. Vice
versa, if a sequence ends in a state that is not bad, one can extend it in a way s.t. ψ is satisfied.

The second case, however, does not hold if we consider specifications ϕ in TMLSL rather than SCL:
Here, it can be the case that the region automaton claims that there is an extension s.t. ϕ is satisfied, but
the cars are not able to behave in a way that conforms to this extension. Thus, the sequences of regions
that the region automaton suggests as satisfiable might actually not be satisfiable (but are candidates):
Lemma 2 (Sequences of regions as potential solutions). In every traffic snapshot TS, one can compute
the set Π of sequences of regions π = ⟨[νi], . . . ,[ν j]⟩ that start with the region [νi] reached in the region
automaton R(Aϕ) in the evolution towards TS and are candidates for satisfying runs of the region
automaton. Moreover, there is no sequence π

′ not in Π but with m(π ′) ⊧t ϕ .

Proof. Using Def. 3 of [4], we can compute the set of locations {l0, . . . , ln} that the SC automaton Aϕ

reaches along the evolution towards TS. Each location l ∈ {l0, . . . , ln} corresponds to a set of regions
{[ν1], . . . ,[νm]}, with [νi] ⊧ ∆x(l) that is, the region [νi] satisfies the clock constraints over the history
clocks of the location l and especially p ∈ L(li) iff [νi](p) = 0 for every proposition p. We ignore
constraints over the prophecy clocks here, because the future is (at least at the end of the sequence)
unknown and the history clocks are sufficient for determining the intervals.

Given a sequence of regions, we can compute a timed sequence of states that satisfies the sequence
of regions:
Lemma 3 (From regions to timed sequences of states). For every sequence of regions π = ⟨[ν0], . . . ,[νn]⟩
one can construct a timed sequence of state m(π) = ⟨(s0,I0), . . . ,(sm,Im)⟩ s.t. m ⊧ π .

Proof. For simplicity, we assume that there is a global clock that is not reset, counting the time from the
beginning of the sequence. Starting with [ν0] and subsequently going trough all [νi], we determine for
each point in time t which propositions p are valid in it, which is achieved by looking at formulae of the
form xp = 0. To determine the shape of the intervals ([],(),[) or (]), we consider the (in-)equalities in
the regions: If some p is valid in the next point in time, yp = 1 leads to a closed interval border (“]”),
yp < 1 leads to an open one (“)”). We do the same for the history clocks xp.



140 Enforcing Timing Properties

As all cars announce timed sequences of states, we need to combine them into a single sequence that
the central entity can check:

Lemma 4 (Combining Sequences of states). Given two finite timed sequences of states m1 and m2, one
can construct a timed sequence m s.t. for every ϕ ∶ m1 ⊧ ϕ ∨m2 ⊧ ϕ Ô⇒ m ⊧ ϕ .

Proof. We start with an “empty” sequence m = ⟨(_,[0,0]),(_(0,1)),(_,[1,1]),(_,(1,2)), . . .(_,In)⟩.
Going through each state (_,Ii) of m, we look in both m1 and m2 and insert the propositions from
the states (s j,I j), where I j contains Ii. If it happens that for some two neighbouring states (si,Ii) and
(si+1,Ii+1), si = si+1 holds, we can fuse the two into a single state (si,Ii+ Ii+1). As a last step, we check
if the resulting sequence is consistent. If it happens that there is a contradiction in one of the states,
say cl(A) and ¬cl(A) need to hold in the same (time) interval, the timed sequence of states cannot be
satisfied at all and is thus invalid.

Please note that the other direction not necessarily holds, as e.g. p1∧ p2 could hold in [1,1] of m,
but in m1 only p1 and in m2 only p2 holds in the respective interval.

We utilise the aforementioned results in the controllers of the cars and the central entity that deter-
mines whether a solution exists. The controller is depicted in Fig. 3 and the central entity RSU (Road-
Side Unit) in Fig. 4.

q0 q1 q2 q3

com?⟨(α,t)⟩
R.update(α,t)

send!⟨ΠC⟩ receive?ω = ⟨(α0,t0), . . . ,(αn,tn)⟩

execute_and_remove first(ω)

is_empty(ω)

Figure 3: Controller for each car C, each is equipped with an instance of it. The controller keeps track
of the traffic situation in q0 and updates the sequences it could announce accordingly. When announcing
the sequences ΠC, it proceeds to q1 and waits for a positive response from the central entity and executes
the sequence of actions ω that it received from there, until there are not further actions to execute. Please
note that we omitted clock constraints to actually force the controller to leave a state.

Both of them use several functions on their transitions. In the controller, R.update(α,t) is used
so that the internal region automaton keeps track about the behaviour on the road and thus is in the
correct state(s), before the enforcement mechanism is triggered. In this location, we may already have an
evolution that leads to a state s.t. all further extensions are unsatisfiable. If such a behaviour is undesired,
constraints should be added s.t. one does not stay in this location. execute_and_remove_first(ω) takes
the first time stamped action (α1,t1) from the action sequence ω = ⟨(α1,t1), . . . ,(αn,tn)⟩, waits until the
clock reaches t1 and executes α1. Afterwards, this element is removed from ω , so that the next action is
ready to be executed. is_empty(ω) is true for the empty sequence ⟨⟩.

In RSU, the function D.push(ΠC) is used to internally store the announced sets of timed sequences
of states ΠC for each car C in some data structure D. The set of sequences representing all possible
satisfying sequences for all cars is constructed using combine(C1, . . . ,Cn) and stored in Π. Using Alg. 1,
it can then decide whether or not one of the sequences in Π is one for which there is a satisfying sequence
of actions. If so, the solution ω is computed and afterwards split into single solutions ωc for each car
c, so that every car only gets informed of the actions it itself has to execute. After informing a car, it is
removed from the data structure D.



C. Bischopink 141

p0 p1

p2

p3

p4
send?⟨ΠC⟩

D.push(ΠC)

Π ∶= combine(ΠC1 , . . . ,ΠCn)

Π is sat.
with solution

ω

Π not sat.

inform(ωc)
C.remove(c)

is_empty(C)

Figure 4: Central Entity RSU. RSU waits in p0 for announced sequences ΠCi from the cars and combines
them into a single set of sequences Π, which it than can check for a satisfying run. If positively answered,
it sends the sequence to execute to each car.

The communication takes place over the channels com, over which the cars announce action they
execute before the enforcement mechanism is triggered. Channel send is used to inform RSU about the
possible plans Πc of each car. receive is used for the opposite direction, informing the cars which actions
to execute.

Theorem 2 (Correct- and Soundness). If the controller from Fig. 3 proceeds to location q3, the specifi-
cation of all cars is satisfied up to the given time bound t. If it cannot proceed to location q3, then there
is no sequence of actions for the cars to take that respects the specification of all cars.

Proof. Due to Lemma 2, we get all possible satisfying sequences of regions of cars. Due to Lemma 3,
we can compute equivalent timed sequences of states from them. Lemma 4 lets us combine them towards
some Π on the transition from p0 to p1 in RSU s.t. all possible combinations of solutions for all cars are
considered. Each of them is checked using Alg. 1, so the due to Lemma 1, the solution found is a correct
one.

If RSU reaches location p3, the specification is unsatisfiable, so there is no sequence of actions for
the cars to execute. In this case collision freedom can still be guaranteed (assuming that there were no
collisions yet), as the reservations of the cars occupy a space big enough to come to a standstill within
that space.

Remark 3 (Number of sequences to consider). If all cars announce all timed sequences of states that
satisfy their specification, the central entity/road-side unit needs to check all combinations of these se-
quences (with exactly one sequence in the combination for each car), resulting in a lot of computation.
However, these computations do not depend on each other and can thus be parallelised. If we consider
that the cars themself compute this, rather than some road cite unit, one can think of a more advanced
protocol than the one proposed here, where the cars distribute the sequences to check and thus the com-
putational effort between each other.

Remark 4 (Discrete Actions). Through both Sect. 3 and Sect. 4, we only considered how the cars can
change their accelerations to ensure that they satisfy the length measurements in the specification, ig-
noring the discrete actions completely. As said, given a timed sequence of states, it is easy to see what



142 Enforcing Timing Properties

discrete actions are to execute when, as they directly change the formulae valid and thus the phase.
Some of them, however, need to be respected when constructing the length comparisons θi that we check
in DYN.

5 Conclusion

Contribution In this paper, we proposed a runtime enforcement approach for autonomous car in mo-
torway traffic, employing communication between the cars, where the knowledge about the satisfaction
of a property is represented using a region automaton. In answering the question whether or not a spec-
ification (now in the form of a timed sequence of states) is satisfiable, we were able to eliminate one of
the roots for the semi-decidability of the satisfiability problem of TMLSL.

Future Work Future work on the topic includes studying the satisfiability problem of TMLSL again,
in an effort to show that the logic is indeed decidable over infinite runs. Further topics also include the
extension of the logic and the proposed runtime enforcement approach towards the aforementioned more
complex road topologies. Both of them offer some challenges in the semantics and runtime enforcement,
as their models are more complicated that the ones for motorway traffic. For urban traffic, the assump-
tion that there is a central entity that all cars can communicate with is not too far from reality, as on
almost all intersections traffic lights are present, some of which already communicate with the buses that
cross/approach them.

Steps towards an implementation for solving the decidability problem of T MLSL were made and
could be adjusted to be used in the runtime enforcement setting. With an implementation, we could also
examine if the proposed approach is suited for real-time applications like car control on motorways, e.g.
the computation happens fast enough.

Acknowledgements. We thank the anonymous reviewers for their helpful comments.

References
[1] Matthias Althoff, Sebastian Maierhofer & Christian Pek (2021): Provably-Correct and Comfortable Adaptive

Cruise Control. IEEE Trans. Intell. Veh. 6(1), pp. 159–174, doi:10.1109/TIV.2020.2991953.
[2] Rajeev Alur & David L. Dill (1994): A Theory of Timed Automata. Theor. Comput. Sci. 126(2), pp. 183–235,

doi:10.1016/0304-3975(94)90010-8.
[3] Christopher Bischopink & Ernst-Rüdiger Olderog (2022): Spatial and Timing Properties in Highway Traffic.

In Helmut Seidl, Zhiming Liu & Corina S. Pasareanu, editors: Theoretical Aspects of Computing - ICTAC
2022 - 19th International Colloquium, Tbilisi, Georgia, September 27-29, 2022, Proceedings, Lecture Notes
in Computer Science 13572, Springer, pp. 114–131, doi:10.1007/978-3-031-17715-6_9.

[4] Christopher Bischopink & Ernst-Rüdiger Olderog (2023): Time for Traffic Manoeuvres, pp. 163–179.
Springer Nature Switzerland, Cham, doi:10.1007/978-3-031-40132-9_11.

[5] Christopher Bischopink & Maike Schwammberger (2019): Verification of Fair Controllers for Urban Traf-
fic Manoeuvres at Intersections. In Emil Sekerinski, Nelma Moreira, José N. Oliveira, Daniel Ratiu, Ric-
cardo Guidotti, Marie Farrell, Matt Luckcuck, Diego Marmsoler, José Creissac Campos, Troy Astarte, Laure
Gonnord, Antonio Cerone, Luis Couto, Brijesh Dongol, Martin Kutrib, Pedro Monteiro & David Delmas,
editors: Formal Methods. FM 2019 International Workshops - Porto, Portugal, October 7-11, 2019, Revised
Selected Papers, Part I, Lecture Notes in Computer Science 12232, Springer, pp. 249–264, doi:10.1007/978-
3-030-54994-7_18.

https://doi.org/10.1109/TIV.2020.2991953
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-031-17715-6_9
https://doi.org/10.1007/978-3-031-40132-9_11
https://doi.org/10.1007/978-3-030-54994-7_18
https://doi.org/10.1007/978-3-030-54994-7_18


C. Bischopink 143

[6] Martin Fränzle, Michael R. Hansen & Heinrich Ody (2015): No Need Knowing Numerous Neighbours -
Towards a Realizable Interpretation of MLSL. In Roland Meyer, André Platzer & Heike Wehrheim, editors:
Correct System Design, Lecture Notes in Computer Science 9360, Springer, pp. 152–171, doi:10.1007/978-
3-319-23506-6_11.

[7] Klaus Havelund & Allen Goldberg (2008): Verify Your Runs, pp. 374–383. Springer Berlin Heidelberg,
Berlin, Heidelberg, doi:10.1007/978-3-540-69149-5_40.

[8] Martin Hilscher, Sven Linker & Ernst-Rüdiger Olderog (2013): Proving Safety of Traffic Manoeuvres on
Country Roads. In Zhiming Liu, Jim Woodcock & Huibiao Zhu, editors: Theories of Programming and
Formal Methods - Essays Dedicated to Jifeng He on the Occasion of His 70th Birthday, Lecture Notes in
Computer Science 8051, Springer, pp. 196–212, doi:10.1007/978-3-642-39698-4_12.

[9] Martin Hilscher, Sven Linker, Ernst-Rüdiger Olderog & Anders P. Ravn (2011): An Abstract Model for Prov-
ing Safety of Multi-lane Traffic Manoeuvres. In Shengchao Qin & Zongyan Qiu, editors: Formal Methods
and Software Engineering - 13th International Conference on Formal Engineering Methods, ICFEM 2011,
Durham, UK, October 26-28, 2011. Proceedings, Lecture Notes in Computer Science 6991, Springer, pp.
404–419, doi:10.1007/978-3-642-24559-6_28.

[10] Kim Guldstrand Larsen, Marius Mikucionis & Jakob Haahr Taankvist (2015): Safe and Optimal Adap-
tive Cruise Control. In Roland Meyer, André Platzer & Heike Wehrheim, editors: Correct System De-
sign, September 8-9, 2015. Proceedings, Lecture Notes in Computer Science 9360, Springer, pp. 260–277,
doi:10.1007/978-3-319-23506-6_17.

[11] Kim Guldstrand Larsen, Paul Pettersson & Wang Yi (1997): UPPAAL in a Nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1-2), pp. 134–152, doi:10.1007/s100090050010.

[12] Sarah M. Loos, André Platzer & Ligia Nistor (2011): Adaptive Cruise Control: Hybrid, Distributed, and
Now Formally Verified. In Michael J. Butler & Wolfram Schulte, editors: FM 2011: Formal Methods - 17th
International Symposium on Formal Methods, Limerick, Ireland, 4, 2011. Proceedings, Lecture Notes in
Computer Science 6664, Springer, pp. 42–56, doi:10.1007/978-3-642-21437-0_6.

[13] Heinrich Ody (2015): Undecidability Results for Multi-Lane Spatial Logic. In Martin Leucker, Camilo
Rueda & Frank D. Valencia, editors: Theoretical Aspects of Computing - ICTAC, Lecture Notes in Computer
Science 9399, Springer, pp. 404–421, doi:10.1007/978-3-319-25150-9_24.

[14] Heinrich Ody (2020): Monitoring of traffic manoeuvres with imprecise information. Ph.D. thesis, University
of Oldenburg, Germany. Available at https://oops.uni-oldenburg.de/4730.

[15] Jean-François Raskin & Pierre-Yves Schobbens (1997): State Clock Logic: A Decidable Real-Time Logic.
In Oded Maler, editor: Hybrid and Real-Time Systems, International Workshop. HART’97, Grenoble,
France, March 26-28, 1997, Proceedings, Lecture Notes in Computer Science 1201, Springer, pp. 33–47,
doi:10.1007/BFb0014711.

[16] Fred B. Schneider (2000): Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1), pp. 30–50,
doi:10.1145/353323.353382.

[17] Maike Schwammberger (2018): An abstract model for proving safety of autonomous urban traffic. Theor.
Comput. Sci. 744, pp. 143–169, doi:10.1016/j.tcs.2018.05.028.

[18] Maike Schwammberger (2018): Introducing Liveness into Multi-lane Spatial Logic lane change controllers
using UPPAAL. In Mario Gleirscher, Stefan Kugele & Sven Linker, editors: Proceedings 2nd International
Workshop on Safe Control of Autonomous Vehicles, SCAV@CPSWeek 2018, Porto, Portugal, 10th April
2018, EPTCS 269, pp. 17–31, doi:10.4204/EPTCS.269.3.

[19] J. C. P. Woodcock & Jim Davies (1996): Using Z - specification, refinement, and proof. Prentice Hall
international series in computer science, Prentice Hall.

https://doi.org/10.1007/978-3-319-23506-6_11
https://doi.org/10.1007/978-3-319-23506-6_11
https://doi.org/10.1007/978-3-540-69149-5_40
https://doi.org/10.1007/978-3-642-39698-4_12
https://doi.org/10.1007/978-3-642-24559-6_28
https://doi.org/10.1007/978-3-319-23506-6_17
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/978-3-642-21437-0_6
https://doi.org/10.1007/978-3-319-25150-9_24
https://oops.uni-oldenburg.de/4730
https://doi.org/10.1007/BFb0014711
https://doi.org/10.1145/353323.353382
https://doi.org/10.1016/j.tcs.2018.05.028
https://doi.org/10.4204/EPTCS.269.3

	Introduction
	Preliminaries
	Spatial Model of and Logic for Motorway Traffic
	Model and Logic of Time
	TMLSL

	Decidability Results
	Enforcement
	Conclusion

