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Abstract. This work considers the scheduling problem for Urban Air Mobility (UAM) vehicles
travelling between origin-destination pairs with both hard and soft trip deadlines. Each route is
described by a discrete probability distribution over trip completion times (or delay) and over inter-
arrival times of requests (or demand) for the route along with a fixed hard or soft deadline. Soft
deadlines carry a cost that is incurred when the deadline is missed. An online, safe scheduler is
developed that ensures that hard deadlines are never missed and that average cost of missing soft
deadlines is minimized. The system is modelled as a Markov Decision Process (MDP) and safe
model based learning is used to find the probabilistic distributions over route delays and demand.
Monte Carlo Tree Search (MCTS) Earliest Deadline First (EDF) is used to safely explore the learned
models in an online fashion and develop a near-optimal non-preemptive scheduling policy. These
results are compared with Value Iteration (VI) and MCTS (Random) scheduling solutions.

1 Introduction

The development of emerging aviation markets is crucial to maintaining international competitiveness
and providing benefit to the US economy and general public. The safe development of an air transporta-
tion system that enables passengers, cargo, and payloads to execute their mission via aerial means has
been a major driver in the past and current century. Urban Air Mobility (UAM) refers to the transporta-
tion of passengers and cargo over an urban environment, and it is often assumed to occur in an on-demand
(aperiodic) manner. UAM aims to alleviate urban congestion and improve urban public transit. UAM
vehicles are assumed to take off and land at a series of localized vertiports, vertihubs, or vertistations.
Within the environment, the vehicles receive trip requests to move from one vertihub to another. By cor-
rectly scheduling these trip requests, the vehicles can navigate the UAM airspace safely and efficiently.
Thus, the development of a safe scheduler (i.e., no hard request misses its deadline and all hard requests
are serviced) which does not require clairvoyance (i.e., scheduler does not have knowledge of the charac-
teristics of the request, such as trip execution time or request inter-arrival time) is critical. A key question
then becomes: Given a set of origin-destination trip requests, where the requested time of arrival
for each trip may either be a hard or soft deadline, can a schedule be created that guarantees all
trips with hard deadlines arrive within their deadline and that the average cost of delayed trips
with soft deadlines is minimized?

1.1 Contribution

The major contributions of this work are: (1) The infinite duration, aperiodic, non-preemptive scheduling
problem for UAM trip requests with both hard and soft deadlines is formally modelled as a non-standard
optimization problem over a Markov Decision Process (MDP). (2) The demand and delay distributions
of the UAM trip requests (which are not known a priori) are safely learned over the MDP model using
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sampling techniques. (3) Monte Carlo Tree Search (MCTS) is used to learn safe, scalable non-preemptive
scheduling strategies over the learned models. (4) Results are compared to solutions obtained using value
iteration and Earliest Deadline First (EDF) scheduling techniques. The developed approach scales well
for a small number of UAM trip routes where each route can have infinitely many trip requests.

1.2 Related Work

The scheduling of UAM vehicles is a relatively new topic and has been considered from an operational
concept point of view [22]. There have been some initial forays into building schedules for heterogeneous
fleets of vehicles which focus on efficiency [13]. Heuristic approaches for arrival sequencing have been
put forth [20] as have energy efficient approaches [14]. A graph based reinforcement learning approach
has been employed in [19], where the UAM fleet scheduling problem is represented as an MDP over a
graph space, with the graph representing the network of vertiports (and their dynamic properties, e.g.,
demand). However, none of these approaches enforce safety guarantees over the synthesized schedule
(i.e., all hard trip requests are completed on schedule).

The classical real-time scheduling problem has been explored in great detail [9],[3],[5],[7],[8]. The
scheduling of periodic tasks with hard real-time deadlines has been shown to be co-NP-complete [16],[2],
and there has been considerable study of the case where the tasks are not strictly periodic [12],[15]. The
scheduling of systems which have both hard and soft deadlines has also been investigated [1],[17]. Clas-
sical algorithms for scheduling both hard and soft tasks in a preemptible fashion include Earliest Deadline
First [18], Earliest Deadline Late [6], and Priority Exchange [23] among others. These techniques do not
consider probabilistic distributions across task completion times and inter-arrival times.

In [10], the stochastic scheduling problem with both hard and soft tasks on a single machine is con-
sidered, and a safe and efficient non-clairvoyant scheduler is computed in an online fashion. The system
is modelled as a finite MDP, and an algorithm for safe and optimal scheduler synthesis is developed. In
a follow-on effort by the authors contained in [4], safe learning for near-optimal scheduling is examined.
Monte Carlo Tree search techniques are leveraged to learn safe strategies for scheduling systems with
large state spaces (e.g., 1020). However, neither of these efforts consider non-preemptible tasks.

2 UAM Scheduling Problem

The UAM scheduling problem is modeled as an MDP. An MDP is defined as the tuple (S,A,δ ,R) where:
(1) S is a finite set of states; (2) A is a finite set of actions; (3) δ (s,a,s′) is the probability that system goes
from state s to state s′ after action a is taken; and (4) R is the reward obtained immediately after action a
is taken (with |R| ≤ B∈R ). Informally, the states of the MDP are the possible trip request configurations
available within the system at the current time step. The actions are the requests the scheduler can work
on at that time step (i.e., the trips available to execute given that a UAM vehicle is available for that
particular trip). The action space represents the actions the scheduler can take at any given state (i.e., the
set of all possible trips that can be scheduled given UAM fleet availability).

2.1 UAM Scheduling Term Definitions

Definition 2.1. Trip completion time probability distribution (p). Let T be a discrete random vari-
able drawn from a categorical distribution. The possible trip completion times are found in the support
vector of the distribution denoted as ET = {0,1,2, ...,K} where K ∈ Znonneg is the maximum possible
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trip completion time. Define the trip completion time probability distribution p = {p0, . . . , pK} where pi

corresponds to the probability of the trip completion time T being equal to i.

Example 1. A trip completion time probability distribution of p= {p0 = 0, p1 = 0, p2 = 0, p3 = 0.5, p4 =
0.5} has a maximum completion time K = 4 and a support vector of ET = {0,1,2,3,4}. Informally, this
distribution means that the trip will complete in 3 time steps (T = 3) or 4 time steps (T = 4) with equal
probability (0.5).

Definition 2.2. Inter-arrival time probability distribution (q). Define the inter-arrival time probability
distribution q= {q0, . . . ,qM}with support vector EV = {0,1,2, ...,M}where M ∈Znonneg is the maximum
possible inter-arrival time and the ith component of q corresponds to the probability of the inter-arrival
time V being equal to i.

Example 2. An inter-arrival time distribution of q = {q0 = 0,q1 = 0, ...,q8 = 1} has a maximum inter-
arrival time M = 8, and a support vector of EV = {0,1,2, ...,8}. Informally, this distribution means that
the a new trip request for that origin-destination pair will arrive in 8 time steps (V = 8) with probability
1.0.

Definition 2.3. Deadline (D). Define D as a positive integer that denotes the number of time steps by
which a scheduled trip request must be completed. In order to guarantee a trip can be scheduled without
violating the deadline, assume K ≤ D≤M.

Example 3. A deadline of 7 is denoted by D = 7. Informally, this means that the trip request must be
completed within 7 time steps of being started.

Definition 2.4. Route. A route is a template for all trip requests of a given type. Define the set ROUTES

as the set of all origin-destination vertiport pairs and denote its cardinality as W .

Definition 2.5. Request. A request is a dynamic instantiation of a route. The following definition is
presented for the case where there can only exist one request from a given route in the system at a time,
without loss of generality. Formally,

ri = (pi,Di,qi) = ({pi0 , pi1 , pi2 , ..., piK},Di,{qi0 ,qi1 , ...,qiM}) : ∀ i ∈ ROUTES.

If there is no ambiguity, the subscripts in the tuples pi and qi may be dropped (e.g., ri =({p0, p1, p2, ..., pK},
Di,{q0,q1, ...,qM}). Requests have an initial configuration. When a new instance of a request ar-
rives, the request will be initialized in the initial configuration riin = (piin ,Diin ,qiin). Also, the ini-
tial trip completion time, initial deadline, and initial inter-arrival time cannot be equal to zero (e.g.,
piin ,qiin 6= {1,0, ...,0},Diin 6= 0).

Example 4. Consider an MDP with 2 requests as seen in Figure 1. The initial configuration of the first
request is ({p0 = 0, p1 = 0, p2 = 0, p3 = 0.5, p4 = 0.5},7,{q0 = 0,q1 = 0, ...,q8 = 1}). This request has
a completion time distribution of {p0 = 0, p1 = 0, p2 = 0, p3 = 0.5, p4 = 0.5}, a deadline of 7, and an
inter-arrival time of {q0 = 0,q1 = 0, ...,q8 = 1}. Informally, it means that this request will take 3 or 4
time steps of dedicated work to complete, must be completed within 7 time steps, and will be replaced by
a new request in 8 time steps. These values can change as time moves forward.

Definition 2.6. Soft requests. The set of soft requests, rso f t , is defined as all of the requests that can
be completed after their deadline reaches 0. However, a cost (or negative reward R) will be incurred for
missing the deadline for that request. Formally, rso f t = {(p0,D0,q0),(p1,D1,q1), ...,(p j,D j,q j)}.
Example 5. In the MDP presented in Figure 1, the soft request set contains the single request: ({p0 =
0, p1 = 0, p2 = 1},3,{q0 = 0,q1 = 0, ...q4 = 1}). This request can be completed even if 3 time steps pass,
but a cost will be incurred.
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Definition 2.7. Hard requests. The set of hard requests rhard are the requests that must be completed be-
fore the deadline reaches 0. Formally, rhard = {(p j+1,D j+1,q j+1),(p j+2,D j+2,q j+2), ...,(pW ,DW ,qW )}.
Example 6. In the MDP presented in Figure 1, the hard request set contains the single request: ({p0 =
0, p1 = 0, p2 = 0, p3 = 0.5, p4 = 0.5},7,{q0 = 0,q1 = 0, ...q8 = 1}). This request must be completed
within 7 time steps.

2.2 MDP Construction

Define the UAM scheduling MDP M = (S,A,R,δ ) as follows.
Definition 2.8. State Space S. Define the state space as S = {rhard∪rso f t}∪{sterm}where there can exist
only one request per route (without loss of generality), and sterm is the terminal state which is reached
when a hard request misses its deadline. More formally, S =

⋃W
i=1({p0, p1, ..., pK},Di,{q0,q1, ...,qM})∪

sterm.
Example 7. In the MDP presented in Figure 1, the state space is comprised of the two requests:
({p0 = 0, p1 = 0, p2 = 1},3,{q0 = 0,q1 = 0, ...q4 = 1}) and ({p0 = 0, p1 = 0, p2 = 0, p3 = 0.5, p4 =
0.5},7,{q0 = 0,q1 = 0, ...q8 = 1}). The computation time, deadline and inter-arrival times of these re-
quests decrement until they are completed and/or replaced by a new instance of the request (due to the
evolution of time) resulting in the observed state space. In addition to the different configurations of the
requests, the state space also contains a terminal state (S13).
Definition 2.9. Actions (A). Define an action ai ∈ A, i = 0,1,2, ...,W , which corresponds to the schedul-
ing of the ith request ri. Note that the 0th action corresponds to idle time (e.g., no request is scheduled).
Formally, the set of actions A is denoted A = {None,1,2,3, ...,W}where W is the maximum number of
requests (i.e., there can be at most one active request for each route at a time, where the total number of
routes is W, as seen in definition 2.4).
Example 8. In the MDP presented in Figure 1, the set of actions is A = {None,1,2, ...,W}. In state S1, a
= 1 corresponds to working on ({p0 = 0, p1 = 0, p2 = 0, p3 = 0.5, p4 = 0.5},7,{q0 = 0,q1 = 0, ...,q8 =
1}), and a = 2 corresponds to working on ({p0 = 0, p1 = 0, p2 = 1},3,{q0 = 0,q1 = 0, ...,q4 = 1}). If
a = None, none of the requests are worked on and the scheduler remains idle.
Definition 2.10. Reward Function (R). Define the reward function R (where R < 0) as:

R(s,a,s′) =


wJso f t , if ∀ ri = (p0, ..., pK ,Di,q0, ...,qM) ∈ s′|ri ∈ rso f t ∧Di = 0∧ p0 6= 1
Jhard , if s′ = sterm

0, otherwise

(1)

where Jso f t < 0 and Jhard � Jso f t .
The first case corresponds to the deadline of the soft request ri having elapsed (Di = 0) and the request

not having completed (p0 6= 0), which incurs a small (negative) penalty of Jso f t . There can be up to w
soft tasks whose deadlines elapse in a timestep, where w ≤ |rso f t |. The second case corresponds to the
deadline of the hard request ri having elapsed (Di = 0) and the request not having completed (p0i 6= 0),
which incurs a very large (negative) penalty of Jhard . Otherwise, no reward is incurred (R(s,a,s′) = 0).
Example 9. As seen in Figure 1, a soft task misses its deadline when transitioning from S3 to state S4
or S5. In both cases, the deadline for the soft request reaches 0 while the request is incomplete (p0 6= 1).
This results in a small negative reward of Jso f t = −10 being accrued. A hard task misses its deadline
in the transition from S12 to S13 in Figure 1. In this transition, S13 is the terminal state, resulting in a
large negative reward of Jhard =−10000 being accrued.
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2.2.1 Transition Function

The construction of the transition function is presented as multiple individual cases that are complete
when taken together. Formally, the transition function δ : S×A×S′→ [0,1] is defined as follows.

Case 1: Agent idle (a = None) and no request is complete (p0 6= 1), has a probability p1 of
completing, or has reached its deadline (D 6= 0). In this case, the deadline and inter-arrival time of all
requests will decrement while the completion times remain the same. Formally, δ (s,a,s′) = 1 if:

∀ ri = ({p0, p1, ..., pK},Di,{q0,q1, ...,qM}) ∈ s | p1 = 0,D 6= 0,q1 = 0,

a = None,

r′i = ({p′0, p′1, ..., p′K},D′i,{q′0,q′1, ...,q′M}) | p′i = pi,D′i = Di−1,q′n = qn+1,q′M = 0,n = 0, ...,M−1.

Example 10. In the MDP in Figure 1, this case occurs when transitioning from S1 to S10. When the
agent chooses the action None, the computation time remains the same for both requests (e.g., for request
1, {p0 = 0, p1 = 0, p2 = 0, p3 = 0.5, p4 = 0.5}→ {p′0 = 0, p′1 = 0, p′2 = 0, p′3 = 0.5, p′4 = 0.5}) while the
deadline (e.g., for request 1, D1 = 7→ D′1 = 6) and inter-arrival time decrement (e.g., for request 1,
{q0 = 0,q1 = 0, ...,q8 = 1}→ {q′0 = 0,q′1 = 0, ...,q′7 = 1,q′8 = 0}).

Case 2: Agent works on request ` and no request is complete, has a probability p1 of complet-
ing, or has reached its deadline. When the agent chooses to work on the `th request (a = ` 6= None)
and no request in the system is completed or has reached its deadline, the completion time, deadline, and
inter-arrival time will decrement for the `th request, and all other requests will decrement their deadline
and inter-arrival time while their completion time remains the same. Formally, δ (s,a,s′) = 1 if:

∀ri = ({p0, p1, ..., pK},Di,{q0,q1, ...,qM}) ∈ s|p0 = 0,Di 6= 0,q1 = 0,

a = `,

r′` = ({p′0, p′1, ..., p′K}, D′`,{q′0,q′1, ...,q′M}) | p′m = pm+1,D′` = D`−1,q′n = qn+1 , p′K = 0,q′M = 0

for m = 0, ...,K−1 and n = 0, ...,M−1,

r′i = (({p′0, p′1, ..., p′K},D′i,{q0,q′1, ...,q
′
M}), i 6= `| p′i = pi,D′i = Di−1,q′n = qn+1 ,q′M = 0

for n = 0, ...,M−1.

Example 11. In the MDP in Figure 1, this case occurs when transitioning from S1 to S2. When the agent
chooses action 1, the computation time decrements for the 1st request ({p0 = 0, p1 = 0, p2 = 0, p3 =
0.5, p4 = 0.5} → {p′0 = 0, p′1 = 0, p′2 = 0.5, p′3 = 0.5, p′4 = 0}) while the deadline (e.g., for request 1,
D1 = 7→D′1 = 6) and inter-arrival time ( e.g., for request 1, {q0 = 0,q1 = 0, ...q8 = 1}→ {q′0 = 0,q′1 =
0, ...,q′7 = 1,q′8 = 0}) decrement for both requests .

When the completion time for a request r` in the system equals 1 with a non-zero probability (p`1 6= 0)
and the agent chooses to work on that request (A = `), the request will be completed with a probability
p`1 . On the other hand, the request will remain incomplete with probability 1− p`1 . In this case, the
non-zero probability entries of the next state will be increase by p`1/|pnz−1|, where |pnz−1| is the
remaining number of completion times with non-zero probability (i.e., if p`m+1 6= 0 then p′`m

= p`m+1 +
p`1
|pnz−1| , otherwise p′`m

= p`m+1). The remaining requests all decrement their deadlines and inter-arrival
times. Formally,δ (s,a,s′) = 1− p`1 if:
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∃ri = ({pi0 , pi1 , pi2 , ..., piK},Di,{qi0 ,qi1 , ...,qiM}) ∈ s|pi1 6= 0,Di 6= 0,qi1 = 0,

a = `,

r′` =
(
{p′`0

, p′`1
, p′`2

, ..., p′`K
},D`,{q′`0

,q′`1
, ...,q′`M

}
)
| if p`m+1 6= 0 then p′`m

= p`m+1 +
p`1

|pnz−1|
,

otherwise p′`m
= p`m+1 ,D

′
` = D`−1,q′`n

= q`n+1 ,q
′
M = 0 for m = 0, ...,K−1 and

n = 0, ...,M−1,

r′i = ({p′0, p′1, ..., p′K},D′i,{q′0,q′1, ...,q′M}), i 6= `| p′i = pi,D′i = Di−1,q′m = qm+1,q′M = 0 ,

m = 0, ...,M−1,

and δ (s,a,s′) = p`1 if:

∃ri = ({pi0 , pi1 , pi2 , ..., piK},Di,{qi0 ,qi1 , ...,qiM}) ∈ s|pi1 6= 0,Di 6= 0,qi1 = 0,

a = `,

r′` = ({p′`0
, p′`1

, p′`2
, ..., p′`K

},D`,{q′`0
,q′`1

, ...,q′`M
}) | p′`0

= 1, p′`m
= 0,D′` = D`−1,

q′`n
= q`n+1 ,q

′
M = 0 for m = 1, ...,K and n = 0, ...,M−1,

r′i = (({p′0, p′1, ..., p′K},D′i,{q0,q′1, ...,q
′
M}) , i 6= `| p′i = pi,D′i = Di−1,q′in = qin+1 ,q

′
M = 0,

for n = 0, ...,M−1.

Example 12. In the MDP presented in Figure 1, this case occurs when transitioning from S3 to S4
or S5. When the agent chooses action 1, the agent could transition to S5 with probability 0.5. In S5,
the computation time becomes 0 for the 1st request with probability 1 and all other probabilities in the
distribution become 0, as the task has completed (e.g., {p10 = 0, p11 = 0.5, p12 = 0.5, p13 = 0, p14 =
0} → {p′10

= 1, p′11
= 0, p′12

= 0, p′13
= 0, p14 = 0}). On the other hand, the agent can also transition

to S4 with probability 0.5. In S4, the computation time for the 1st request becomes 1 with probability 1
(e.g, {p10 = 0, p11 = 0.5, p12 = 0.5, p13 = 0, p14 = 0}→ {p′10

= 0, p′11
= 1, p′12

= 0, p′13
= 0, p′14

= 0} as
p′l1 = pl2 +

pl1
|pnz−1| = 0.5+ 0.5

(2−1) = 1 ). In both states, the deadline (D1 = 7→ D′1 = 6) and inter-arrival
time decrement (e.g., for request 1, {q10 = 0,q11 = 0, ...q16 = 1,q17 = 0,q18 = 0} → {q′10

= 0,q′11
=

0, ...,q′15
= 1,q′16

= 0,q′17
= 0,q′18

= 0}).
Case 4: Agent chooses to schedule a completed request (a = `∧p0 = 1∧q1 6= 1)). When the

completion time for a request r` in the system equals 0 with a probability of 1 (p0 = 1) and the agent
chooses to work on the request (A= `), the action A= ` will be treated like the None action (i.e., Case 1).
This causes the inter-arrival times of requests and all non-zero deadlines to decrement. The completion
time of all requests remains the same. Deadlines of soft requests which are zero remain zero, and if a
deadline of a hard request is zero, see Case 6. Formally, δ (s,a,s′) = 1 if:

∃r` = ({p0, p1, ..., pK},D`,{q0,q1, ...,qM}) ∈ s|p0 = 1,q1 = 0,

a = `,

∀r′i = ({p′0, p′1, ..., p′K},D′i,{q′0,q′1, ...,q′M}) ∈ s′, p′i = pi, if Di 6= 0, D′i = Di−1,

otherwise (D′i = Di = 0∧ ri ∈ rso f t),q′n = qn+1 ,q′M = 0 for n = 0, ...,M−1.

Case 5: Soft request(s) missed their deadline(s), and are not yet replaced (ri ∈ rsoft∧p0 6= 1∧
Di = 0∧q1 = 0). In this case, the soft requests that missed their deadlines have a deadline of 0 in their
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next state. The deadlines of all other requests and the inter-arrival times of every request will decrement.
The completion time of the request selected (e.g., a = `) will also decrement. All non-selected requests
will keep their completion times the same. Formally, δ (s,a,s′) = 1 if:

∃ri = ({p0, p1, ..., pK},Di,{q0,q1, ...,qM}) ∈ s | Di = 0,q1 = 0

a = `,

r′` = ({p′0, p′1, ..., p′K},D′`,{q′0,q′1, ...,q′M}) ∈ s′| p′m = pm+1, p′K = 0,

if (D` = 0∧ r` ∈ rso f t)∨ (r` ∈ rhard ∧ p0 = 1)

then D′` = 0, otherwise D′` = D`−1,q′n = qn+1,q′M = 0 for m = 0, ...,K−1,

and n = 0, ...,M−1,

r′i = ({p′0, p′1, ..., p′K},D′i,{q0,q′1, ...,q
′
M}), i 6= `| p′m = pm,

if (Di = 0∧ ri ∈ rso f t)∨ (ri ∈ rhard ∧ p0 = 1) then D′i = 0,

otherwise D′i = Di−1,q′n = qn+1 ,q′M = 0 for n = 0, ...,M−1, and

R = −10,∀ri ∈ rso f t with D′i = 0∧Di 6= 0.

Example 13. Consider S23 in the MDP in Figure 1 where the hard task r1 = ({p0 = 1.0, p1 = 0, p2 =
0, p3 = 0, p4 = 0},0,{q0 = 0,q1 = 1,q2 = 0,q3 = 0, ...,q9 = 0}) is complete and the soft task r2 = ({p0 =
0, p1 = 1, p2 = 0},0,{q0 = 0,q1 = 1,q2 = 0,q3 = 0,q4 = 0}) has missed its deadline and incurred a cost
of R = −10. Unlike in Figure 1, if the soft request were not scheduled for replacement (e.g., if q1 6= 1)
and the soft request is worked on, the next state would complete the task r′2 = ({p′0 = 1.0, p′1 = 0, p′2 =
0},0,{q′n = qn+1, ...}). Note if the completed hard task were not scheduled for replacement, it would
decrement normally (e.g., r′1 = ({p′0 = 1.0, p′1 = 0, p′2 = 0, p′3 = 0, p′4 = 0},0,{q′n = qn+1, ...})).

Case 6: Hard request misses deadline (Di = 0∧ ri ∈ rhard∧p1 6= 0). When a request has a hard
deadline D and the trip is incomplete by D, the next state is the terminal state with p = 1. Formally,
δ (s,a,s′) = 1 if:

∃ ri = ({p0, p1, ..., pK},Di,{q0,q1, ...,qM}) ∈ s|p0 6= 1,Di = 0,ri ∈ rhard ,

∀ a ∈ A,

s′ = sterm.

Example 14. In the MDP in Figure 1, this case occurs when transitioning from S12 to S13. From S12,
the deadline for r1 will reach 0 regardless of the action taken. When the agent chooses any action in A,
it transitions to the terminal state S13 with probability 1.0.

Case 7: New instance of request r` arrives with probability q`1 . When the inter-arrival time for
a request r` in the system equals 1 with a non-zero probability q`1 , the request will be replaced with a
new instance with a probability q`1 in the next timestep. On the other hand, the request will persist with
probability (1− q`1). In this case, the remaining non-zero probability entries of the next state will be
increase by q`1/|qnz−1| where |qnz| is the number of inter-arrival times with non-zero probability. Note
that multiple requests may have new instances arriving simultaneously. Formally, δ (s,a,s′) = 1−q`1 if:
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∃r` = ({p`0 , p`1 , p`2 , ..., p`K},D`,{q`0 ,q`1 , ...,q`M}) ∈ s|q`1 6= 0,

a = j,

r′` = ({p′`0
, p′`1

, p′`2
, ..., p′`K

},D′`,{q′`0
,q′`1

, ...,q′`M
}) | if (`= j)∧ (p0 6= 1), p′`m

= p`m+1 , p`K = 0,

otherwise p′` = p`, if D` 6= 0, D′` = D`−1, otherwise D′` = 0, if q`n+1 6= 0

then q′`n
= q`n+1 +

q`1

|qnz−1|
,

otherwise q′`n
= q`n+1 ,q

′
`M

= 0, for m = 0, ...,K−1, and n = 1, ...,M−1.

Example 15. In the MDP presented in Figure 1, this case can be seen when transitioning from S4 or
S5 to S6. When the agent chooses any action, the agent transitions to S6. In S6, the inter-arrival time
becomes 0 for the 1st request. This results in the 1st request being replaced by a new request in its
initial configuration ({p0 = 0, p1 = 0, p2 = 1},0,{q0 = 0,q1 = 1, ...q4 = 0})→ ({p0 = 0, p1 = 0, p2 =
1},3,{q0 = 0,q1 = 0, ...q4 = 1}).

Example 16. An example of two new requests arriving simultaneously occurs in states S9, S20, and S23.
Under any action chosen in those three states, a hard request and a soft request will arrive. The initial
configuration of S1 is then recovered [({p0 = 0, p1 = 0, p2 = 1},0,{q0 = 0,q1 = 1, ...q4 = 0}),({p0 =
1, p1 = 0, p2 = 0, p3 = 0, p4 = 0},0,{q0 = 0,q1 = 1, ...q8 = 0})]→ [({p0 = 0, p1 = 0, p2 = 1},3,{q0 =
0,q1 = 0, ...q4 = 1}),({p0 = 0, p1 = 0, p2 = 0, p3 = 0.5, p4 = 0.5},7,{q0 = 0,q1 = 0, ...q8 = 1})]. This
is shown in the loops from S9, S20, and S23 to S1.

Case 8: Agent in terminal state (s = s_term). In this case, the next state will also be the terminal
state regardless of action taken. Formally, δ (s,a,s′) = 1 if:

s = sterm

∀ a ∈ A

s′ = sterm

Example 17. In the MDP in Figure 1, this case occurs when transitioning from S13. When the agent
chooses any action from S13, the agent transitions back to S13 with probability 1.0.

2.3 Preemptible vs. Non-Preemptible Scheduling

Two types of MDPs are defined. A preemptible MDP is an MDP without any constraints on actions it can
take at any given state. A request can be stopped before it is completed and another request can be started
without any consequences. Unlike a preemptible MDP, a non-preemptible MDP may have a limited set
of actions it can take at any given state. Specifically, an agent traversing a non-preemptible MDP must
finish a request before starting a new request, and no idle time can be inserted into the completion of the
request (e.g., a 6= None). If a new instance of a request arrives before an agent completes the current
request, the agent will have the option to start a different request instead of working on the new instance.

2.3.1 Non-Preemptible MDP State Space

The state space for non-preemptible MDPs can be partitioned into two subsets: (1) Restricted states (Sr),
in which an agent only has access to one action and (2) Unrestricted states (Su), in which an agent has
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access to more than one action. The implementation of the non-premptible MDP abstracts restricted
states from the preemptible MDP, resulting in a smaller state-space (e.g., successor states resulting from
the repeated application of a single action are abstracted into a single state).

Example 18. In the non-preemptible MDP based on the MDP presented in Figure 1, S1 would be con-
sidered an unrestricted state since the traversing agent is free to choose any action a ∈ A. However,
once the agent transitions to S2 by choosing action 1, it is unable to choose any request but 1 until r1 is
complete. As a result, S2 would be considered a restricted state. In this implementation S2, S3, and S4
would be abstracted as restricted states and the agent would transition directly from S1 to S5 or S6 after
choosing action 1.

3 Generating the Safe Scheduler

The high-level process for solving a UAM scheduling problem is shown in Figure 2. The process begins
by constructing an MDP given a set of routes and requests as described in Subsection 2.2 (Construction).
The MDP is then pruned to remove terminal cases so agents can safely traverse the MDP while sampling
(Pruning). The agent traverses the pruned MDP to sample the completion and inter-arrival time distri-
butions (Sampling). After sampling the distributions, the agent can create an estimate MDP (Learning),
which it uses to find the optimal policy by employing value iteration or MCTS (Solving).

Figure 2: Process to solve the UAM Scheduling Problem

3.1 Pruning the MDP

The scheduler begins by pruning the MDP to remove any terminal states from the system. A backwards
reachability algorithm is used to prune states and actions that have non-zero probability of leading to the
terminal state. If all actions for a given state are pruned, then the state is also pruned from the MDP, and
that state is labelled as a terminal state. The same pruning step is then performed for all actions and states
which lead to the newly labelled terminal state. For example, in the MDP figure diagram, the agent will
begin by pruning the Terminal state (S13). From the terminal state, the algorithm will backtrace to state
S12 and prune the actions {1,2,None}, as they all lead to the Terminal state. Since all the actions at S12
are pruned, the algorithm will prune S12 from the system and repeat the process for all actions and states
which lead to S12. As a result, the algorithm will prune any intermediate states between S11 and S12 as
they inevitably lead to the Terminal state. At S11, the pruning step will remove the None and 2 action as
choosing any action other than 1 will lead to a pruned state and, by extension, the Terminal State. This
process applies to both a preemptible and non-preemptible MDP.

3.2 Sampling the MDP

After pruning, the scheduling agent begins traversing the pruned MDP. When sampling a specific request,
the agent will choose to work on the specific request at all time steps except when prevented by the
pruning step. When the request is completed, the agent increments a counter corresponding to the number
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of time steps required to finish the request. The agent repeats this process for a given number of samples.
Once the specified sample number is reached, the agent normalizes the counters across the number
of samples to obtain an estimated probability distribution. The agent performs the same process when
estimating the inter-arrival time distribution and records when a new instance of the same request appears.
The agent repeats the sampling process for all requests in the system to have an accurate estimate of the
completion and inter-arrival times of all requests. The number of samples is determined by the formula
outlined in [10]. Once all requests have been sampled, the agent uses the estimated distributions to create
an estimate request system and an estimate MDP. By running value iteration or MCTS on the estimate
MDP, the scheduling agent can choose the near-optimal action at each time step.

The difference in probability distributions between the pruned and unpruned MDPs comes from paths
that would lead to the terminal state, which should not be taken. By removing those paths, the estimated
MDP only captures the safe traces of the actual MDP, and thus the MDP is safely learned.

Figure 3: Delay Distribution for Priority Route with Completion Time={1,2}

The accuracy of the sampling algorithm is shown in Figure 3. A preset MDP was used as a plant
for experimentation to gauge how well the agent could estimate the MDP. In [4], the authors derive
that y = r ∗

⌈ 1
2ε2 (ln2r− lnγ)

⌉
in order to establish the relationship between ε , the percentage to which

the estimated MDP converges to the actual MDP, and y, the numbers of samples taken over the plant.
In this expression, r represents the size of the support of the estimated distribution and 1− γ is the
probability of the estimated model being within ε of the actual model. A value of 1000 samples is taken
in this work, with 1− γ = 0.9 and r = 2, which yields epsilon as approximately 0.0607. The estimated
MDP is within 6.07 % of the actual MDP and has approximately 94% accuracy. The completion time
distribution of {q0 = 0,q1 = 0.5,q2 = 0.5} was the configuration being estimated and a set number
of samples (1000) was employed. As the number of samples increased, the scheduler converged on the
correct distribution in the preemptible and non-preemptible implementations. The MDP can be estimated
using these approximations to the inter-arrival and completion time distributions.
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3.3 Learning the MDP

After sampling the MDP, estimate probability distributions for computation time and inter-arrival time
are created. The calculation for the estimate distributions is: # samples for a given time/total samples.
For example, if a sampling agent took 10 samples from a request in a system and recorded that 6 of those
samples took 3 time steps to complete, it would estimate the completion time of 3 of the request as: p3 ∈
Test = 6/10 = 0.6. After creating estimates for the computation and inter-arrival times for all requests,
the agent creates the estimate request set: {r̂1, r̂2, ..., r̂n} = {(p̂1,D1, q̂1),(p̂2,D2, q̂2), ...,(p̂n,Dn, q̂n)}.
After estimating the request set, the construction process explained in Section 2.2 is used to create an
estimated MDP. Since the agent cannot miss hard deadlines during sampling, it cannot gain a compre-
hensive estimate of the reward function. Thus, the reward function values are provided prior to sampling.

4 Solving for the Optimal Policy of the Learned MDP

After estimating the MDP model, the next step is to find the optimal reward while traversing the MDP. A
policy π(s)→ a is defined as mapping a state s to an action a, and the goal is to find the optimal policy
that maximizes (or minimizes) an objective function over the MDP’s time horizon, τ . An optimal policy
π for an infinite time horizon MDP can maximize the expected discounted total reward as follows:

maxVπ(s) = max

{
lim
τ→∞

Eπ,s

[
τ

∑
t=0

γtR(s′t |st ,π(at))

]}
(2)

where γt is the discount factor at time t, st and at are the state and action taken at decision time t, and
E[·] is the expectation function. This is a stationary policy for the infinite-horizon discounted reward
MDP due to the stationary nature of the transition probabilites and (bounded) rewards. The maximal
achievable reward v∗(s) at every state s is found recursively by solving Bellman’s equation:

v∗t (s) = max
a∈A

[
Rt(s,a)+ ∑

s′∈S
Pt(s′t |st ,a)v∗t+1(s

′)

]
(3)

This can be done using several means: (1) Value Iteration (VI), which is optimal but computationally
intensive and (2) Monte Carlo Tree Search (MCTS), which approaches optimality for large sample sizes.
Standard treatments and implementations for solving Bellman’s equation using VI can be found in [21],
[11]. The MCTS approach is explained below.

4.1 MCTS

Unlike VI, which finds the optimal action for every state within an MDP, MCTS returns the optimal
action for a given input state. The algorithm begins at the input state and deterministically takes one of
the available actions. The functional steps used by the MCTS algorithm are outlined in [4]. Since the
MCTS algorithm’s primary input parameter is the search depth and number of samples, its runtime is
independent of state space size. Thus, the scheduling agent can choose actions with a consistent run time
across request configurations.

The UAM MCTS algorithm uses Earliest-Deadline First (EDF) as the MCTS simulation policy. The
EDF policy deterministically returns an action at each state in the MDP. When possible, the EDF policy
chooses the hard request with the shortest deadline. If all hard requests have been completed, the policy
chooses the soft request with the shortest deadline. This policy has been shown to be optimal when
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Figure 4: Average Cost for Preemptible and Non-premptible UAM Scheduling for Fig. 1 Request System

scheduling processor utilization for all tasks is less than 1 [2],[6]. The EDF policy is only optimal when
the tasks are preemptible and a feasible schedule exists, i.e., a schedule that does not violate the deadline
of a hard request [6]. By using EDF as the MCTS simulation policy, the scheduling agent can obtain a
conditionally-optimal baseline for reward estimation at a given state and action.

4.2 Solving the MDP: VI vs MCTS

VI and MCTS were used to approximate the optimal policy over the learned MDP. The route config-
uration seen in Fig. 1 for both the preemptible and non-preemptible scheduling MDP implementation
were evaluated. The scheduling agent ran through ten traversals of each MDP while choosing optimal
actions. To account for probabilistic variation, 1000 trials were conducted, with each trial recording the
total reward across 10 traversals, with an average being taken every 50 trials.

The optimal preemptible policy found through VI, as shown in Fig. 4a, converges to a cost of
approximately −46 (averaged over 10 MDP traversals and 1000 trials). The non-preemptible optimal
policy obtained through VI, also shown in Fig. 4a, converges to a cost of about −50 (averaged over
10 MDP traversals and 1000 trials). Since the non-preemptible scheduler is less flexible (i.e., has fewer
states) than the preemptible, its optimal policy accrues a larger cost over time. The MCTS approximation
to the optimal policy for both the preemptible and non-preemptible MDP (see Figures 4a,4b) is strictly
inferior to the one obtained by VI, but it forms a near approximation. Increasing the depth and number of
MCTS samples has that policy approach the optimal policy of VI, which is observed in the convergence
of the MCTS average cost to that of VI.

4.3 Near-Optimality of Average Cost: MCTS Selection Strategy

The strategy used to select the next action (i.e., request) to work on strongly affects the ability of the
MCTS algorithm to approximate the optimal policy obtained through VI. The use of random action
selection for MCTS, shown in Fig. 4b, exemplifies how the EDF selection strategy, coupled with pre-
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venting the agent from working on completed requests in the preemptible case, allows MCTS to choose
the optimal action more frequently. and The average cost of random MCTS is significantly larger than
the average cost of EDF MCTS schedulers. This is expected, as the EDF selection strategy results in
more accurate cost estimates than random MCTS at each timestep, resulting in optimal actions being
selected more frequently.

State space abstraction allows the MCTS non-preemptible near-optimal policy to outperform the
MCTS preemptible near-optimal policy for both EDF and Random (see Fig. 4b). Since the simulation
depth parameter of MCTS is kept constant, the MCTS algorithm is able to step farther into the future for
the non-preemptible MDP thereby enabling optimal actions to be chosen more frequently at each time
step. The preemptible scheduler has a large branching factor and several intermediate states. This makes
it difficult to obtain an accurate future cost estimate using a random policy in the preemptible case.

5 Results and Discussion

The scalability of the approach for both preemptible and non-preemptible MDPs is evaluated. The opti-
mal policy is obtained through VI, run with a convergence parameter of 0.99, over a variety of task con-
figurations as well as demand and delay distributions. This is done on a Dell XPS 13 Windows Processor
with an 11th generation Intel Single Core i7 at 3.0 GHz. The baseline request configuration is defined as
two deterministic tasks: r1 ∈ rhard = ({p0 = 0, p1 = 0, p2 = 0, p3 = 1.0},7,{q0 = 0,q1 = 0, ...,q8 = 1}),
r2 ∈ rso f t = ({p0 = 0, p1 = 0, p2 = 1},3,{q0 = 0,q1 = 0, ...,q4 = 1}).

5.1 Scalability over Number of Routes

# Routes Preemptible
Average Time

(s)

Preemptible #
States

Non-
Preemptible

Average Time
(s)

Non-
Preemptible #

States

1 Hard & 1
Soft

1.438 47 0.212 18

1 Hard & 2
Soft

1033.546 82 126.102 23

1 Hard & 3
Soft

5090.536 131 375.913 28

Table 1: Scalability with Respect to Number of Routes for Value Iteration

The scalability of the technique with respect to increasing number of requests is explored. The base-
line configuration is modified by adding additional copies of the soft request to the system, as inserting
unmodified copies of the hard request can lead to unschedulable systems. The run time of VI (in sec-
onds), the number of unrestricted states in the MDP, and the number of iterations the VI algorithm took
to converge are then recorded. Table 1 shows a linear-like increase in the state size as the number of
requests increases. Due to the abstracted restricted states, the state space of the non-preemptible MDP
grows more slowly than the preemptible MDP. Since the time complexity of value iteration is O(|S2A|),
the non-preempible MDP has a shorter run time than the preemptible MDP.
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In the 1H & 1S case, the MDP can be traversed without missing any deadlines. This allows the
VI algorithm to converge in a few iterations since the optimal expected future reward is 0. Optimally
traversing the other configurations results in a guaranteed negative reward, which leads to a larger number
of iterations. The increase in the number of states and iterations leads to a larger computation time as the
number of requests increased, making MCTS a necessary alternative once VI becomes intractable.

5.2 Uncertain Trip Delay (Completion) and Demand (Inter-Arrival) Time Distributions

Completion
Time

(Delay)
Values

P(Delay) Preemptible
Average
Time (s)

Preemptible
# States

Non-
Preemptible

Average
Time (s)

Non-
Preemptible

# States

{3} p3 = 1 1.438 47 0.212 18
{3,4} p3−4 = 0.5 200.694 54 29.636 18
{1,2,3,4} p1−4 = 0.25 225.12 59 37.715 21

Table 2: Increasing Uncertainty over Delay Distribution (Completion Time) for Hard Requests

Scalability with respect to the completion time distribution support (e.g., delay) is also investigated.
The support size of the trip completion time (delay) probability distribution of the hard request is varied.
Three different support sizes over completion time are used: (1) {p0 = 0, p1 = 0, p2 = 0, p3 = 1.0}, (2)
{p0 = 0, p1 = 0, p2 = 0, p3 = 0.5, p4 = 0.5}, and (3) {p0 = 0, p1 = 0.25, p2 = 0.25, p3 = 0.25, p4 : 0.25}.
Table 2 shows a marked increase in MDP state space size. The increased number of possible completion
times leads to a larger number of potential negative reward conditions, resulting in an increased number
of iterations for VI to converge.

Increasing the range of the completion time support function to include 4 values introduces the case
where the agent will continuously miss the soft request deadline with a probability of p4. The introduc-
tion of this persistent negative reward leads to a larger number of iterations for convergence and results
in a larger run time when combined with the larger state space.

Inter-Arrival
Time

(Demand)
Values

P(Demand) Preemptible
Average
Time (s)

Preemptible
# States

Non-
Preemptible

Average
Time (s)

Non-
Preemptible

# States

{8} P = 1 1.438 47 0.212 18
{8,9} P = 0.5 101.663 201 27.635 75

{8,9,10,11} P = 0.25 130.924 219 47.466 87

Table 3: Increasing Uncertainty over Demand Distribution (Inter-Arrival Time) for Hard Requests

Similarly, scalability with respect to the support size of the inter-arrival time (demand) distribution
is also studied. Three different inter-arrival support sizes are examined: (1) {q0 = 0,q1 = 0, ...,q8 =
1.0}, (2) {q0 = 0,q1 = 0, ...,q8 = 0.5,q9 = 0.5}, and (3) {q0 = 0,q1 = 0, ...,q8 = 0.25,q9 = 0.25,q10 =
0.25,q11 : 0.25}. Table 3 shows that MDP state space increases in a polynomial fashion across the inter-
arrival time probability distribution support function. Changing the inter-arrival time distribution impacts
when new request instances arrive, and the introduction of new requests at different time steps leads to



S. Murthy, N. Neogi & S. Bharadwaj 101

longer branches in the MDP that encompass the entire completion time and inter-arrival time of the new
request. The completion time distribution only impacts the completion time of the requests and thus
causes a smaller increase in the state space. However, there exists a way to traverse both the preemptible
and non-preemptible MDPs without missing any deadlines in all three cases. This allows VI to converge
in a small number of iterations resulting in smaller run times when compared to Table 3.

6 Conclusion

A safe, non-preemptible scheduler for a UAM route planning system was generated for both hard and
soft requests. The UAM trip request scheduling system was modelled as an MDP, and safe learning was
used to estimate the demand and delay distributions for the requests. The synthesized estimate MDP
was then used to identify the near-optimal policy that minimized the average cost incurred by missed
soft deadlines while guaranteeing no hard deadlines were missed using MCTS (EDF). The approach was
shown to be scalable in terms of number of routes and size of both delay and demand distributions. A
comparison of the results with Value Iteration and MCTS (Random) was also performed. Future work
will center on improving the scalability of the approach with respect to increasing numbers of hard
requests and applying the approach to generate schedulers from existing UAM schedule databases.

7 Downloads

The code to run the example can be found at: https://github.com/suryakmurthy/UAM_scheduler.
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