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Reasoning about safety, security, and other dependability attributes of autonomous systems is a chal-
lenge that needs to be addressed before the adoption of such systems in day-to-day life. Formal
methods is a class of methods that mathematically reason about a system’s behavior. Thus, a correct-
ness proof is sufficient to conclude the system’s dependability. However, these methods are usually
applied to abstract models of the system, which might not fully represent the actual system. Fault
injection, on the other hand, is a testing method to evaluate the dependability of systems. However,
the amount of testing required to evaluate the system is rather large and often a problem. This vision
paper introduces formal fault injection, a fusion of these two techniques throughout the development
lifecycle to enhance the dependability of autonomous systems. We advocate for a more cohesive
approach by identifying five areas of mutual support between formal methods and fault injection. By
forging stronger ties between the two fields, we pave the way for developing safe and dependable
autonomous systems. This paper delves into the integration’s potential and outlines future research
avenues, addressing open challenges along the way.

1 Introduction

Safety- and security-critical systems continue to be integrated into our daily lives. Ensuring the safety and
security is a multi-disciplinary challenge, where design, development, and evaluation play a crucial role.
Thus a strong emphasis on updating current engineering practices to create an end-to-end verification
and validation process that integrates all safety and security concerns into a unified approach is key to
adopt these systems [23]. Already, formal methods and fault injection are used in different parts of the
development lifecycle to ensure the system is safe and dependable.

Formal methods refers to mathematically rigorous techniques for specifying and verifying software
and hardware systems. To many researchers, the necessity of formal methods is now a given [41].
However, this has yet to be the case from an industrial perspective. Several reasons have been sug-
gested for this situation, including a lack of accessible tools, high costs, incompatibility with existing
development techniques, and the fact that these methods require a certain level of mathematical sophis-
tication [21, 22, 7].

Fault injection(FI), on the other hand, is an established method used for the measurement, test, and
assessment of dependable computer systems in extreme stress or faulty conditions. Functional safety
standards such as IEC 61508 [9] and ISO 26262 [38] recommend the use of FI to prove that malfunctions
in electrical and/or electronic systems will not lead to violations of safety requirements. In comparison to
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formal methods, FI could be done after the complete system is built. This way, FI could be used to study
the impact of a fault in one system and its propagation and impact in the complete end to end system. FI
is also used to evaluate security properties of computer systems by means of attack injection. Avizienis
et al. [4], consider an attack to be a special type of fault which is human made, deliberate and malicious,
affecting hardware or software from external system boundaries and occurring during the operational
phase.

Formal methods for safety analysis and fault injection are complementary techniques, and the choice
of approach depends on the specific system being evaluated and the goals of the evaluation. Each of
these methods has its benefits and shortcomings. While formal methods are commonly employed in the
early design phase, fault injection testing is performed towards the later stages of development, where
the system or its simulation exists. Unfortunately, the knowledge gained from the formal methods at the
design phase is rarely reused in other development lifecycle phases when conducting fault injection ex-
periments. Conversely, feedback from fault injection analysis is rarely used to improve the formal design
of the system. The underlying problem is the need for common semantics and knowledge sharing across
the different communities. It is clear that to deal with modern autonomous systems, formal methods and
fault injection will have to be integrated in a smart way to be able to specify, verify, and validate systems,
and be understandable by people without a background in formal methods. This last point is essential
for autonomous systems, where they must be certified before they can be used.

By looking at the current state of applied research within both fields this paper introduces formal
fault injection to help develop dependable autonomous systems.

2 Integrating Formal Methods and Fault Injection

The following section highlights the different research directions leveraging the existing state-of-the-art.
Additionally, we highlight the new possibilities that will open up as a consequence of this integration
and our research plans.

1. Design level fault analysis: Some studies focus on analyzing fault impacts during the design
phase, using formal methods. Automating Failure Mode and Effects Analysis (FMEA) and Fault
Tree Analysis (FTA) for system safety analysis [6, 37, 30], are well-established for within the
formal community. Other studies concentrate on developing control strategies to safeguard sys-
tems against cyber-security attacks [39, 17, 27]. These approaches primarily target system design
and are implemented during early development phases. Despite the industry standards of FMEA
and FTA techniques, integrating formal methods into the development cycle has encountered lim-
ited adoption, mainly due to the scarcity of practical tools. Furthermore, these methods often face
computational challenges, restricting their applicability to only a small portion of the system. Con-
sequently, they typically address a fixed set of faults. It is valuable to explore how insights from
the fault injection phase could be incorporated at a more generic abstraction level to streamline
analysis process early in the design phase.

2. Learning the behavior of the faulty system via model learning/learning-based testing:
Model learning [13, 42, 26] seeks to devise techniques for acquiring discrete formal models of
systems by observing or interacting with them. These techniques engage in iterative testing of the
system, or its simulation, to progressively learn the behavior. Model learning techniques are often
applied in combination with other tools and methodologies: model checking [8] for model verifi-
cation, testing methods [26] to rigorously assess system behavior, and supervisory synthesis [13]
to derive supervisory controllers for system control.
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we envision integrating fault analysis into the model learning phase. This analysis approach offers
insights into a system’s fault-handling capabilities. The resultant model encompasses both nominal
and faulty behaviors, enabling offline safety analysis. Moreover, these models hold the potential
to serve as authoritative proof of system safety, offering a resource for regulatory authorities.

Existing model learning tools, already applied in select industrial contexts [14, 19], provide inter-
faces external systems. However, an investigation is warranted to devise methods for introducing
fault models into these tools and subsequently evaluating their utility. An overarching challenge
lies in the scale of the resulting models. Nominal models themselves often attain considerable
complexity, leading to challenges associated with state-space explosion. Augmenting these mod-
els with fault scenarios is sure to encounter state-space limitations, even for relatively modest
systems.

3. Using formal models for reducing the fault space: Executing exhaustive fault injection cam-
paigns is not practical. In most cases, such an approach would result in executions that do not
contribute significantly to safety analysis. The challenge lies in identifying the optimal set of
test instances that effectively analyze a system’s dependability. Numerous testing methods have
been proposed to address this challenge, including probabilistic approaches [20], coverage-based
techniques [10], and heuristic as well as machine learning-based methods [29, 28, 35, 36]. How-
ever, most of these methods rely on some level of prior knowledge about the target system. The
availability of such knowledge poses limitations in practical applications [28, 20].

Yet, when formal specifications exist for a specific system, they inherently contain valuable in-
formation that can be leveraged. These specifications offer insights into critical faults and their
configurations, which are most likely to lead to system failures. This knowledge about fault con-
figurations proves invaluable when designing fault campaigns. Unfortunately, such utilization is
often overlooked.

To address this gap, we propose an investigation into the development of common semantics that
can harmonize formal specifications and fault injection techniques. Additionally, we recommend
the creation of tools to facilitate the seamless integration of results from both methods. This
integration holds the potential to enhance the effectiveness of fault analysis while leveraging the
rich information contained within formal specifications.

4. Falsification for fault analysis: Falsification methods typically come into play once the system
has been implemented, typically in the later stages of the development lifecycle. Since falsification
and fault injection share similar approaches and setups, integrating both these methods represents
one of the most straightforward way towards a formal fault injection analysis. Both these methods
operate with limited knowledge of the system under test. Falsification primarily focuses on testing
the input space, while fault injection adopts a broader perspective by also assuming the presence
of fault(s) within the system.

Several generalized methods and tools have proven effective in the formal community for these
purposes. For instance, tools like Scenic and VerifyAI [15, 12] take a probabilistic approach
to generate scenarios intelligently and test the system. Tools like Breach [11] and HyConf [1]
interface with MATLAB/Simulink models for falsification. In the realm of fault injection, AV-
fuzzer [24] aligns closely with falsification approaches.

While most falsification approaches aim to find input values that lead to violations of the system’s
specifications, they typically do not distinguish between valid and faulty inputs. To assess a sys-
tem’s safety, falsification engines can be employed to identify boundaries within the state-space.
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Subsequently, fault injection analysis focuses on these boundary values and faulty inputs to ana-
lyze the impact of faults. In this context, exploring techniques to augment the falsification engine
with both nominal and faulty behavior represents a promising avenue for further investigation.

5. A formal specification language for fault injection: To bridge the envisioned integration of
formal methods and fault injection into practical application, a critical missing element is a well-
defined formal specification language that can act as an interface between the two domains. There-
fore, it becomes imperative to delve into the realm of formal specification languages from both
theoretical and practical standpoints. A precedent is set by Bessayah et al. [5], who successfully
demonstrated the use of Hoare Logic [18] as a specification language for implementing fault injec-
tion in communication systems. However, there have been limited efforts to evaluate the suitability
of such a language for autonomous systems. Hence, we propose a comprehensive exploration of
available formal specification languages to assess their compatibility with fault injection method-
ologies and to pinpoint areas of research inquiry apart from studies to develop such a language.

3 Formal Fault Injection

In the past few years, a paradigm called “shift-to-left” has inspired researchers to go towards simulation-
based and model-based verification and validation of automated systems. The rise of simulation-based
development is a key reason we believe this to be the right time to start investigating the integration of
formal methods and fault injection-based testing. Notably, simulation-based methodologies have firmly
established themselves in both the formal methods and fault injection communities. This shared founda-
tion provides a common ground for the implementation of the proposed integration methods.
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Figure 1: Conceptual overview of the pro-
posed methodology.
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Figure 2: Generalized overview of the de-
velopment lifecycle.

Figure 1 provides a birds-eye view of the proposed integration. Several methodologies exist in lit-
erature and practice that define the development lifecycle, such as V-method [16], Waterfall [33], and
Agile [32], to name a few. Most of these methodologies include the three phases: design, implementa-
tion, and testing phases, in an iterative manner and are depicted in Figure 2. This cycle of development
is valid at various abstraction levels of the product lifecycle from the initial conceptual design, feature
development, simulation and the final product development. During each phase, a particular set of meth-
ods as discussed in Section 2 can be mapped to the phases and are depicted using the similarly colored
bubbles in Figure 1. These different phases are never isolated and are continuously updated with feed-
back from one another. The formal specification language makes it possible for this feedback to be easily
translatable between the different phases.

It is crucial to recognize that there is no universal solution applicable to all scenarios. Therefore,
the proposal does not revolve around creating a singular specification language and its corresponding
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toolkit. Instead, it presents a high-level methodology for evaluating and constructing dependable sys-
tems. It acknowledges that specific system characteristics may demand different formalisms. Hence,
the idea is to establish a collection of formal specification languages, each supported by its toolset, to
facilitate this methodology. Furthermore, these languages, tools, and application approaches can vary
across industries, necessitating a multifaceted strategy to address existing limitations and explore new
possibilities. Above all, the aim is to establish a consistent and reproducible framework for assessing
system dependability.

The assertion of a system’s dependability must always be substantiated by the possibility of repro-
ducing the results of all conducted tests. By formally specifying the entire injection methodology, it
becomes possible to perform analysis, and potential replication or extension of the results by interested
parties. The overarching vision of this work is to enable a standardized interface for all stakeholders
involved in ensuring system safety. For instance, developers and companies can employ formal proofs to
demonstrate a product’s dependability, governmental certification agencies can utilize available data to
enhance certification processes, and third-party auditors can scrutinize systems from security and safety
perspectives using existing information. Aligning different phases of the development lifecycle with a
common language paves the way for formalizing safety evaluations.

Furthermore, ongoing national and international efforts within the autonomous driving domain aim
to define and develop a safety assurance framework [40, 31, 34] for verification and validation of au-
tonomous systems. These methods aim to develop a database of testing scenarios to validate a system.
Therefore, in addition to developing tools and techniques, we propose investigating the feasibility of rec-
ommending formal fault injection as a best practice through responsible standardization organizations.

4 Insights from early experiments

In this section we share our initial experiences and insights from applying formal techniques in simulation
based fault injection. Although these experiences are common within the formal community, we believe
they offer valuable insights to those interested in bridging the formal and fault injection domains.

4.1 The case study

Maleki and Sangchoolie [25] investigated the effects of faults on Advanced Driver Assistance Systems
using the Simulation of Urban Mobility (SUMO) [2]. We use this work as a basis to study the integration
of formal techniques and fault injection. The scenario used in that work [25] revolves around a three-lane
road, spanning 750 meters. Two vehicles, a leader and a follower, navigate this road. The overarching
requirements mandate that these vehicles not collide, successfully traverse the road, and maintain a speed
not exceeding 36 m/s–the maximum permissible speed. Furthermore, these requirements should endure
even when additional vehicles are introduced to the scenario, thus preserving safety and functionality
amidst traffic.

To enhance the above with formal methods, we explore the following approaches.

• Utilizing SAT Techniques for Vehicle Controller Modeling: This approach involves modeling the
vehicle models from SUMO into a SAT solver. By doing so, we enable the solver to identify poten-
tial (faulty) parameters that could lead to the violation of requirements. This approach effectively
narrows down the fault space that needs to be tested. Subsequently, these identified inputs can be
verified within SUMO to assess their impact on the system’s behavior.
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• Applying Model Learning for Faulty Model Generation: Here, we connect SUMO to a model
learning tool controlled over TCP/IP and allow the system to learn an abstracted model that closely
describes the behavior of the simulation.

4.2 Insights

Below we provide some of our insights from early experiments on the previously mentioned case study.

1. Finding suitable abstractions: One of the most significant takeaways from our study was the
challenge of achieving a suitable abstraction level that aligns with the use case. As the system
was implemented within the SUMO framework, we encountered limitations in deriving valuable
insights from higher levels of abstraction. Operating at elevated levels of abstraction led to limited
applicability of formal analysis to the fault injection process. Specifically, our attempts at model
learning within the SUMO context resulted in excessively intricate models, often never terminat-
ing.

For instance, to learn a faulty model, employing a model learning approach akin to Angluin’s
L∗ algorithm [3] necessitated the establishment of a system alphabet. In this context, the alphabet
signifies the set of symbols providing context to the system states and transitions. Ensuring that this
alphabet adeptly captures both faulty and non-faulty state transitions demanded creative thinking
and held a pivotal role in shaping the effectiveness of the acquired model.

2. The state-space explosion problem: Both the SAT-based and model learning approaches encoun-
tered state space explosion. This challenge emerged due to the logical abstraction and simulation
granularity, both significantly influencing the efficiency and effectiveness of the formal analysis.
A key disparity between fault injection analysis and formal analysis became evident. While fault
injection focuses solely on inputs and their corresponding outputs, formal models encompass all
inputs and potential outputs, unveiling the system’s comprehensive behavior. Consequently, what
initially appears as the challenge of examining a finite set of input parameters in fault injection
transforms into the state space issue within formal methods. Striking a balance between these two
extremes emerges as the sought-after equilibrium.

3. Non-deterministic behavior: SUMO is a deterministic simulator. While constructing the for-
mal model, however, this determinism is lost when augmented with faulty parameters. Addition-
ally, the fault injection community employs randomness within faulty inputs to assess system de-
pendability. This introduces complexity in constructing models that can effectively accommodate
such randomness, necessitating techniques like abstraction or alternative formalisms. The non-
deterministic aspect might not be immediately evident, potentially yielding unfavorable outcomes
if appropriate analysis methods are not selected.

5 Conclusions

In summary, this paper introduces the concept of formal fault injection, an approach that synergizes for-
mal methods and fault injection techniques to enhance the dependability and safety of autonomous sys-
tems. By harmonizing development and evaluation phases, this approach facilitates cross-phase knowl-
edge sharing, fostering a unified approach to ensuring dependability attributes. This alignment not only
benefits certification bodies and developers but also strengthens the foundation for proving system relia-
bility.
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