
M. Farrell, M. Luckcuck, M. Schwammberger, and
M. Gleirscher (Eds): Fifth International Workshop on
Formal Methods for Autonomous Systems (FMAS 2023)
EPTCS 395, 2023, pp. 95–112, doi:10.4204/EPTCS.395.7

© Bogomolov et al.
This work is licensed under the
Creative Commons Attribution License.

Online Reachability Analysis and Space Convexification for
Autonomous Racing

Sergiy Bogomolov
Newcastle University,

Newcastle upon Tyne, United Kingdom
sergiy.bogomolov@ncl.ac.uk

Taylor T. Johnson
Vanderbilt University,

Nashville, USA
taylor.johnson@vanderbilt.edu

Diego Manzanas Lopez
Vanderbilt University,

Nashville, USA
diego.manzanas.lopez@vanderbilt.edu

Patrick Musau
Vanderbilt University,

Nashville, USA
patrick.musau@vanderbilt.edu

Paulius Stankaitis
Newcastle University,

Newcastle upon Tyne, United Kingdom
paulius.stankaitis@ncl.ac.uk

This paper presents an optimisation-based approach for an obstacle avoidance problem within an
autonomous vehicle racing context. Our control regime leverages online reachability analysis and
sensor data to compute the maximal safe traversable region that an agent can traverse within the
environment. The idea is to first compute a non-convex safe region, which then can be convexified
via a novel coupled separating hyperplane algorithm. This derived safe area is then used to for-
mulate a nonlinear model-predictive control problem that seeks to find an optimal and safe driving
trajectory. We evaluate the proposed approach through a series of diverse experiments and assess the
runtime requirements of our proposed approach through an analysis of the effects of a set of varying
optimisation objectives for generating these coupled hyperplanes.

1 Introduction

Over the last several years, autonomous racing has actively been pursued as a strategy to explore edge-
case scenarios in autonomous driving [16]. Racing scenarios present unique challenges with respect to
navigating high speeds and multi-agent interactions. In these contexts, vehicles must be able to operate
at the edge of their operating envelopes in close proximity to static and dynamic obstacles. Several
competitions have emerged over the last couple of years, such as the Indy Autonomous Challenge (IAC)
[16], and the F1TENTH International Autonomous racing competition [34]. Although numerous racing
strategies have been proposed over the last several years, head-to-head racing at high speeds remains a
challenge. Unlike the time trials that are frequently used as qualification rounds in these competitions
[33], head-to-head racing requires designing a regime to be able to predict the future trajectories that
reflect the intentions of the other opponents and drive through the track as quickly as possible.

Within the autonomous racing space, one of the most popular frameworks for tackling the racing
problem has been formulating and solving an optimisation problem that balances obstacle avoidance
and travelling at high velocities [40, 20]. Specifically, the model-predictive control framework (MPC),
which finds optimal control commands based on a model of the underlying system, while satisfying a set
of constraints is the most widely used approach [18]. Although MPC approaches have enjoyed success

http://dx.doi.org/10.4204/EPTCS.395.7
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

96 Online Reachability Analysis and Space Convexification for Autonomous Racing

in these settings [40], one of the main limitations exhibited by many approaches is a lack of robust online
risk assessment in often dynamic and uncertain environments, particularly around vehicle-to-vehicle
interactions. While a lot of progress has been made in this area, collisions still occur due to misplaced
estimations of the set of all possible trajectories that the vehicle could pursue [20]. Furthermore, as
Katrakazas et al. note “exhaustively calculating and predicting the trajectories of other traffic participants
at each epoch incurs a huge computational cost”. Currently, many existing approaches treat the vehicle
as an isolated entity, and the behavioural models of other participants within the environment have not
yet been widely incorporated into the MPC regime [20].

One of the ways that this challenge has been addressed has been through the use of reachability anal-
ysis approaches [1]. The idea is to compute the set of states that the other racing agents could occupy
in the future, for a fixed time horizon, and plan trajectories for the ego vehicle that avoids this unsafe
set [23, 26, 29]. This unsafe set allows for modelling the inherent uncertainty in the behaviour of other
agents and for the synthesis of safe racing trajectories [1]. There are two main challenges that arise in
these contexts. The first is that over long time horizons, reachability approaches will result in overly
conservative behaviours as the set of avoidable states grows. The second is that reachability approaches
are typically computationally challenging endeavours, thus leveraging them online is quite challenging.
In light of these challenges, the following paper presents a model-predictive control framework lever-
aging real-time reachability for a 1/10 scale autonomous vehicle test-bed in a multi-agent racing setting
modelled after the F1TENTH International Autonomous Racing Competition.

Finally, obtaining a solution to the MPC problem generally entails solving a convex optimisation
problem, which guarantees convergence to a globally optimum solution. However, due to the presence
of static and dynamic obstacles, the optimal control problem of obstacle avoidance is inherently a non-
convex problem. Therefore, to solve this problem efficiently many approaches leverage state-space con-
vexification. In the past, several state-space convexification approaches have been proposed, including
region partitioning [28], computing separating hyperplanes [25, 31], and constructing approximations
using stored data points [38] (further discussed in Section 2). In our framework, we propose a novel
optimisation-based approach for convexifying non-convex state spaces by computing coupled separating
hyperplanes. The coupling of separating hyperplanes makes it possible to compute optimal safe and
convex regions. However, it comes at the cost of increased computation time. Therefore, in this paper,
we investigate the feasibility (e.g., timing constraints) of computing coupled separating hyperplanes in a
real-time autonomous racing scenario.

In summary, the contributions of this paper are: (1) we introduce a novel closed-loop model-predictive
obstacle avoidance controller that integrates online reachability analysis and an optimisation-based state-
space convexification approach, (2) we evaluate this approach across a diverse set of simulation exper-
iments using the F1TENTH simulation platform. These experiments include varying the number of
dynamic agents, the number of static and dynamic obstacles, and the racing environment. (3) We present
a timing analysis of the state-space convexification approach. (4) Finally, we evaluate our approach
against the well-known model-predictive contouring control approach, which has shown great success in
obstacle avoidance tasks.

2 Related Work

Researchers have approached the obstacle avoidance problem from two major perspectives. The first
strategy involved formulating and solving an optimisation problem. The second regime has typically
involved a hierarchical decomposition of path planning and reference tracking. A variety of algorithms

Bogomolov et al. 97

such as artificial potential fields [47], genetic algorithms [45], rapidly-exploring random trees (RRT) [19],
fuzzy logic algorithms [32], elastic band theory [12], and rolling window methods [46] have demon-
strated success in numerous arenas. A key limitation of many path planning approaches is that they
are incapable of respecting kinodynamic constraints, such as bounds on the acceleration, and often the
trajectories must be passed to a low-level controller that utilises a higher fidelity dynamics model and
respects control constraints [40]. Furthermore, in highly dynamic and uncertain environments, planners
must be able to replan sufficiently fast to react appropriately to split-second environmental threats [19].
However, most planners typically do not replan sufficiently rapidly to ensure split-second reactivity to
threats [23].

As mentioned previously, MPC approaches have demonstrated great success in generating opti-
mal trajectories that respect kinodynamic constraints and recently researchers have combined these ap-
proaches with reachability analysis to generate provably collision-free paths [1, 5, 23, 35, 23]. Within
this regime, [1, 35, 26] utilise forward reachability methods in order to eliminate areas of the state space
that would result in collisions. While these methods are extremely effective, these approaches must be
implemented carefully in order to ensure that the resulting trajectories do not result in overly conserva-
tive behaviours [23]. The alternative to these approaches is backward reachability approaches [5, 23]
which utilise a target set representing a set of undesirable states, in order to design controllers that can
guarantee dynamic and static obstacle avoidance with minimal intervention. However, these approaches
are computationally demanding and typically the safety-ensuring control constraints, derived from these
methods, are computed and cached offline before being incorporated into an MPC problem [23].

Beyond reachability methods, over the last several years, several space convexification approaches
for the obstacle avoidance problem have been proposed. In [39] a feasible convex set for model-predictive
control is obtained by computing two parallel time-varying hyperplanes on racetrack borders. How-
ever, the resulting hyperplanes do not consider static obstacles or dynamic agents. The works of Mercy
et al. [31, 30] and Scholte et al. [41] utilise the concept of separating hyperplanes to compute hyper-
planes which separate autonomous systems from convex obstacles. The paper [22] combines the model-
predictive control and dynamic agent reachability analysis, and uses IRIS (Iterative Regional Inflation
by Semi-definite programming) [11] for a state-space convexification. A similar approach has been
introduced in [27] for motion planning. Finally, in [28] two (polar and convex) different types of con-
vexification methods based on region partitioning for obstacle avoidance were proposed. Their convex
partitioning regime utilises a convex partitioning algorithm [21] to compute the minimum number of
convex regions that are needed to capture non-convex obstacles, whereas the polar partitioning approach
derives a safe set by using a minimum number of triangles.

The state-space convexification approaches described above have two main limitations for the racing
scenario: they generally aim to compute the largest convex region in the non-convex space (e.g., not
necessarily in the travelling direction of the ego vehicle) or are not able to handle non-convex obstacles.
In our approach, we also express the problem of computing separating hyperplanes as an optimisation
problem, but we are interested in computing a correct set of separating hyperplanes that provide the
largest safe convex region in the direction of the ego vehicle. Furthermore, our proposed approach is
able to handle non-convex obstacles.

3 Preliminaries

3.1 Model-Predictive Control

Let us suppose we have the following (1) discrete-time system where x ∈ X ⊆Rn, u ∈U ⊆Rm and t ∈N.

98 Online Reachability Analysis and Space Convexification for Autonomous Racing

xt+1 = f (xt ,ut) (1)

The MPC problem can then be expressed as a finite horizon optimisation problem (1) where a cost
function J is being minimised over a finite time horizon N subject to constraints (2.1 - 2.4).

Jt→t+N(xt) = min
u0,...,uN−1

p(xt+N)+
t+N−1

∑
k=t

q(xk,uk) (2)

xk+1 = f (xk,uk), ∀k ∈ {t, ..., t +N −1} (2.1)

x0 = xs (2.2)

xk ∈ X , ∀k ∈ {t, ..., t +N −1} (2.3)

uk ∈U, ∀k ∈ {t, ..., t +N −1} (2.4)

The cost function J is made up of a stage cost function q and a terminal cost function p which
determine the cost of being at the interim state xk after applying an input uk, and the cost of being at the
final state xt+N . The constraints (2.1 - 2.4) assert that the optimisation problem, given by equation (1),
begins from an initial state xs and that the interim state and control inputs must respect the constraint sets
X and U .

If the dynamics and constraints can be formulated as linear expressions, then the MPC problem can be
solved efficiently using standard convex optimisation techniques. However, if the dynamics or constraints
are nonlinear, then the problem becomes a nonlinear optimisation problem that is much more computa-
tionally challenging to solve. On the other hand, allowing for nonlinear dynamics and constraints may
permit one to track complex systems with a higher level of fidelity than using linear expressions. Thus,
the computational cost must be evaluated against overall system performance [42].

3.2 Reachability Analysis

Reachability analysis is a technique for computing the set of all reachable states of a dynamical system
from a set of initial states. The reachable set of Rt+1 can be defined formally as:

Rt+1(X0) = f (X0,U) (3)

where X0 ⊆ Rn represents the set of initial states, U ⊆ Rm represents the input set. More generally,
reachability analysis methods aim to construct a conservative flowpipe (4) which encompasses all the
possible reachable sets of a dynamical system over a time-horizon [0,T]. This can be formalised as
follows (in practice the union is computed over a discretised interval):

R[0,T](X0) =
⋃

t∈[0,T]
Rt(X0) (4)

Reachability analysis has been widely used in applications that range from the formal verification of
systems to problems relating to the safe synthesis of complex systems [2]. The majority of reachability
analysis approaches leverage a combination of numerical analysis techniques, graph algorithms, and
computational geometry [4, 3], and while in some cases it is possible to derive the exact reachable set of
states, for many classes of systems computing the exact reachable set is infeasible. Thus, deriving the
reachable set for these classes of systems involves obtaining a sound approximation (i.e., guarantee to

Bogomolov et al. 99

Figure 1: Visualisation of the autonomous racing problem with track boundaries, {δW0,δW1}, a dynamic
opponent described by its reachable set Rζi,[0,T](x0) and static obstacles {O0,O1,O2}. In this figure,
the blue rectangle corresponds to the ego vehicle, and the white rectangle corresponds to a dynamic
opponent. The main sub-problem is computing an n-number of separating hyperplanes (H0...H4) which
jointly create a polyhedron Xsafe. The computed Xsafe must contain an ego vehicle and its target location
lζ as well as not overlap with observable obstacles.

contain a complete reachable set) of this set using a variety of set representations. Consequently, there is
an inherent trade-off between the accuracy of the approximation and the time it takes to construct this set.
We refer interested readers to the following papers [4, 3] for an in-depth discussion of these techniques.

4 Problem Statement and Space Convexification

4.1 Problem Formulation

In this paper, we consider the general autonomous racing problem (5) where a model predictive controller
(2) is tasked with generating a sequence of control inputs u0...T that control a vehicle (1) such that it
reaches the terminal state xT ∈ X f starting from an initial state xs and steering through safe states, where
Xsa f e and X f are the safe states and terminal sets respectively. The goal is to steer the vehicle into the
terminal set with the shortest time horizon T .

min
T,u0,u1,..uT−1

p(xT) +
T

∑
k=0

q(xk,uk) s.t.

xt+1 = f (xt ,ut), x0 = xs

xt ∈ Xsa f e, ut ∈U, xT ∈ XF

(5)

In our formulation, the autonomous vehicle operates within a two-dimensional environment W ⊂R2

enclosed by boundaries {δW0,δW1, . . .δWi} as δW ⊂W , among a set of dynamic agents ζ = {ζ0, . . . ,ζi}
(ζ could be either ego ζe or opponent vehicle ζo) and static obstacles {O0,O1, . . . ,Oi} with O ⊂W . The
region of space occupied by a dynamic agent ζi(xt) ∈ W in the environment over a time interval [t, t ′]
from its current state xt is given by its reachable set Rζi,[t,t ′](xt) ⊂ W . Our assumption is that the static
and dynamic obstacles are contained within the two-dimensional environment. Furthermore, we refer
to opponent vehicles within the racing environment as dynamic agents and refer to all other dynamic
entities as dynamic obstacles.

100 Online Reachability Analysis and Space Convexification for Autonomous Racing

To obtain a globally optimal solution to problem (5), as opposed to a locally optimal solution, the
model-predictive control problem requires the state-space X to be convex. However, because of environ-
ment borders, static obstacles and dynamic agents, X is generally a non-convex entity. Therefore, the
main sub-problem we are addressing in this paper is the computation of the safe, convex and optimal
state-space Xsafe in which a safe trajectory starting from x0 to a target location lζ ∈ Xsafe could be gener-
ated using an optimisation-based controller for the autonomous system (see Figure 1). The safe region
of the state-space Xsafe can be defined as follows:

Xsafe = {x | x ̸∈ (δW ∪O∪
N−1⋃
i=0

Rζi,[0,T](x0))} (6)

where N is the number of observable dynamic agents. The computation of Xsa f e requires considering
only observable obstacles, agents and borders. To define observable points we first introduce a notion
of the LiDAR sensor which is mounted on the autonomous system and makes it possible to determine
the distance to obstacles. The sensor sends M light pulses in an anti-clockwise direction around the au-
tonomous system defined by δθ increments and returns a set of observational points {r0(xt), ...,rM(xt)}
where a LiDAR observational point ri(xt)∈R in the direction θi can be formally defined in the following
way (7):

ri(xt) = min
Oi∈O

min
z∈Oi

||z−ζ (xt)||2 s.t. atan2(z−ζ (xt)) = θi (7)

Ranges of the observable LiDAR signals ri(xt) can be converted into a two-dimensional point cloud
of the W where a single point pi(xt) of an agent ζ (xt) can be defined as a tuple (8):

pi(xt) = (ζ (xt)+ ri(xt)cosθi, ζ (xt)+ ri(xt)sinθi) (8)

Now, we can define observable static obstacles of ζ (xt) as a set Qob of LiDAR points within a
constant radius distance d from the agent’s state ζ (xt):

Qob = {q | q ∈ {p0, ..., pM−1}∧ ||q−ζ (xt)||2 ≤ d}
d ∈ R, 0 < d ≤ max(r0(xt), ...,rM−1(xt))

(9)

Furthermore, the observable unsafe space Qob should include reachable sets of other dynamic agents
{ζ0, . . . ,ζi}. However, we are only interested in other dynamic agents which are within some distance
d ∈ R+ and so we update our definition Qob to include reachable regions of other close dynamic agents
(10):

Q+
ob = Qob ∪{q | q ∈

N−1⋃
i=0

Rζi,[t,t ′](xt) ∧ ||q−ζe(xt)||2 ≤ d} (10)

4.2 Space Convexification via Separating Hyperplanes

This paper proposes a solution for the computation of Xsafe which is based on the convexification of
non-convex state space via separating coupled hyperplanes. A hyperplane H = {x | a⊤x = b}, where
a ∈ Rn,b ∈ R,a ̸= 0, is a set which splits set Rn into two halfspaces. Let us also denote H∗ (11) as one

Bogomolov et al. 101

of the halfspaces of the hyperplane H. A separating hyperplane H is then said to separate two disjoint
convex sets A,B such that A ⊆ H+ and B ⊆ H− [7].

H∗ ∈ {H+,H−} H+∩H− = H

H+ = {x | a⊤x ≥ b} H− = {x | a⊤x ≤ b}
(11)

An intersection of finite halfspaces is a polyhedron P (12):

PH = {x | x ∈
N−1⋂
i=0

H∗
i } (12)

The idea behind a space convexification via separating coupled hyperplanes is to compute a set
of hyperplanes HS = {H0, ...,Hn} such that together they create a polyhedron PHS which (1) does not
intersect with the set observable obstacles of the ego vehicle and (2) the ego vehicle ζe(xt) with its target
location lζ are within the polyhedron at the time t (13):

Xsafe = {x | x ∈ PHS ∧ PHS ∩ Q+
ob = /0 ∧ ζe(xt) ∈ PHS ∧ lζ (xt) ∈ PHS} (13)

The problem of generating a set of separating coupled-hyperplanes HS can be defined as an optimi-
sation or satisfiability problem (14) in which n number of hyperplanes are computed such that: 1) each
hyperplane separates a part of observable obstacles from the ego vehicle and its target location and 2) all
observable obstacles are separated by separating coupled hyperplanes

compute HS = {H0, ...,Hi} s.t.

∀qob+
i ∈ Q+

ob ⇒∃Hi ∈ HS ∧ qob+
i ∈ H∗

i ∧ ζ (xt), lζ (xt) ∈ Rn \H∗
i

(14)

The convex and safe polyhedron Xsafe is the intersection of halfspaces H∗
i of each hyperplane Hi ∈HS

for which ζe(xt) ∈ H∗
i and lζ (xt) ∈ H∗

i hold. The problem (14) can be expressed as an optimisation
problem on the set of hyperplanes HS or polyhedron PHS. One possible performance metric could be
finding the largest PHS [13, 8].

5 Autonomous Vehicle Control System

5.1 Overview of the Closed-Loop Control System

The closed-loop control system for obstacle avoidance which we propose in this paper combines online
reachability analysis and non-linear model-predictive control (visualised in Fig. 2). The control cycle
can be divided into four main procedures: sensing, environment data processing and local planning,
state-space convexification and solving an optimal control problem.

The control system relies on the LiDAR sensor to obtain and identify the set of observable obstacles
and safe regions. We then leverage the Ramer-Douglas-Peucker algorithm [14] to simplify the observed
LiDAR data and reduce the noisiness of its measurements. Doing so allows us to reduce the computation
time needed to produce a set of coupled separating hyperplanes. The other sensors, namely, odometry
measurements and the results of state-estimators, are used to determine the state of the ego vehicle and
other agents respectively. In this work, we assume that the state of the ego vehicle and opponent agents

102 Online Reachability Analysis and Space Convexification for Autonomous Racing

(Local) Planner

Xsafe MPC

V
eh

ic
le

Pl
an

t

Vehicle States

Reachability

LiDAR

≈LiDAR

Sensors

Odometry

State Estimator

Environment

Figure 2: The architecture of the closed-loop control system for obstacle avoidance

are estimated perfectly. Therefore, we use the ground truth data provided by the simulator. This data
is then passed to a (local) planner (e.g., Follow-the-Gap [43]) to select a target position. We then use
reachability analysis to compute the set of reachable states for all agents within the environment.

The computation of separating coupled hyperplanes, which produces a safe and convex Xsafe, involves
using sensor information, the target location obtained from the local planner, and the set of reachable
states of the dynamic agents within the environment. The hyperplanes are then passed to the model-
predictive controller, together with the target location and odometry data, which solves an online optimal
control problem (5) to determine the optimal inputs for the vehicle.

5.2 Computing Separating Coupled-Hyperplanes

The problem of computing separating coupled hyperplanes, which establishes a convex and safe Xsafe,
can be formulated as an optimisation (or satisfiability) problem. Thus, we present an optimisation-based
method for solving (14) in order to separate the observable obstacle set Q+

ob from the autonomous system
ζe(xt) and its target location lζe(xt) at the state xt .

In Algorithm 1, we describe the computation of our separating coupled-hyperplanes H0..n. First, the
set of unsafe states is included in the set Qob. The set of unsafe states consists of the set of observable
obstacles from the LiDAR sensor and the reachable states of the dynamic agents. Using this set, we then
make use of the state of the ego vehicle, the target location obtained from the local planner, and in the
case case of the constrained optimisation method a predefined number of hyper-planes to formulate an
optimisation problem. Furthermore, only obstacles (Algorithm 1 ln. 6) and reachable sets (Algorithm 1
ln. 7-8) within a distance d from the ego vehicle ζe(xt) are considered in the hyperplane computation.
Constrained Optimisation Method The first approach uses a derivative-free constrained optimisation
formulation which utilises a linear approximation of the objective function and optimisation constraints
to solve the aforementioned optimisation problem [37]. In the optimisation problem, an individual sep-
arating hyperplane Hn ∈ {H0, ..,Hn} is only responsible for separating a subset of Q+

ob from ζe(xt) and
l(xt), while the set of all hyperplanes considered should separate the vehicle from Q+

ob as a whole.
For each qob ∈ Q+

ob a separate constraint in the optimisation problem is defined which checks if qob
is separated from the target location and autonomous system ζe(xt) with some hyperplane Hn. The con-
strained optimisation method can use different objective functions which characterise how the set of
hyperplanes is derived. For example, the optimisation problem could try minimising the distance be-
tween each Hn and its associated set of qob, or simply be expressed as a satisfiability problem with a
constant objective function. We present an analysis of different optimisation objective functions for this
purpose in the evaluation section.

Bogomolov et al. 103

ALGORITHM 1 The overall algorithm for the computation of separating coupled hyperplanes

1: Inputs: observable radius distance d ∈ R+

2: Inputs: states of the ego vehicle ζe(xt) = {xe,ye} and other dynamic agents {ζ0, . . . ,ζN}
3: Inputs: static obstacle data P = {p0, ..., pN−1} from the LiDAR (ranges Equation (7))
4: Compute target states of the ego vehicle with the local planner l(xt) = {xt ,yt}
5: Compute reachable states R =

⋃N
i=0 Ri of observable dynamic agents {ζ0, . . . ,ζN}

6: Compute Qob(xt) by using static obstacle LiDAR data {q |q ∈ P∧∥q−ζe(xt)∥2 ≤ d}
7: Compute Q+

ob(xt) by combining static and dynamic obstacles Qob(xt)∪R
8: Encode q ∈ Q+

ob, x ∈ ζe(xt), x ∈ l(xt) as constraints of the optimisation problem and solve by using
the constrained or bi-level optimisation method

9: Output: {H0, . . . ,Hn}

Bi-level Optimisation Method The problem defined in (14) can also be encoded as a bi-level optimi-
sation problem in (15). The problem is similar to one solved by Deits and Tedrake [11] except we are
interested in computing a polygon defined by a minimum number of hyperplanes which contains the
largest ellipsoids in the direction of the target location. The [11] maximises ellipsoid in any possible
direction, which is not suitable for the racing context, as the most optimal trajectories produced by the
MPC will most likely be along the ego vehicle to the target corridor.

The outer part of the problem computes the minimum set of separating hyperplanes (the size of the
A matrix’s diagonal) that separate obstacle points Q+

ob from the ego vehicle and its target location. The
inner part of the bi-level optimisation solves the Chebyshev centre [7] problem1 by finding the centre q
of the largest inscribable ellipsoid with radius R.

argmin
A,b

||diag(A)|| s.t.

Aq ≥ b, ∀q ∈ Q+
ob

Ax ≤ b, ∀x ∈ ζe(xt)∪ l(xt)

argmax
q,R

R s.t.

a jq+ ||A||R ≤ b j

R ≥ 0

(15)

5.3 Reachability Analysis of Dynamic Obstacles

To perform reachability analysis, we first identify a dynamical model of the vehicle and assume models
for the dynamic obstacles within its environment.

5.3.1 Dynamic Obstacle Model

The obstacle-tracking problem is a well-studied and challenging topic within the autonomous vehicle,
computer vision, and robotics literature [44]. Typically, some assumptions are required in order to con-

1The reason for maximising the largest inscribable ellipsoid in contrast to directly maximising the area of the safe polyhe-
dron Xsafe is efficiency. There are no efficient methods for computing the area of irregular polyhedrons, while the Chebyshev
centre problem can be solved sufficiently fast.

104 Online Reachability Analysis and Space Convexification for Autonomous Racing

strain the tracking problem to suit the context of the application. In our framework, we assume that the
dynamic obstacles are described by a two-dimensional kinematic model and a corresponding bounding
box. The equations describing the kinematic model are given as follows:

ẋ = vx, ẏ = vy

where vx and vy are the velocities in the x and y direction, respectively. Additionally, we make the
assumption that we have access to the position and velocity of the other race participants.

While it is possible to use more sophisticated models to describe the behaviour of the dynamic ob-
stacles within the vehicle’s environment, for simplicity we selected a two-dimensional kinematic model.
However, it is worth noting that there has been a growth in approaches that perform online parameter
estimation for dynamic obstacles within a robot’s environment through online system identification [15].

5.3.2 Online Reachability Computation

Using the dynamics models obtained in the previous sections, the crux of the real-time reachability
algorithm is computing the set of reachable states R[0,T](X0) over a finite time horizon. The algorithm
utilised within this work is based on mixed face-lifting, which is part of a class of methods that deal
with flow-pipe construction or reachtube computation [17]. This is done using snapshots of the set of
reachable states that are enumerated at successive points in time, as outlined in Equation (3).

In general, it is not possible to obtain the exact reachable set R[0,T](X0), so we compute an over-
approximation such that the actual system behaviour is contained within the over-approximation [24].
The algorithm utilised in this work utilises n-dimensional hyper-rectangles (“boxes”) as the set represen-
tation to generate reachtubes [17]. Over long reach-times, the over-approximation error resulting from
the use of this representation can be problematic. However, for short reach-times it is ideal in terms of
its simplicity and speed [6].

Traditionally, reachability approaches have been executed offline because they are computationally
intensive endeavours. However, in [6, 17], Bak et al. and Johnson et al. presented a reachability al-
gorithm, based on the seminal mixed face-lifting algorithm [10], capable of running in real-time on
embedded processors. The algorithm is implemented as a standalone C-package that does not rely on so-
phisticated (non-portable) libraries, recursion, or dynamic data structures and is amenable to the anytime
computation model in the real-time scheduling literature. In this regime, each task produces a partial
result that is improved upon as more computation time is available, known as an anytime algorithm [17].
We refer readers to the following papers for an in-depth treatment of these procedures [10, 6, 17].

6 Evaluation

In this section, we present a runtime analysis of proposed algorithms for computing separating coupled
hyperplanes and an evaluation of the overall control system by using the F1TENTH simulation platform.
In the following section, we first describe an optimisation-free method (MPCC) for computing separating
hyperplanes, which will be used to compare against our proposed approaches.

6.1 MPCC Optimisation-free Hyperplane Approach

In [25] Liniger et al. tackled the autonomous racing problem via a nonlinear MPC problem that encoded
the obstacle avoidance problem by means of a high-level corridor planner based on dynamic program-
ming. The safe corridor that their framework utilised was constructed by projecting the points along

Bogomolov et al. 105

(a) Constrained Optimisation Method (b) MPCC approach

Figure 3: A snapshot of the artificial overtaking scenario with two opponents represented: combined
observable static and dynamic obstacles Q+

ob (green points), corners of the ego vehicle (orange points),
target point (red point), computed hyperplanes (black) and the boundaries of the racetrack (blue).

the centre line of the track onto the racetrack borders (one for the left border, and one for the right bor-
der). Their regime demonstrated success in controlling 1/43 scale race cars, driven at speeds of more
than 3 m/s using controllers executing at 50 Hz sampling rate on embedded computing platforms [25].
While their evaluation was limited to environments with static obstacles, we experimented with using
such a scheme to obtain the separating hyperplanes framing our MPC problem. We refer readers to the
following paper for an in-depth discussion of their approach [25].

6.2 Offline Analysis of Convexification Algorithms

Deploying optimisation-based methods into real-time autonomous control systems requires careful con-
sideration of timing constraints issued by the optimisation method. The computation time of the pro-
posed methods can be affected by the number of obstacle points being considered or in the case of the
constrained optimisation method by the selected optimisation cost function. In these experiments, we
aim to evaluate the quality of separating hyperplanes generated by different approaches and the com-
putation time. The former is assessed by inscribing the largest circle with radius R between generated
hyperplanes (the centre of the circle must be between the ego vehicle and its target location) and gives
a reasonable size approximation of the Xsa f e in the travelling direction of ego vehicle. In the first set of
experiments, we traversed the ego vehicle along a predefined path on one of the two racetracks: Porto
(see Figure 5) and Walker without other dynamic agents, and then considered an artificially created over-
taking scenario with one and two opponents (visualised in Figure 3). The results of this experiment are
summarised in Table 1. The MPCC approach is clearly more time efficient compared to our proposed
approaches as it is not an optimisation-based approach. However, it produces a smaller average inscribed
circle radius (i.e., smaller Xsa f e), particularly, in the overtaking scenarios with up to 16 per cent smaller R
in comparison to the largest averaged R. The bi-level optimisation approach is around tenfold faster than
the constrained optimisation approach, as its outer problem is a linear programming problem, which can
be efficiently solved even with a larger number of obstacles (problem constraints). However, our experi-
ments show that the bi-level optimisation method does not always produce the largest Xsa f e and in some

106 Online Reachability Analysis and Space Convexification for Autonomous Racing

cases generates more than two hyperplanes, which would negatively affect solving the MPC problem.
In the second experiment, we increased the number of generated (randomly positioned) obstacle

points around an ego vehicle to evaluate our method’s scalability with respect to a larger number of
obstacles. For the constrained optimisation method we considered three types of objective functions:
Hausdorff, Euclidean distances and a satisfiability problem which only requires satisfying optimisation
constraints. For each objective function and bi-level optimisation, the number of obstacle points varied
from 10 to 2000. The evaluation results are visually shown in Figure 4.

Experiment Scenario Approach H Time (s) R
Porto (w/o obstacles) MPCC 2 6.46 ×10−5 1.29
Porto (w/o obstacles) Constrained Optimisation 2 0.132 1.30
Porto (w/o obstacles) Bi-level Optimisation 2.16 0.019 1.072

Walker (w/o obstacles) MPCC 2 7.65×10−5 0.702
Walker (w/o obstacles) Constrained Optimisation 2 0.12 0.675
Walker (w/o obstacles) Bi-level Optimisation 2.26 0.019 0.715

Overtaking (1 opponent) MPCC 2 8.679×10−5 0.627
Overtaking (1 opponent) Constrained Optimisation 2 0.18 0.661
Overtaking (1 opponent) Bi-level Optimisation 2.13 0.022 0.755
Overtaking (2 opponents) MPCC 2 9.79 × 10−5 0.465
Overtaking (2 opponents) Constrained Optimisation 2 0.265 0.488
Overtaking (2 opponents) Bi-level Optimisation 2.59 0.026 0.473

Table 1: Offline evaluation of different methods for computing separating hyperplanes with average
computation time, an average inscribed radius R and an average number of hyperplanes H.

6.3 Real-Time Control System Evaluation

Our real-time evaluation of the overall control system (MPC Hype) includes a diverse set of experiments
that include changing the number of racing agents present within the racetrack, including additional dy-
namic obstacles within the racetrack, adding static obstacles onto the racetrack, and changing the racing
environment. We compare the performance of our approach against a set of controllers typically utilized
within the F1TENTH racing competitions with respect to two metrics that we refer to as efficiency, and
safety. Efficiency is the total distance that the F1TENTH vehicle traverses around the track divided by
the amount of time it took to do so.2 Safety corresponds to the controller’s ability to avoid collisions over
a set of experimental runs (i.e., 10 collisions in 20 experiments corresponds to a safety score of 50%).
The following controllers were utilised as a local planning mechanism for selecting the target point used
in our MPC regime. Additionally, we utilised them as a baseline comparison for our approach.

Pure Pursuit The Pure Pursuit algorithm is a widely used path-tracking algorithm that was originally
designed to calculate the arc needed to get a robot back onto a path [9]. It has shown great success in
being used in numerous contexts, and in this work, we utilise it to design a controller that allows the
F1TENTH vehicle to follow a path along the centre of the racetrack.

2This is equivalent to the average speed attained during the experiment.

Bogomolov et al. 107

Figure 4: Offline evaluation of separating coupled hyperplane computation time against different num-
bers of obstacle points (optimisation constraints), different objective functions (method 1 - constrained
optimisation approach, method 2 - bi-level optimisation).

Gap Following Obstacle avoidance is an essential component of a successful autonomous racing strat-
egy. Gap following approaches have shown great promise in dealing with dynamic and static obstacles.
They are based on the construction of a gap array around the vehicle used for calculating the best head-
ing angle needed to move the vehicle into the centre of the maximum gap [34]. In this work, we utilise
a gap following controller called the “disparity extender” by Otterness et al. that won the F1TENTH
competition in April of 2019 [36].

Our evaluation included a sizeable diversity of experiments with respect to the number of vehicles
present in the racing environment, the presence of static and dynamic obstacles, the racetrack used for
the autonomous race, the local planner chosen to select goal points, and the method selected to obtain
the separating hyperplanes. Each configuration was evaluated over 30 experimental runs of 60 seconds.
Table 2 displays the results of experiments with two and three cars respectively (separated by horizontal
line) on a single track without static obstacles (a screenshot of the two agent experiment is shown in
Figure 5). In the table that follows, DE corresponds to the disparity extender, PP corresponds to pure
pursuit, MPCC corresponds to the approach presented by Liniger et al. [25], and MPC Hype corresponds
to the optimisation-based approach presented in this document. Finally, Race Duration corresponds to
the amount of time the agents were able to race before a collision occurred.

The results from the experiments suggest that our proposed control system (MPC Hype) can increase
autonomous vehicle safety without loss of efficiency (compared to MPCC), especially when the num-

108 Online Reachability Analysis and Space Convexification for Autonomous Racing

Figure 5: An example of a two-agent racing scenario. The bright green rectangle, represents the reachable
set (convex hull) of the opponent vehicle over a t = 0.5 second time horizon, while the faded green
vehicle represents the ego vehicle. The purple dot corresponds to the target location obtained from the
local planner. The red lines are the two parallel half spaces that approximate the traversable region within
the racetrack.

Table 2: Performance summary of two-car experiments (without static obstacles): DE (Disparity Exten-
der), PP (Pure Pursuit), MPCC (Model-Predictive Control with Contouring) and MPC Hype (our control
system with the constrained optimisation hyperplane computation)

Track Approach Local Planner Ego Efficiency (m/s) Opponent Efficiency (m/s) Race Duration (s) Safety (%)
Porto DE DE 5.29 4.65 51.57 38.33
Porto MPC Hype DE 0.00 5.27 5.53 0.00
Porto MPC Hype PP 3.06 5.18 25.74 13.33
Porto MPCC DE 3.00 4.97 7.12 20.00
Porto MPCC PP 3.00 5.34 55.14 46.67
Porto PP PP 4.70 5.33 60.0 100.00
Porto DE DE 5.38 4.10 33.78 28.33
Porto MPC Hype DE 1.19 4.50 5.40 0.00
Porto MPC Hype PP 2.75 2.96 43.26 30.00
Porto MPCC DE 1.66 4.23 5.39 3.33
Porto MPCC PP 1.83 4.00 5.37 16.67
Porto PP PP 4.70 3.73 57.30 70.00

ber of opponent vehicles is increased. However, results also suggest that the performance of our MPC
implementation could be further improved, for example, by improving the MPC cost function to gener-
ate better speed profiles in corners. This would also provide us with more evidence of the hyperplane
approach when ego velocity is increased. Furthermore, our experimentation setup did not differentiate
between different types of collisions, for example, collisions, where the opponent vehicle collided with
the back of the ego vehicle and the reverse situation, were treated equally (i.e., counted the same in the
safety metric). A more nuanced safety metric with a blame factor would provide a better understanding

Bogomolov et al. 109

of our control system performance.

7 Conclusions and Future Work

This paper presented an optimisation-based approach for static and dynamic obstacle avoidance problems
within an autonomous vehicle racing context. Our control regime leveraged online reachability analysis
and sensor data to compute the maximal safe traversable region that an agent can traverse within the en-
vironment. We described a technique for computing a convex safe region via a novel coupled separating
hyperplane algorithm. This derived safe area was then used to formulate a nonlinear model-predictive
control problem that sought to find an optimal and safe driving trajectory with varying degrees of effi-
cacy. Our experimental evaluation demonstrated that our approach was feasible as an obstacle avoidance
strategy. Finally, we assessed the runtime requirements of our proposed approach by analysing the effects
of a set of varying optimisation objectives for generating these coupled hyperplanes.

There are a number of future work directions we would like to explore. Firstly, our study did not con-
sider uncertainty in sensors, our future work will seek to include uncertainties arising from the state esti-
mation of opponent vehicles in their reachable set computation. Secondly, future studies would include
an analysis against hierarchical control architectures that decompose the obstacle avoidance problem into
planning and trajectory tracking. Lastly, we would like to evaluate the proposed approach on the physical
F1TENTH platform in order to validate further that our approach admits low resource requirements.

References

[1] M. Althoff & J. M. Dolan (2014): Online Verification of Automated Road Vehicles Using Reachability Anal-
ysis. IEEE Transactions on Robotics 30(4), pp. 903–918, doi:10.1109/TRO.2014.2312453.

[2] Matthias Althoff, Goran Frehse & Antoine Girard (2021): Set Propagation Techniques for Reacha-
bility Analysis. Annual Review of Control, Robotics, and Autonomous Systems 4(1), pp. 369–395,
doi:10.1146/annurev-control-071420-081941.

[3] Eugene Asarin, Thao Dang, Goran Frehse, Antoine Girard, Colas Le Guernic & Oded Maler (2007): Re-
cent progress in continuous and hybrid reachability analysis. Proceedings of the 2006 IEEE Confer-
ence on Computer Aided Control Systems Design, CACSD, pp. 1582–1587, doi:10.1109/CACSD-CCA-
ISIC.2006.4776877.

[4] Eugene Asarin, Thao Dang & Antoine Girard (2003): Reachability Analysis of Nonlinear Systems Using
Conservative Approximation. In Oded Maler & Amir Pnueli, editors: Hybrid Systems: Computation and
Control, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 20–35, doi:10.1007/3-540-36580-X_5.

[5] A. Bajcsy, S. Bansal, E. Bronstein, V. Tolani & C. J. Tomlin (2019): An Efficient Reachability-Based Frame-
work for Provably Safe Autonomous Navigation in Unknown Environments. In: 2019 IEEE 58th Conference
on Decision and Control (CDC), pp. 1758–1765, doi:10.1109/CDC40024.2019.9030133.

[6] S. Bak, T. T. Johnson, M. Caccamo & L. Sha (2014): Real-Time Reachability for Verified Simplex Design.
In: 2014 IEEE Real-Time Systems Symposium, pp. 138–148, doi:10.1109/RTSS.2014.21.

[7] Stephen Boyd & Lieven Vandenberghe (2004): Convex Optimization. Cambridge University Press,
doi:10.1017/CBO9780511804441.

[8] J. S. Chang & C. K. Yap (1986): A Polynomial Solution for the Potato-Peeling Problem. Discrete Comput.
Geom. 1(2), p. 155–182, doi:10.1007/BF02187692.

[9] R. Craig Coulter (1992): Implementation of the Pure Pursuit Path Tracking Algorithm. Technical Report
CMU-RI-TR-92-01, Carnegie Mellon University, Pittsburgh, PA.

https://doi.org/10.1109/TRO.2014.2312453
https://doi.org/10.1146/annurev-control-071420-081941
https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4776877
https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4776877
https://doi.org/10.1007/3-540-36580-X_5
https://doi.org/10.1109/CDC40024.2019.9030133
https://doi.org/10.1109/RTSS.2014.21
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1007/BF02187692

110 Online Reachability Analysis and Space Convexification for Autonomous Racing

[10] Thi Xuan Thao Dang (2000): Verification and Synthesis of Hybrid Systems. Theses, Institut National Poly-
technique de Grenoble - INPG.

[11] Robin Deits & Russ Tedrake (2015): Computing Large Convex Regions of Obstacle-Free Space Through
Semidefinite Programming, pp. 109–124. Springer International Publishing, Cham, doi:10.1007/978-3-319-
16595-0_7.

[12] Huixu Dong, Ching-Yen Weng, Chuangqiang Guo, Haoyong Yu & I-Ming Chen (2021): Real-
Time Avoidance Strategy of Dynamic Obstacles via Half Model-Free Detection and Tracking With
2D Lidar for Mobile Robots. IEEE/ASME Transactions on Mechatronics 26(4), pp. 2215–2225,
doi:10.1109/TMECH.2020.3034982.

[13] Reza Dorrigiv, Stephane Durocher, Arash Farzan, Robert Fraser, Alejandro López-Ortiz, J. Ian Munro, Ale-
jandro Salinger & Matthew Skala (2009): Finding a Hausdorff Core of a Polygon: On Convex Polygon
Containment with Bounded Hausdorff Distance. In Frank Dehne, Marina Gavrilova, Jörg-Rüdiger Sack &
Csaba D. Tóth, editors: Algorithms and Data Structures, Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
218–229, doi:10.1007/978-3-642-03367-4_20.

[14] David H Douglas & Thomas K Peucker (1973): Algorithms for the Reduction of the Number of Points
Required to Represent a Digitized Line or its Caricature. Cartographica: The International Journal for
Geographic Information and Geovisualization 10(2), pp. 112–122, doi:10.3138/FM57-6770-U75U-7727.

[15] Gowtham Garimella, Matthew Sheckells & Marin Kobilarov (2017): Robust obstacle avoidance for aerial
platforms using adaptive model predictive control. In: 2017 IEEE International Conference on Robotics and
Automation (ICRA), pp. 5876–5882, doi:10.1109/ICRA.2017.7989692.

[16] Gabriel Hartmann, Zvi Shiller & Amos Azaria (2021): Autonomous Head-to-Head Racing in the Indy Au-
tonomous Challenge Simulation Race. CoRR abs/2109.05455. arXiv:2109.05455.

[17] Taylor T. Johnson, Stanley Bak, Marco Caccamo & Lui Sha (2016): Real-Time Reachability for Verified
Simplex Design. ACM Trans. Embed. Comput. Syst. 15(2), doi:10.1109/RTSS.2014.21.

[18] Chanyoung Jung, Seungwook Lee, Hyunki Seong, Andrea Finazzi & David Hyunchul Shim (2021): Game-
Theoretic Model Predictive Control with Data-Driven Identification of Vehicle Model for Head-to-Head Au-
tonomous Racing. CoRR abs/2106.04094, doi:10.48550/arXiv.2106.04094.

[19] Sertac Karaman, Matthew R. Walter, Alejandro Perez, Emilio Frazzoli & Seth Teller (2011): Anytime Motion
Planning using the RRT*. In: 2011 IEEE International Conference on Robotics and Automation, pp. 1478–
1483, doi:10.1109/ICRA.2011.5980479.

[20] Christos Katrakazas, Mohammed Quddus, Wen-Hua Chen & Lipika Deka (2015): Real-time motion planning
methods for autonomous on-road driving: State-of-the-art and future research directions. Transportation
Research Part C: Emerging Technologies 60, pp. 416–442, doi:10.1016/j.trc.2015.09.011.

[21] Mark Keil & Jack Snoeyink (2002): On The Time Bound For Convex Decomposition Of Simple
Polygons. International Journal of Computational Geometry & Applications 12(03), pp. 181–192,
doi:10.1142/S0218195902000803.

[22] Shivesh Khaitan, Qin Lin & John M. Dolan (2021): Safe Planning and Control Under Un-
certainty for Self-Driving. IEEE Transactions on Vehicular Technology 70(10), pp. 9826–9837,
doi:10.1109/TVT.2021.3108525.

[23] Karen Leung, Edward Schmerling, Mengxuan Zhang, Mo Chen, John Talbot, J Christian Gerdes & Marco
Pavone (2020): On Infusing Reachability-Based Safety Assurance within Probabilistic Planning Frameworks
for Human-Robot Vehicle Interactions. The International Journal of Robotics Research 39(10-11), pp. 1326–
1345, doi:10.1177/0278364920950795.

[24] Qin Lin, Xin Chen, Aman Khurana & John Dolan (2020): ReachFlow: An Online Safety Assurance Frame-
work for Waypoint-Following of Self-driving Cars. In: International Conference on Intelligent Robots and
systems (IROS), IROS’2020, IEEE, doi:10.1109/IROS45743.2020.9341122.

[25] Alexander Liniger, Alexander Domahidi & Manfred Morari (2014): Optimization-based autonomous racing
of 1:43 scale RC cars. Optimal Control Applications and Methods 36(5), p. 628–647, doi:10.1002/oca.2123.

https://doi.org/10.1007/978-3-319-16595-0_7
https://doi.org/10.1007/978-3-319-16595-0_7
https://doi.org/10.1109/TMECH.2020.3034982
https://doi.org/10.1007/978-3-642-03367-4_20
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.1109/ICRA.2017.7989692
https://arxiv.org/abs/2109.05455
https://doi.org/10.1109/RTSS.2014.21
https://doi.org/10.48550/arXiv.2106.04094
https://doi.org/10.1109/ICRA.2011.5980479
https://doi.org/10.1016/j.trc.2015.09.011
https://doi.org/10.1142/S0218195902000803
https://doi.org/10.1109/TVT.2021.3108525
https://doi.org/10.1177/0278364920950795
https://doi.org/10.1109/IROS45743.2020.9341122
https://doi.org/10.1002/oca.2123

Bogomolov et al. 111

[26] Changliu Liu, Tomer Arnon, Christopher Lazarus, Clark W. Barrett & Mykel J. Kochenderfer (2019): Al-
gorithms for Verifying Deep Neural Networks. CoRR abs/1903.06758, doi:10.48550/arXiv.1903.06758.
arXiv:1903.06758.

[27] Changliu Liu, Chung-Yen Lin & Masayoshi Tomizuka (2017): The Convex Feasible Set Algorithm for Real
Time Optimization in Motion Planning, doi:10.48550/ARXIV.1709.00627. Available at https://arxiv.
org/abs/1709.00627.

[28] Jiechao Liu, Paramsothy Jayakumar, Jeffrey L. Stein & Tulga Ersal (2018): A nonlinear model predictive
control formulation for obstacle avoidance in high-speed autonomous ground vehicles in unstructured envi-
ronments. Vehicle System Dynamics 56(6), pp. 853–882, doi:10.1080/00423114.2017.1399209.

[29] Joseph Lorenzetti, Mo Chen, Benoit Landry & Marco Pavone (2018): Reach-Avoid Games Via Mixed-Integer
Second-Order Cone Programming. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 4409–
4416, doi:10.1109/CDC.2018.8619382.

[30] Tim Mercy, Wannes Van Loock & Goele Pipeleers (2016): Real-time motion planning in the
presence of moving obstacles. In: 2016 European Control Conference (ECC), pp. 1586–1591,
doi:10.1109/ECC.2016.7810517.

[31] Tim Mercy, Ruben Van Parys & Goele Pipeleers (2018): Spline-Based Motion Planning for Autonomous
Guided Vehicles in a Dynamic Environment. IEEE Transactions on Control Systems Technology 26(6), pp.
2182–2189, doi:10.1109/TCST.2017.2739706.

[32] Siti Hajar Ashikin Mohammad, Muhammad Akmal Jeffril & Nohaidda Sariff (2013): Mobile robot obstacle
avoidance by using Fuzzy Logic technique. In: 2013 IEEE 3rd International Conference on System Engi-
neering and Technology, pp. 331–335, doi:10.1109/ICSEngT.2013.6650194.

[33] Matthew O’Kelly, Varundev Sukhil, Houssam Abbas, Jack Harkins, Chris Kao, Yash Vardhan Pant, Rahul
Mangharam, Dipshil Agarwal, Madhur Behl, Paolo Burgio & Marko Bertogna (2019): F1/10: An Open-
Source Autonomous Cyber-Physical Platform. CoRR abs/1901.08567, doi:10.48550/arXiv.1901.08567.
arXiv:1901.08567.

[34] Matthew O’Kelly, Hongrui Zheng, Dhurv Karthik & Rahul Mangharam (2020): F1TENTH: An Open-source
Evaluation Environment for Continuous Control and Reinforcement Learning. In Hugo Jair Escalante & Raia
Hadsell, editors: Post Proceedings of the NeurIPS 2019 Demonstration and Competition Track, Proceedings
of Machine Learning Research, PMLR.

[35] Michael Otte & Emilio Frazzoli (2016): RRTX: Asymptotically optimal single-query sampling-based mo-
tion planning with quick replanning. The International Journal of Robotics Research 35(7), pp. 797–822,
doi:10.1177/0278364915594679.

[36] Nathan Otterness (2019): The "Disparity Extender" Algorithm, and F1/Tenth. Available at https://www.
nathanotterness.com/2019/04/the-disparity-extender-algorithm-and.html.

[37] M. J. D. Powell (2007): A View of Algorithms for Optimization without Derivatives. Technical Report
DAMTP 2007/NA03, University of Cambridge.

[38] Ugo Rosolia & Francesco Borrelli (2019): Learning How to Autonomously Race a Car: a Predictive Control
Approach. arXiv:1901.08184.

[39] Ugo Rosolia, Stijn De Bruyne & Andrew G. Alleyne (2017): Autonomous Vehicle Control: A Nonconvex
Approach for Obstacle Avoidance. IEEE Transactions on Control Systems Technology 25(2), pp. 469–484,
doi:10.1109/TCST.2016.2569468.

[40] Tobias Schoels, Luigi Palmieri, Kai Oliver Arras & Moritz Diehl (2019): An NMPC Approach using
Convex Inner Approximations for Online Motion Planning with Guaranteed Collision Freedom. CoRR
abs/1909.08267, doi:10.48550/arXiv.1909.08267.

[41] Eelco Scholte & Mark E. Campbell (2008): Robust Nonlinear Model Predictive Control With Par-
tial State Information. IEEE Transactions on Control Systems Technology 16(4), pp. 636–651,
doi:10.1109/TCST.2007.912120.

https://doi.org/10.48550/arXiv.1903.06758
https://arxiv.org/abs/1903.06758
https://doi.org/10.48550/ARXIV.1709.00627
https://arxiv.org/abs/1709.00627
https://arxiv.org/abs/1709.00627
https://doi.org/10.1080/00423114.2017.1399209
https://doi.org/10.1109/CDC.2018.8619382
https://doi.org/10.1109/ECC.2016.7810517
https://doi.org/10.1109/TCST.2017.2739706
https://doi.org/10.1109/ICSEngT.2013.6650194
https://doi.org/10.48550/arXiv.1901.08567
https://arxiv.org/abs/1901.08567
https://doi.org/10.1177/0278364915594679
https://www.nathanotterness.com/2019/04/the-disparity-extender-algorithm-and.html
https://www.nathanotterness.com/2019/04/the-disparity-extender-algorithm-and.html
https://arxiv.org/abs/1901.08184
https://doi.org/10.1109/TCST.2016.2569468
https://doi.org/10.48550/arXiv.1909.08267
https://doi.org/10.1109/TCST.2007.912120

112 Online Reachability Analysis and Space Convexification for Autonomous Racing

[42] Hiroya Seki, Satoshi Ooyama & Morimasa Ogawa (2002): Nonlinear Model Predictive Control Using Suc-
cessive Linearization. Transactions of the Society of Instrument and Control Engineers 38, pp. 61–66,
doi:10.1109/AIM.2017.8014275.

[43] Volkan Sezer & Metin Gokasan (2012): A novel obstacle avoidance algorithm: “Follow the Gap Method”.
Robotics and Autonomous Systems 60(9), pp. 1123–1134, doi:10.1016/j.robot.2012.05.021.

[44] Alper Yilmaz, Omar Javed & Mubarak Shah (2006): Object Tracking: A Survey. ACM Comput. Surv. 38(4),
p. 13–es, doi:10.1145/1177352.1177355.

[45] Yang Zeqing, Liu Libing, Tan Zhihong & Liu Weiling (2008): Application of Adaptive Genetic Al-
gorithm in flexible inspection path planning. In: 2008 27th Chinese Control Conference, pp. 75–80,
doi:10.1109/CHICC.2008.4605656.

[46] Yalong Zhang, Zhenghua Liu & Le Chang (2017): A new adaptive artificial potential field and rolling window
method for mobile robot path planning. In: 2017 29th Chinese Control And Decision Conference (CCDC),
pp. 7144–7148, doi:10.1109/CCDC.2017.7978472.

[47] Liu Zhiyang & Jiang Tao (2017): Route planning based on improved artificial potential field
method. In: 2017 2nd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), pp. 196–199,
doi:10.1109/CCDC52312.2021.9602174.

https://doi.org/10.1109/AIM.2017.8014275
https://doi.org/10.1016/j.robot.2012.05.021
https://doi.org/10.1145/1177352.1177355
https://doi.org/10.1109/CHICC.2008.4605656
https://doi.org/10.1109/CCDC.2017.7978472
https://doi.org/10.1109/CCDC52312.2021.9602174

	Introduction
	Related Work
	Preliminaries
	Model-Predictive Control
	Reachability Analysis

	Problem Statement and Space Convexification
	Problem Formulation
	Space Convexification via Separating Hyperplanes

	Autonomous Vehicle Control System
	Overview of the Closed-Loop Control System
	Computing Separating Coupled-Hyperplanes
	Reachability Analysis of Dynamic Obstacles
	Dynamic Obstacle Model
	Online Reachability Computation

	Evaluation
	MPCC Optimisation-free Hyperplane Approach
	Offline Analysis of Convexification Algorithms
	Real-Time Control System Evaluation

	Conclusions and Future Work

