
M. Farrell, M. Luckcuck, M. Schwammberger, and
M. Gleirscher (Eds): Fifth International Workshop on
Formal Methods for Autonomous Systems (FMAS 2023)
EPTCS 395, 2023, pp. 180–187, doi:10.4204/EPTCS.395.13

© F. Belardinelli, A. Ferrando & V. Malvone
This work is licensed under the
Creative Commons Attribution License.

3vLTL: A Tool to Generate Automata
for Three-valued LTL

Francesco Belardinelli
Imperial College, London, United Kingdom

francesco.belardinelli@imperial.ac.uk

Angelo Ferrando
University of Genoa, Genoa, Italy

angelo.ferrando@unige.it

Vadim Malvone
Telecom Paris, Paris, France

vadim.malvone@telecom-paris.fr

Multi-valued logics have a long tradition in the literature on system verification, including run-time
verification. However, comparatively fewer model-checking tools have been developed for multi-
valued specification languages. We present 3vLTL, a tool to generate Büchi automata from formulas
in Linear-time Temporal Logic (LTL) interpreted on a three-valued semantics. Given an LTL for-
mula, a set of atomic propositions as the alphabet for the automaton, and a truth value, our procedure
generates a Büchi automaton that accepts all the words that assign the chosen truth value to the LTL
formula. Given the particular type of the output of the tool, it can also be seamlessly processed by
third-party libraries in a natural way. That is, the Büchi automaton can then be used in the context of
formal verification to check whether an LTL formula is true, false, or undefined on a given model.

1 Introduction

Multi-valued logics have a long tradition in the literature on system verification, as demonstrated by
various references [8, 15, 3, 23, 17, 18], and they play a crucial role in run-time verification as well [4, 5].
Of particular interest are three-valued logics, including temporal extensions of Kleene’s logic [19], where
the third value, in addition to true and false, is interpreted as "unknown" or "unspecified". Such semantics
prove especially convenient when constructing smaller abstractions of complex reactive and distributed
systems. These abstractions are typically approximations of the original model, containing strictly less
information. Consequently, the challenge lies in finding the right trade-off between reducing complexity
and minimizing information loss during the abstraction process. In system verification, one of the most
widely used temporal logics for specifying requirements is Linear-time Temporal Logic (LT L) [22].
The model checking problem for LT L is typically addressed through automata-theoretic techniques [2].
Given a model M of a transition system and an LT L formula ϕ , the approach involves generating Büchi
automata for both M and the negation of ϕ . This allows us to determine whether ϕ is satisfied in M by
examining whether the language accepted by the product of these two automata is empty.

Several tools are available now to generate Büchi automata from LT L formulas. Notable examples
include [11, 13]. However, to the best of our knowledge, no tool has yet been proposed to directly
generate Büchi automata for multi-valued temporal logics.

Contribution. In this paper we present 3vLTL, a tool to generate (generalized) Büchi automata
from LT L formulas interpreted on a three-valued semantics. Specifically, given an LT L formula, a set of
atomic propositions (representing the automaton alphabet), and a truth value (true, false or undefined),
our procedure generates a Büchi automaton that accepts all the words that assign the chosen truth value
to the input LT L formula. Furthermore, 3vLTL has the functionality to process our output (i.e., the

http://dx.doi.org/10.4204/EPTCS.395.13
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

F. Belardinelli, A. Ferrando & V. Malvone 181

automaton) by third-party libraries in a natural way. The present work is motivated by the use of three-
valued logics in system verification. Indeed, our tool can be used in several works, such as [20, 16,
24, 25], to provide results for the verification of three-valued LT L formulas. Furthermore, our tool is
already used in [6]. In this work, the authors present an abstraction-refinement method to partially solve
the model checking of multi-agent systems under imperfect information and perfect recall strategies.
Note that, a three-valued semantics becomes particularly significant in situations involving imperfect
information, as the absence of information can lead to the emergence of a third value. This is particularly
evident in autonomous and distributed systems, where a component may not have access to the complete
system’s information [12].

Related Work. Concerning the three-valued automata technique for LT L employed in this work, the
most closely related approaches can be found in [21, 10, 9, 26]. Notably, in [9], there is an exploration
of a reduction from multi-valued to two-valued LT L, but it does not encompass automata-theoretic tech-
niques. Conversely, in [10], an automata-theoretic approach for general multi-valued LT L is presented,
following the tableau-based construction as outlined in [14]; however, this work is more suitable for
on-the-fly verification w.r.t. to our approach. In a different vein, [21] delves into general multi-valued
automata, defining lattices, deterministic and non-deterministic automata, as well as their extensions
with Büchi acceptance conditions. As part of their theoretical findings, they introduce an automata con-
struction for multi-valued LT L, though it lacks a clear explanation of states and transitions. With respect
to our work, in [21], the model checking is only briefly discussed, and their approach is tailored more
toward multi-valued logics in a broader sense.

To summarize, unlike [21, 10, 9], our proposed approach makes minimal modifications to the
automata-theoretic construction for two-valued LT L [2] and extends it to a three-valued interpretation.

2 Preliminaries

In this part we present a three-valued semantics for Linear-time Temporal Logic LT L and recall the
definition of generalized non-deterministic Büchi automata. To fix the notation, we assume that AP =
{q1,q2, . . .} is the set of atomic propositions, or simply atoms. We denote the length of a tuple t as |t|,
and its i-th element as ti. For i ≤ |t|, let t≥i be the suffix ti, . . . , t|t| of t starting at ti and t≤i its prefix
t1, . . . , ti. Notice that we start enumerations with index 1.

Models. We begin by giving a formal definition of Transition Model [2].

Definition 1 (Transition Model) Given a set AP of atoms, a Transition Model is a tuple M = ⟨S,s0,−→
,V ⟩ such that (i) S is a finite, non-empty set of states, with initial state s0 ∈ S; (ii) −→⊆ S×S is a serial
transition relation; (iii) V : S×AP →{tt, ff,uu} is the three-valued labelling function.

A path p ∈ Sω is an infinite sequence s1s2s3 . . . of states where si −→ si+1, for each i ≥ 1.

Syntax. Here, we recall the syntax of LT L.

Definition 2 (LT L) Formulas in LT L are defined as follows, where q ∈ AP:

ϕ ::= q | ¬ϕ | ϕ ∧ϕ | Xϕ | (ϕUϕ)

The meaning of operators next X and until U is standard [2]. Operators release R, finally F , and
globally G can be introduced as usual: ϕRψ ≡ ¬(¬ϕU¬ψ), Fϕ ≡ ttUϕ , Gϕ ≡ ffRϕ .

182 3vLTL: A Tool to Generate Automata for Three-valued LTL

Semantics. Formally we define the three-valued semantics for LT L as follows.
Definition 3 (Satisfaction) The three-valued satisfaction relation |=3 for a Transition Model M, path
p ∈ Sω , atom q ∈ AP, v ∈ {tt, ff}, and formula ϕ is defined as follows:
((M,s) |=3 Aψ) = ff iff for some path p in M, ((M, p) |=3 ψ) = ff
((M, p) |=3 q) = v iff V (p1,q) = v
((M, p) |=3 ¬ψ) = v iff ((M, p) |=3 ψ) = ¬v
((M, p) |=3 ψ ∧ψ ′) = tt iff ((M, p) |=3 ψ) = tt and ((M, p) |=3 ψ ′) = tt
((M, p) |=3 ψ ∧ψ ′) = ff iff ((M, p) |=3 ψ) = ff or ((M, p) |=3 ψ ′) = ff
((M, p) |=3 Xψ) = v iff ((M, p≥2) |=3 ψ) = v
((M, p) |=3 ψUψ ′) = tt iff for some k ≥ 1, ((M, p≥k) |=3 ψ ′) = tt, and

for all j, 1 ≤ j < k ⇒ ((M, p≥ j) |=3 ψ) = tt
((M, p) |=3 ψUψ ′) = ff iff for all k ≥ 1, ((M, p≥k) |=3 ψ ′) = ff, or

for some j ≥ 1, ((M, p≥ j) |=3 ψ) = ff, and
for all j′, 1 ≤ j′ ≤ j ⇒ ((M, p≥ j′) |=3 ψ ′) = ff

In all other cases the value of ϕ is uu.

Generalized non-deterministic Büchi automaton. Now, we recall the definition of the class of au-
toma that we will use in our construction and in the tool.
Definition 4 (GNBA) A generalized non-deterministic Büchi automaton is a tuple A = ⟨Q,Q0,Σ,π,F ⟩
where (i) Q is a finite set of states with Q0 ⊆ Q as the set of initial states; (ii) Σ is an alphabet; (iii)
π : Q×Σ → 2Q is the (non-deterministic) transition function; (iv) F is a (possibly empty) set of subsets
of Q, whose elements are called acceptance sets.
Given an infinite run ρ = q0q1q2 . . . ∈ Qω , let Inf(ρ) be the set of states q for which there are infinitely
many indices i with q = qi, that is, q appears infinitely often in ρ . Then, run ρ is accepting if for each
acceptance set F ∈ F , Inf(ρ)∩F ̸= /0, that is, there are infinitely many indices i in ρ with qi ∈F. The
accepted language L(A) of automaton A consists of all infinite words w ∈ Σω for which there exists at
least one accepting run ρ = q0q1q2 . . . ∈ Qω such that for all i ≥ 0, qi+1 ∈ π(qi,wi).

3 Automata Construction

In this section we provide a slightly variant of the automata-theoretic approach to the verification of the
three-valued linear-time logic LT L as proposed in [7]. In particular, in what follows we generalize the
construction in [7] for the truth values tt, ff, and uu.
Definition 5 (Closure and Elementarity) The closure cl(ψ) of an LT L formula ψ is the set consisting
of all subformulas φ of ψ and their negation ¬φ . A set B ⊆ cl(ψ) is consistent w.r.t. propositional logic
iff for all ψ1 ∧ψ2,¬φ ∈ cl(ψ): (i) ψ1 ∧ψ2 ∈ B iff ψ1 ∈ B and ψ2 ∈ B; (ii) ¬(ψ1 ∧ψ2) ∈ B iff ¬ψ1 ∈ B or
¬ψ2 ∈ B; (iii) if φ ∈ B then ¬φ ̸∈ B; (iv) ¬¬φ ∈ B iff φ ∈ B. Further, B is locally consistent w.r.t. the until
operator iff for all ψ1Uψ2 ∈ cl(ψ): (i) if ψ2 ∈ B then ψ1Uψ2 ∈ B; (ii) if ¬(ψ1Uψ2) ∈ B then ¬ψ2 ∈ B;
(iii) if ψ1Uψ2 ∈ B and ψ2 ̸∈ B then ψ1 ∈ B; (iv) if ¬ψ1,¬ψ2 ∈ B, then ¬(ψ1Uψ2) ∈ B.

Finally, B is elementary iff it is both consistent and locally consistent.
Note that, unlike the standard construction for two-valued LT L [2], we do not require elementary

sets to be maximal (i.e., either φ ∈ B or ¬φ ∈ B), but we do require extra conditions (ii) and (iv) on
consistency, and (ii) and (iv) on local consistency. These extra conditions can be derived in the classic,
two-valued semantics, but need to be assumed as primitive here.

Hereafter Lit = AP∪{¬q | q ∈ AP} is the set of literals.

F. Belardinelli, A. Ferrando & V. Malvone 183

B2a

B1
/0

B3¬a

B4
Xa

B5
¬Xa

B6

{a,Xa}

B7

{¬a,Xa}
B9

{¬a,¬Xa}

B8

{a,¬Xa}

{a}

{a}

{a}

/0

/0

/0

{¬a}

{¬a}

{¬a}

/0

/0

/0

/0

/0

/0

{a}

{a}

{a}

{¬a}

{¬a}

{¬a}

{¬a}

{¬a}
{¬a}

{a}

{a}

{a}

Figure 1: The automaton Aψ,uu for formula ψ = Xa. Initial states are marked in yellow.

Definition 6 (Automaton Aψ,v) Let ψ be a formula in LT L. We define the automaton Aψ,v = ⟨Q,Q0,
2Lit ,π,F ⟩, where v ∈ {tt, ff,uu}, as follows: Q is the set of all elementary sets B ⊆ cl(ψ). if v = tt
then Q0 = {B ∈ Q | ψ ∈ B}; else if v = ff then Q0 = {B ∈ Q | ¬ψ ∈ B}; otherwise Q0 = {B ∈ Q | ψ ̸∈
B and ¬ψ ̸∈ B}. The transition relation π is given by: let A ⊆ Lit. If A ̸= B∩ Lit, then π(B,A) = /0;
otherwise π(B,A) is the set of all elementary sets B′ of formulas such that for every Xφ ,ψ1Uψ2 ∈ cl(ψ):
(i) Xφ ∈B iff φ ∈B′; (ii) ¬Xφ ∈B iff ¬φ ∈B′; (iii) ψ1Uψ2 ∈B iff ψ2 ∈B or, ψ1 ∈B and ψ1Uψ2 ∈B′; (iv)
¬(ψ1Uψ2) ∈ B iff ¬ψ2 ∈ B and, ¬ψ1 ∈ B or ¬(ψ1Uψ2) ∈ B′. F = {Fψ1Uψ2 | ψ1Uψ2 ∈ cl(ψ)}∪{Q},
where Fψ1Uψ2 = {B ∈ Q | ψ1Uψ2 ∈ B implies ψ2 ∈ B and ¬ψ2 ∈ B implies ¬(ψ1Uψ2) ∈ B}.

According to Def. 6, the transition relation operates as follows: when the automaton reads a set A of
literals that do not exist in the current state, the transition remains undefined. However, if these literals
are present in the state, the automaton proceeds to verify the enabled transitions based on the semantics
of the LT L operators. It is worth noting that in Def. 6, we must also specify conditions for negated
formulas. This is necessary because elementary sets may not necessarily be maximal in this context.

We present an example of automaton for the next operator and truth value undefined.

Example 1 Consider ψ = Xa. The GNBA Aψ,uu in Fig. 1 is obtained as indicated in Def. 6. Namely,
the state space Q consists of all elementary sets of formulas contained in cl(ψ) = {a,¬a,Xa,¬Xa}:
B1 = /0, B2 = {a}, B3 = {¬a}, B4 = {Xa}, B5 = {¬Xa}, B6 = {a,Xa}, B7 = {a,¬Xa}, B8 = {¬a,Xa},
B9 = {¬a,¬Xa}. The initial states of Aψ,uu are the elementary sets B ∈ Q with ψ,¬ψ ̸∈ B. That is,
Q0 = {B1,B2,B3}. The transitions are depicted in Fig. 1. The set F is {Q} as ψ does not contain until
operators. Hence, every infinite run in Aψ,uu is accepting.

Now, we provide a generalization of the main theoretical result proved in [7].

Theorem 1 For every LT L formula ψ and truth value v ∈ {tt, ff,uu}, there exists a GNBA Aψ,v (given
as in Def. 6) s.t. L(Aψ,v) = Paths(ψ,v), where Paths(ψ,v) is the set of paths p ∈ (2Lit)ω such that
(p |=3 ψ) = v. Moreover, the size of Aψ,v is exponential in the size of ψ .

4 Implementation

Tool Architecture. The 3vLTL tool1 developed for this paper aims at generating highly reusable gen-
eralized non-deterministic Büchi automata (GNBA) [7]. Hence, instead of generating only a graphical

1https://github.com/AngeloFerrando/3vLTL

https://github.com/AngeloFerrando/3vLTL

184 3vLTL: A Tool to Generate Automata for Three-valued LTL

result, 3vLTL produces a machine-readable file which can be easily parsed by third-party tools and li-
braries as well. From an engineering perspective, a pure graphical representation would help the final
user to visualise the generated automaton, but it would not make it accessible for further evaluations.

LTL property
ψ

Alphabet
[p, q, . . .]

Truth valuee
tt, ff, uu

Generator .hoa

.gv

Third-party
library

. . .

user

Figure 2: Overview of the tool.

Figure 2 provides an overview of 3vLTL. The tool begins by parsing the user’s input, which consists
of three essential arguments. The first argument is the LTL property ψ of interest, serving as a guide for
generating the GNBA. The second argument represents the alphabet of ψ and informs 3vLTL about the
atomic propositions to consider when constructing the automaton. Since the automaton explicitly spec-
ifies the atomic propositions associated with its transitions, it is crucial to identify the relevant events of
interest. The third argument specifies the truth value against which the LTL formulas are verified. Fol-
lowing the approach proposed in [7], 3vLTL offers support for generating three different GNBA versions.
To elaborate further, if tt (representing satisfaction), ff (representing violation), or uu (representing nei-
ther satisfaction nor violation) is provided as the third argument, 3vLTL generates the respective GNBA,
denoted as Aψ,tt, Aψ,ff, or Aψ,uu, recognizing traces that satisfy, violate, or neither satisfy nor violate ψ .
3vLTL produces two distinct output files. The first file, primarily graphical, contains the GNBA descrip-
tion in the DOT graph description language. The choice of DOT format stems from its widespread usage
(supported by many programming languages) and its native compatibility with Graphviz2. The second
file generated by 3vLTL adheres to the HOA (Hanoi Omega-Automata) format3, a machine-readable
format. This format enjoys support from well-known automata-based libraries, including Spot [11] and
LTL3BA [1]4. This choice enhances compatibility with third-party tools, promoting the broader utility
of the GNBA generated by 3vLTL. It is important to note that while 3vLTL operates independently,
it seamlessly integrates with existing automata-based tools, ensuring a smooth transition for users and
enabling further advancements and applications of the GNBA it produces.

Technical details. We go further into the detail of the implementation. First of all, 3vLTL has been
implemented in Java (version 17). The resulting runnable jar can be directly used off-the-shelf.

3vLTL is divided into three components: input handler, automaton generator, and output handler.
Input handler. 3vLTL handles three input data: the LTL property ψ , the alphabet, and the truth value.

While the handling of the second and third arguments is straightforward, the first argument requires a bit
more of work. Specifically, a parser has been implemented to parse LTL formulas using Antlr5, which is
directly supported in Java. The resulting visitor for the LTL grammar is not only used to parse the LTL
property ψ given in input, but it is also used to extract the corresponding closure cl(ψ).

Automaton generator. After the LTL property ψ given in input has been successfully parsed, and

2https://graphviz.org/
3http://adl.github.io/hoaf/
4LTL3BA operates on two-valued automata, but its output is defined using three truth values, allowing it to effectively handle

run-time verification scenarios. For a comprehensive examination of the distinctions between "undefined" and "unknown" truth
values in the context of run-time verification, you can find more detailed information in [12].

5https://www.antlr.org

https://graphviz.org/
http://adl.github.io/hoaf/
https://www.antlr.org

F. Belardinelli, A. Ferrando & V. Malvone 185

the resulting closure cl(ψ) has been generated, the tool proceeds with the generation of the GNBA.
The corresponding Java object, instantiation of the custom Automaton class, is generated and stored in
memory. Inside such object all information about states and transitions, along with details on the initial
and accepting states, are stored. In particular, the set of initial states is determined by the last input given
to 3vLTL. If the user desires to produce a GNBA to recognise the traces which satisfy ψ , then the initial
states in the automaton are all the states containing ψ . Note that, this is possible because the elementary
subsets of cl(ψ) which determine the automaton’s states are not necessarily maximal, differently form
the standard automaton construction. Interestingly, the accepting states in all three cases are the same.

Output handler. Once the GNBA has been generated and the corresponding Java object is stored,
3vLTL moves forward to produce the resulting DOT and HOA output files. Both files are generated using
two different custom methods of the Automaton class. Such methods pass through all states/transitions,
and port these data in the wanted format.

Experiments. To show 3vLTL’s scalability, we carried out some experiments w.r.t. the size of the LTL
formula given in input. Figure 3 reports the results so obtained. As it is easy to note, the results show
3vLTL is exponential w.r.t. the size of LTL formula; where the size denotes the number of operators
in the formula (e.g., the LTL formula XF p has size 2, while Gp∧Fq has size 3). Note that, this was
expected because the transformation from LTL to GNBA is known to be exponential w.r.t. the size of the
LTL formula. So, 3vLTL extends the standard algorithm, but maintains the same complexity.

Figure 3: Experimental results.

5 Conclusions

In this paper, we have introduced a tool designed for generating automata from LTL formulas, interpreted
within a three-valued semantics framework. To implement this tool, we have closely followed the au-
tomata construction methodology outlined in [7]. Looking ahead, our future work entails extending the
capabilities of our tool to accommodate more than three truth values. This extension would enable us to
create a generator capable of handling multi-valued LTL formulas. Additionally, we envision applying
the automata construction and its associated implementation in various domains related to multi-valued
logics. One such domain is Runtime Verification, where three-valued LTL also finds relevance. How-
ever, it is worth noting that the third value in Runtime Verification serves to maintain the impartiality of
the monitor, while in our context, the third value signifies imperfect information about the system. As
a result, our approach has the potential to address scenarios involving imperfect information, similar to
the approach presented in [12]. Unfortunately, due to space constraints and the paper’s primary focus, a
comparative analysis with other tools has not been included.

186 3vLTL: A Tool to Generate Automata for Three-valued LTL

References

[1] Tomáš Babiak, Mojmír Křetínskỳ, Vojtěch Řehák & Jan Strejček (2012): LTL to Büchi automata translation:
Fast and more deterministic. In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, Springer, pp. 95–109. Available at https://doi.org/10.48550/arXiv.1201.
0682.

[2] C. Baier & J. P. Katoen (2008): Principles of Model Checking. MIT Press.

[3] T. Ball & O. Kupferman (2006): An abstraction-refinement framework for multi-agent systems. In: LICS06,
IEEE, pp. 379–388, doi:10.1109/LICS.2006.10.

[4] Andreas Bauer, Martin Leucker & Christian Schallhart (2006): Monitoring of Real-Time Properties. In
S. Arun-Kumar & Naveen Garg, editors: FSTTCS 2006: Foundations of Software Technology and Theoret-
ical Computer Science, 26th International Conference, Kolkata, India, December 13-15, 2006, Proceedings,
Lecture Notes in Computer Science 4337, Springer, pp. 260–272. Available at https://doi.org/10.
1007/11944836_25.

[5] Andreas Bauer, Martin Leucker & Christian Schallhart (2007): The Good, the Bad, and the Ugly, But How
Ugly Is Ugly? In Oleg Sokolsky & Serdar Taşıran, editors: Runtime Verification, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 126–138, doi:10.1007/978-3-540-77395-5_11.

[6] Francesco Belardinelli, Angelo Ferrando & Vadim Malvone (2023): An abstraction-refinement framework for
verifying strategic properties in multi-agent systems with imperfect information. Artif. Intell. 316. Available
at https://doi.org/10.1016/j.artint.2022.103847.

[7] Francesco Belardinelli & Vadim Malvone (2020): A Three-valued Approach to Strategic Abilities under
Imperfect Information. In Diego Calvanese, Esra Erdem & Michael Thielscher, editors: Proceedings of the
17th International Conference on Principles of Knowledge Representation and Reasoning, KR 2020, Rhodes,
Greece, September 12-18, 2020, pp. 89–98. Available at https://doi.org/10.24963/kr.2020/10.

[8] G. Bruns & P. Godefroid (1999): Model Checking Partial State Spaces. In: Proceedings of the 11th Inter-
national Conference on Computer Aided Verification (CAV99), LNCS 1633, Springer-Verlag, pp. 274–287,
doi:10.1007/3-540-48683-6_25.

[9] G. Bruns & P. Godefroid (2003): Model Checking with Multi-Valued Logics. Technical Report ITD-03-
44535H, Bell Labs.

[10] Marsha Chechik, Benet Devereux & Arie Gurfinkel (2001): Model-checking in finite state-space systems with
fine-grained abstractions using SPIN. In: International SPIN Workshop on Model Checking of Software,
Springer, pp. 16–36, doi:10.1007/3-540-45139-0_3.

[11] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Etienne Renault &
Laurent Xu (2016): Spot 2.0 - A Framework for LTL and ω-Automata Manipulation. In Cyrille Artho, Axel
Legay & Doron Peled, editors: Automated Technology for Verification and Analysis - 14th International
Symposium, ATVA 2016, Chiba, Japan, October 17-20, 2016, Proceedings, Lecture Notes in Computer
Science 9938, pp. 122–129. Available at https://doi.org/10.1007/978-3-319-46520-3_8.

[12] Angelo Ferrando & Vadim Malvone (2022): Runtime Verification with Imperfect Information Through
Indistinguishability Relations. In Bernd-Holger Schlingloff & Ming Chai, editors: Software Engineer-
ing and Formal Methods - 20th International Conference, SEFM 2022, Berlin, Germany, September 26-
30, 2022, Proceedings, Lecture Notes in Computer Science 13550, Springer, pp. 335–351. Available at
https://doi.org/10.1007/978-3-031-17108-6_21.

[13] Paul Gastin & Denis Oddoux (2001): Fast LTL to Büchi Automata Translation. In Gérard Berry, Hubert
Comon & Alain Finkel, editors: Computer Aided Verification, 13th International Conference, CAV 2001,
Paris, France, July 18-22, 2001, Proceedings, Lecture Notes in Computer Science 2102, Springer, pp. 53–65.
Available at https://doi.org/10.1007/3-540-44585-4_6.

https://doi.org/10.48550/arXiv.1201.0682
https://doi.org/10.48550/arXiv.1201.0682
https://doi.org/10.1109/LICS.2006.10
https://doi.org/10.1007/11944836_25
https://doi.org/10.1007/11944836_25
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1016/j.artint.2022.103847
https://doi.org/10.24963/kr.2020/10
https://doi.org/10.1007/3-540-48683-6_25
https://doi.org/10.1007/3-540-45139-0_3
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-031-17108-6_21
https://doi.org/10.1007/3-540-44585-4_6

F. Belardinelli, A. Ferrando & V. Malvone 187

[14] R. Gerth, D. Peled, M. Vardi & P. Wolper (1995): Simple On-the-fly Automatic Verification of Linear Tem-
poral Logic. In: Proceedings of IFIP/WG6.1 Symposium Protocol Specification, Testing and Verification
(PSTV95), Chapman & Hall, pp. 3–18, doi:10.1007/978-0-387-34892-6_1.

[15] P. Godefroid & R. Jagadeesan (2003): On the Expressiveness of 3-Valued Models. In: Proceedings of the 4th
International Conference on Verification, Model Checkig, and Abstract Interpretation (VMCAI03), LNCS
2575, Springer-Verlag, pp. 206–222, doi:10.1007/3-540-36384-X_18.

[16] Patrice Godefroid & Nir Piterman (2009): LTL generalized model checking revisited. In: International
Workshop on Verification, Model Checking, and Abstract Interpretation, Springer, pp. 89–104. Available at
https://doi.org/10.1007/s10009-010-0169-3.

[17] Michael Huth, Radha Jagadeesan & David A. Schmidt (2004): A domain equation for refinement of partial
systems. Mathematical Structures in Computer Science 14(4), pp. 469–505. Available at https://doi.
org/10.1017/S0960129504004268.

[18] Michael Huth & Shekhar Pradhan (2004): Consistent Partial Model Checking. Electronic Notes in Theoret-
ical Computer Science 73, pp. 45–85. Available at https://doi.org/10.1016/j.entcs.2004.08.003.

[19] S. C. Kleene (1952): Introduction to Metamathematics. North-Holland.
[20] Beata Konikowska (1998): A three-valued linear temporal logic for reasoning about concurrency. ICS PAC,

Warsaw, Poland, Tech. Rep.
[21] Orna Kupferman & Yoad Lustig (2007): Lattice Automata. In: Verification, Model Checking, and Abstract

Interpretation, 8th International Conference, VMCAI 2007, Nice, France, January 14-16, 2007, Proceedings,
pp. 199–213. Available at https://doi.org/10.1007/978-3-540-69738-1_14.

[22] A. Pnueli (1977): The Temporal Logic of Programs. In: FOCS’77, IEEE Computer Society, pp. 46–57,
doi:10.1109/SFCS.1977.32.

[23] S. Shoham & O. Grumberg (2004): Monotonic Abstraction-Refinement for CTL. In: TACAS04, pp. 546–560,
doi:10.1007/978-3-540-24730-2_40.

[24] Nils Timm & Stefan Gruner (2016): Parameterised three-valued model checking. Science of Computer
Programming 126, pp. 94–110, doi:10.1016/j.scico.2016.01.006.

[25] Rachel Tzoref & Orna Grumberg (2006): Automatic refinement and vacuity detection for symbolic tra-
jectory evaluation. In: International Conference on Computer Aided Verification, Springer, pp. 190–204,
doi:10.1007/11817963_20.

[26] Stefan J. J. Vijzelaar & Wan J. Fokkink (2017): Creating Büchi Automata for Multi-valued Model Checking.
In Ahmed Bouajjani & Alexandra Silva, editors: Formal Techniques for Distributed Objects, Components,
and Systems - 37th IFIP WG 6.1 International Conference, FORTE 2017, Held as Part of the 12th Interna-
tional Federated Conference on Distributed Computing Techniques, DisCoTec 2017, Neuchâtel, Switzerland,
June 19-22, 2017, Proceedings, Lecture Notes in Computer Science 10321, Springer, pp. 210–224. Available
at https://doi.org/10.1007/978-3-319-60225-7_15.

https://doi.org/10.1007/978-0-387-34892-6_1
https://doi.org/10.1007/3-540-36384-X_18
https://doi.org/10.1007/s10009-010-0169-3
https://doi.org/10.1017/S0960129504004268
https://doi.org/10.1017/S0960129504004268
https://doi.org/10.1016/j.entcs.2004.08.003
https://doi.org/10.1007/978-3-540-69738-1_14
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-540-24730-2_40
https://doi.org/10.1016/j.scico.2016.01.006
https://doi.org/10.1007/11817963_20
https://doi.org/10.1007/978-3-319-60225-7_15

	Introduction
	Preliminaries
	Automata Construction
	Implementation
	Conclusions

