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Automated synthesis of correct-by-construction controllers for autonomous systems is crucial for their
deployment in safety-critical scenarios. Such autonomous systems are naturally modeled as stochastic
dynamical models. The general problem is to compute a controller that provably satisfies a given
task, represented as a probabilistic temporal logic specification. However, factors such as stochastic
uncertainty, imprecisely known parameters, and hybrid features make this problem challenging.
We have developed an abstraction framework that can be used to solve this problem under various
modeling assumptions. Our approach is based on a robust finite-state abstraction of the stochastic
dynamical model in the form of a Markov decision process with intervals of probabilities (iMDP). We
use state-of-the-art verification techniques to compute an optimal policy on the iMDP with guarantees
for satisfying the given specification. We then show that, by construction, we can refine this policy
into a feedback controller for which these guarantees carry over to the dynamical model. In this short
paper, we survey our recent research in this area and highlight two challenges (related to scalability
and dealing with nonlinear dynamics) that we aim to address with our ongoing research.

1 Introduction

Controlled autonomous systems are increasingly deployed in safety-critical settings [30]. When the
transitions between states are specified by probabilities, autonomous systems can often be naturally
modeled as stochastic dynamical models [26]. For deployment in safety-critical settings, controllers for
stochastic models must act safely and reliably with respect to desired specifications. Traditional control
design methods use, e.g., Lyapunov functions and optimization to provide guarantees for simple tasks such
as stability, convergence, and invariance [11]. However, alternative methods are needed to give formal
guarantees about richer temporal specifications relevant to, for example, safety-critical applications [20].

Formal controller synthesis Temporal logic is a rich language for specifying the desired behavior
of autonomous systems [32]. In particular, probabilistic computation tree logic (PCTL, [25]) is widely
used to define temporal requirements on the behavior of probabilistic systems. For example, in a motion
control problem for an unmanned aerial vehicle (UAV), a PCTL formula can specify that, with at least
90% probability, the UAV must safely fly to a target location within 2 minutes without crashing into
obstacles (commonly known as a reach-avoid specification [21]). Leveraging tools from probabilistic
verification [9], the problem is to synthesize a controller that ensures the satisfaction of such a PCTL
formula for the model under study [24]. Finite abstractions can make continuous models amenable to
techniques and tools from formal verification: by discretizing their state and action spaces, abstractions
result in, e.g., finite Markov decision processes (MDPs) that soundly capture the continuous dynamics [2].
Verification guarantees on the finite abstraction can thus carry over to the continuous model.
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Figure 1: Our overall approach integrated into a safe model-based learning framework.

Problem statement In this research, we adopt such an abstraction-based approach to controller synthesis
for autonomous systems. Our goal is to compute feedback controllers that provably satisfy a given temporal
logic specification. In this short paper, we focus on reach-avoid specifications, but most of our approaches
can readily be extended to general PCTL properties [35]. We consider the following general problem:

Given (1) a discrete-time stochastic dynamical model and (2) a reach-avoid specification, compute
a feedback controller together with a certificate in the form of a probability threshold, such that the
induced closed-loop system satisfies this specification with at least this certified probability.

In this paper, we survey our recent work in which we have considered this general problem under various
modeling assumptions. First, we provide a general introduction to our abstraction framework. Thereafter,
we summarize our main results from several recent papers [7, 5, 8, 35]. Finally, we highlight two key
challenges that remain open, and we describe our current research plans that aim to address these changes.

Our abstraction framework Our general abstraction framework is shown in Fig. 1. First, we compute
a finite-state abstraction of the stochastic dynamical model [38], which we obtain from a partition of
its continuous state space into a set of disjoint convex regions. Actions in this abstraction correspond
to continuous control inputs that yield transitions between these regions. Due to the stochastic noise
in the dynamical model, the outcome of an action is stochastic, rendering transitions probabilistic. We
capture these probabilities in a Markov decision process (MDP) [34]. A defining characteristic of our
approach is that we leverage backward reachability computations on the dynamical model to determine
which actions are enabled at each discrete region. By contrast, most other abstraction methods rely on
forward reachability computations, which are associated with errors that grow with the time horizon of
the property (see related work for details). Our backward scheme avoids such abstraction errors, at the
cost of requiring slightly more restrictive assumptions on the model dynamics (see, e.g., [8] for details).

Interval MDPs Computing the transition probabilities of the abstraction is subject to estimation errors.
To be robust against estimation errors in these probabilities, we use data-driven techniques [13, 36] to
compute upper and lower bounds on the transition probabilities with a predefined confidence level. We
formalize our abstractions with the probably approximately correct (PAC) probability intervals using
so-called iMDPs, which are an extension of MDPs with intervals of probabilities [22]. Policies for iMDPs
have to robustly account for all possible probabilities within the intervals [33, 39]. In our implementation,
we compute robust policies using robust value iteration within the probabilistic model checker PRISM [27].
We show that any policy on the iMDP can be refined into a piecewise linear feedback controller for the
dynamical model. Crucially, the probability of satisfying the reach-avoid property on the iMDP is a lower
bound on the satisfaction probability for the dynamical model, thus solving the problem above.



146 Correct-by-Construction Control for Stochastic and Uncertain Dynamical Models

Figure 2: UAV reach-avoid problem (goal in green;
obstacles in red), plus simulations with the opti-
mal iMDP-based controller from initial state x0 =
[−14,0,6,0,−6,0]⊤, under high/low turbulence.
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Figure 3: Reach-avoid guarantees on the iMDPs
(blue) and MDPs (orange) for their respective poli-
cies, versus the resulting empirical (simulated)
performance (dashed lines) on the dynamical sys-
tem. The empirical performance obtained from the
MDPs violates the guarantees, whereas that from
the iMDPs does not.

Related work Abstractions of stochastic models are well-studied [2, 3], with applications to stochas-
tic hybrid [16, 29], switched [28], and partially observable systems [6, 23]. Various tools exist, e.g.,
StocHy [15] and ProbReach [37]. A distinguishing feature of our abstraction scheme is that we use
backward reachability computations on the model dynamics to determine the subset of actions enabled
in each abstract state. By contrast, standard abstraction methods typically rely on forward reachability
computations based on discretizing the control input space. In particular, such forward methods propagate
sets of states X̂ ⊂ Rn forward through the model dynamics under discretized input ûuuk (see the notation
from Eq. (1)). Since the noise ηk is stochastic, this yields a set of distributions over successor states,
which can be difficult to reason over. By contrast, with our backward computations, each abstract action
yields a single distribution, which is independent of where this action was chosen. However, this requires
a higher degree of system controllability, as discussed in more detail in [8, Assumption 2].

2 Correct-by-Construction Control via Formal Abstractions

In general, we consider discrete-time, continuous-state dynamical models, where the progression of the
state x ∈ Rn depends linearly on the current state, on a control input, and on a process noise term. Given a
state xk at discrete time k ∈ N, the successor state xk+1 at time k+1 is computed as

xk+1 = Axk +Buk +qk +ηk, (1)

with matrices A and B, and a continuous control input uk ∈ U ⊆ Rp (i.e., action). The term ηk ∈ ∆ ⊂ Rn

is an arbitrary additive process noise term, which is an i.i.d. random variable defined on a probability
space (∆,D ,P), with σ -algebra D and probability measure P defined over D . A controller (i.e., control
policy) c : Rn ×N→ U chooses a control input based on the current state x ∈ Rn and time k ∈ N.

We now highlight some of the variants of the problem stated in Sect. 1 we have considered thus far.
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2.1 Stochastic noise of unknown distribution

It is commonly assumed that the distribution of the process noise ηk is known and/or Gaussian [31].
However, in many realistic problems, this assumption yields a poor approximation of the uncertainty [12].
Distributions may even be unknown, meaning that one cannot derive a set-bounded or a precise proba-
bilistic representation of the noise. In this case, it is generally hard or even impossible to derive hard
guarantees on the probability that a given controller ensures the satisfaction of a reach-avoid property.

In papers [5, 8], we thus consider a variant of the controller synthesis problem from Sect. 1 for
dynamical systems with additive process noise of an unknown distribution. Specifically, the probability
measure P of the noise ηk ∈ ∆ ⊂ Rn is unknown but time-invariant. To deal with this lack of knowledge,
we adapt tools from the scenario approach [14, 13] to compute PAC interval estimates for the transition
probabilities of the abstract model based on a finite set of samples of the noise. We capture these bounds
in the transition probability intervals of a so-called interval Markov decision process (iMDP). This iMDP
is, with a user-specified confidence probability, robust against uncertainty in the transition probabilities,
and the tightness of the probability intervals can be controlled through the number of samples.

In [8], we use this method to solve a reach-avoid problem for a UAV operating under turbulence
(we compare scenarios with different turbulence levels), represented by stochastic noise of unknown
distribution. The UAV is modeled by a 6D dynamical model (we refer to [8] for the explicit model). In
Fig. 2, we show simulations under the optimal controller for two turbulence levels. Under low noise, the
controller prefers the short but narrow path. On the other hand, under high noise, the longer but safer path
is preferred. Thus, accounting for process noise is important to obtain controllers that are safe.

We also compared our robust iMDP approach against a naive MDP abstraction. This MDP has
the same states and actions as the iMDP, but uses precise (frequentist) probabilities. The maximum
reachability probabilities (guarantees) for both methods are shown in Fig. 3. For every value of N, we
apply the resulting controllers to the dynamical system in Monte Carlo simulations with 10,000 iterations
to determine the empirical reachability probability. Fig. 3 shows that the non-robust MDPs yield poor
and unsafe performance guarantees: the actual reachability of the controller is much lower than the
reachability guarantees obtained from PRISM. By contrast, our robust iMDP-based approach consistently
yields safe lower bound guarantees on the actual performance of controllers.

2.2 Set-bounded parameter uncertainty

The approach described in Sect. 2.1 requires precise knowledge of the model parameters (namely, the
matrices A and B). However, in many realistic cases, there is epistemic uncertainty about the precise values
of these parameters. For example, consider again the UAV from Sect. 2.1. As shown in Fig. 4, the drone’s
dynamics depend on uncertain factors, such as the wind and the drone’s mass. We assumed that the wind
is adequately described by a probabilistic model, reflected in the process noise ηk. Now, let us assume we
know that the drone’s mass lies between 0.75–1.25kg, but we do not have information about the likelihood
of each value, so employing a probabilistic model is unrealistic. Thus, we treat epistemic uncertainty in
such imprecisely known parameters (in this case, the mass) using a nondeterministic framework instead.

We have recently extended our abstraction framework in [7] to capture both stochastic noise and
set-bounded uncertain parameters. Specifically, we synthesize a controller that (1) is robust against
nondeterminism due to parameter uncertainty and (2) reasons over probabilities derived from stochastic
noise. In other words, the controller must satisfy a given specification under any possible outcome of
the nondeterminism (robustness) and with at least a certain probability regarding the stochastic noise
(reasoning over probabilities). As before, we wish to synthesize a controller with a PAC-style guarantee:
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Figure 4: Stochastic uncertainty in the wind (Ü) causes probability distributions over outcomes of controls,
while set-bounded uncertainty in the mass (Ù) of the drone causes state transitions to be nondeterministic.

we wish to find a controller that satisfies a reach-avoid specification with at least a desired lower bound
threshold probability, and (because our algorithm involves random sampling) that claim should hold with
at least a predefined confidence level.

Our experiments in [7] show that we can synthesize controllers that are robust against uncertainty and,
in particular, against deviations in the model parameters. Moreover, we show that our method can be used
to faithfully capture any uncertainty or error term in the dynamical model that is represented by a bounded
set, thus opening the door for the abstraction of nonlinear systems.

2.3 Markov jump linear systems

Our approaches described so far are limited to systems with purely continuous dynamics. Thus, these
approaches are incompatible with cyber-physical systems, which are characterized by the coupling of
digital (discrete) with physical (continuous) components. This results in a hybrid system that can jump
between discrete modes of operation, each of which is characterized by its own continuous dynamics [29].

To alleviate this restriction, we have extended our abstraction framework in [35] to Markov jump
linear systems (MJLSs), which are a well-known class of stochastic, hybrid models suitable for capturing
the behavior of cyber-physical systems [19]. An MJLS consists of a finite set of linear dynamics defined
by Eq. (1) (also called operational modes), where jumps between these modes are governed by a Markov
chain (MC). If mode jumping can be controlled, the jumps are governed by an MDP. Due to the jumping
between modes, the overall dynamics of an MJLS are nonlinear, making controller synthesis challenging.
For brevity, we refer to [35] for further results in this problem setting.

3 Current research directions

As discussed above, we have considered the general problem in Sect. 1 under various model assumptions.
At the same time, each of those settings suffers from its limitations and necessary assumptions, so the
general problem of optimal control under uncertainty is far from solved. In this section, we discuss two
key limitations of our current framework, which are related to scalability and to linearity of the dynamics.
Moreover, we describe how we try to address both of these challenges with our ongoing research.

3.1 Neural-guided abstraction of nonlinear systems

Thus far, our research has focused on dynamical models with linear dynamics. Extensions to nonlinear
dynamical systems are non-trivial and may require more involved reachability computations [10, 17].
Specifically, the challenge is that the backward reachability computations involved in our approach may
become non-convex under nonlinear dynamics.
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Neural network partitioning A recent paper [1] has proposed to use feedforward neural networks
to learn state space partitions for nonlinear dynamical models into polyhedral regions. Inspired by this
approach, we are developing an abstraction procedure for nonlinear stochastic dynamical models, which
(1) learns a polyhedral state space partition using a neural network, and (2) constructs a piecewise linear
approximation of the nonlinear dynamics based on this partition. By defining the loss function for the
neural network such that it minimizes the linearization error across the partition, we hope to find smarter
partitions (into fewer elements and of better geometry) than the rectangular ones we employed thus far.

Abstraction of linearized dynamics To account for the error caused by the linearization, we add a
set-bounded nondeterministic disturbance to the linearized dynamics. As we have shown in [7], we
can robustly capture this set-bounded disturbance in an iMDP abstraction. However, the quality of the
abstraction largely depends on the size of the disturbance representing the linearization error. Thus, the
main challenge with this approach is to obtain a tight, set-bounded representation of the linearization error.

3.2 Abstractions of polyhedral Lyapunov functions

Discrete abstractions are computationally expensive in general due to the discretization of the state
space. For example, the number of abstract states scales exponentially with the dimension of the state
space, commonly called the curse of dimensionality. Moreover, adding robustness to multiple sources of
uncertainty (as we have done in [7] further increases the number of transitions modeled in the abstract
model). Thus, finding ways to reduce the complexity of abstraction while keeping their expressivity is a
challenging direction for further research.

Abstraction of Lyapunov functions Inspired by [18] and the large body of literature on Lyapunov and
Barrier functions [4], we are developing a method for abstracting stochastic dynamical systems using
Lyapunov functions. Specifically, we wish to generate an abstract model whose states represent annuli of
the sublevel sets of a Lyapunov function. A similar approach was used by [18]. However, the approach
by [18] relies on a strict decrease condition on the Lyapunov function and is therefore restricted to
nonstochastic linear systems only. Instead, we believe that our abstraction procedure based on backward
reachability analysis can be used to construct sound abstractions of sublevel sets of Lyapunov functions.

Complexity is independent of state dimension This envisioned abstraction of Lyapunov sublevel
sets avoids the need for an exhaustive partitioning of the state space. Notably, the number of states in
the envisioned abstraction is independent of the dimension of the state space. Thus, we believe that this
approach may significantly reduce the computational complexity of the abstraction.

4 Conclusions and Future Work

In this short paper, we have surveyed our recent research on abstraction-based controller synthesis for
stochastic and uncertain dynamical models. Based on a robust finite-state abstraction in the form of an
iMDP, we are able to synthesize controllers for dynamical models that provably satisfy given temporal
logic specifications, such as reach-avoid tasks. We have considered this general problem under various
modeling assumptions, including unknown noise distributions, imprecisely known model parameters, and
hybrid features. Moreover, we have highlighted two key challenges that are related to scalability and
extensions to nonlinear systems. With our ongoing research, we aim to address these challenges.
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