
M. Luckcuck and M. Farrell; M. Autili, L. Berardinelli,
A. Bucaioni and C. Pompilio (Eds.):
Formal Methods for Autonomous Systems and
Automated and verifiable Software sYstem DEvelopment
EPTCS 371, 2022, pp. 20–37, doi:10.4204/EPTCS.371.2

© Maike Schwammberger and Verena Klös
This work is licensed under the
Creative Commons Attribution License.

From Specification Models to Explanation Models: An
Extraction and Refinement Process for Timed Automata

Maike Schwammberger*

University of Oldenburg,
Oldenburg, Germany

schwammberger@informatik.uni-oldenburg.de

Verena Klös
TU Berlin,

Berlin, Germany
verena.kloes@tu-berlin.de

Autonomous systems control many tasks in our daily lives. To increase trust in those systems and
safety of the interaction between humans and autonomous systems, the system behaviour and reasons
for autonomous decision should be explained to users, experts and public authorities. One way to
provide such explanations is to use behavioural models to generate context- and user-specific expla-
nations at run-time. However, this comes at the cost of higher modelling effort as additional models
need to be constructed. In this paper, we propose a high-level process to extract such explanation
models from system models, and to subsequently refine these towards specific users, explanation
purposes and situations. By this, we enable the reuse of specification models for integrating self-
explanation capabilities into systems. We showcase our approach using a running example from the
autonomous driving domain.

Keywords. Explanation model, self-explainability, formal models, timed automata, model ex-
traction, model refinement, model reuse

1 Introduction

Nowadays, autonomous systems control many areas of our daily lives, e.g. tasks in transportation,
medicine or industry. These tasks require context-awareness, and errors and failures might have se-
vere consequences. To increase trust in and safety of those systems, the system behaviour and reasons
for autonomous decision should be explained to users, experts and public authorities. Explainability has
become a hot research topic in the area of artificial intelligence [11,14], but also becomes more important
for any autonomous system [5, 13, 26, 28].

One way to explain the behaviour of autonomous systems is to directly encode the generation of
explanations into the system code (e.g., done in [2]). However, this approach only allows for gener-
ating explanations for behaviours that have been classified as relevant at design time. A more flexible
approach, that also facilitates the adjustment of explanations to the explanation recipient and context, is
the generation of explanations at run-time. While the first approach can profit from direct access to the
encoded system decisions, the latter needs models of the system to identify the events and decisions that
led to the current system behaviour. We call these models explanation models. These models are either
manually constructed at design time (e.g., in [8]), or learned from data (e.g., in [20,28]). In [7], we have
proposed the MAB-EX framework that uses explanation models to generate explanations on demand, at
run-time. There, we have defined explanation models as follows:

An explanation model is a behavioural model of the system that captures causal relation-
ships between events and system reactions. It allows for identifying possible causes for the

*M. Schwammberger was supported by the German Research Council (DFG) in the PIRE Projects SD-SSCPS and ISCE-
ACPS under grant no. FR 2715/4-1 and FR 2715/5-1.

http://dx.doi.org/10.4204/EPTCS.371.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Maike Schwammberger and Verena Klös 21

behaviour that needs to be explained, e.g., traces of events that may lead to the behaviour.
It may also allow for look-ahead simulation to enable answering questions like “What hap-
pens if ... ?” or “When will ... be possible again?”. [7, p. 544-545]

The flexibility of model-based explanations comes at the cost of higher modelling effort as expla-
nation models are additional models that need to be constructed. These models have to capture causal
relationships between events and system reactions. They should enable the identification of the current
state from monitored data and back-tracing with monitored data to identify the chain of causes. An
optional requirement is to allow for simulation to answer questions on alternatives and possible future
behaviour. Thus to construct them, deep insights into the system behaviour in different situations and
contexts is needed. Building them is a new challenge, that has not yet been researched thoroughly.

Contribution. In this paper, we propose to reduce the modelling effort by extracting explanation
models from formal system models that were used to specify and verify the system behaviour at design
time and to subsequently refine these for users, explanation purposes and situations. The notion of
“refinement” that we use within this paper differs from the well-known refinement concept from formal
methods. Instead, with the term refinement, we describe a process where a coarse explanation model is
adapted to a more detailed structure. Thus with our meaning of refinement, the explanation-capability of
an explanation model is increased. For now, we focus on an approach to extract initial models from timed
automata [4] that is based on the vision paper [24]. Furthermore, we propose a high-level extraction and
refinement process that describes which information should be hidden or added for which purpose. We
also sketch continuous refinement at run-time to allow for user-specific adjustments and for integrating
new information. We illustrate the steps of our high-level approach with a running example from the
domain of autonomous driving. Note that the aim of this paper is to present the idea and general process
of extracting explanation models from system models but that we do not yet give an implementation.

The main advantages of our high-level extraction and refinement process are:

• Model reuse: By extracting an explanation model from an existing system model, we enable the
reuse of design-time models

• Formal Foundation: By using a formal, verifiably correct system model like a timed automaton, we
avoid generating explanations from ambiguous natural language (e.g. directly from requirements).

• Modularity: With the help of the created explanation model and our MAB-EX framework, we can
introduce self-explainability to existing systems and also facilitate system updates at run-time, as
the explanation model can also be updated at run-time.

• User-specificity: The output of our framework is an explanation model that takes different types
of explainees into account. This is reasonable as, for instance, an engineer might need differently
detailed explanations than an end-user.

Outline. In the following, we briefly present the MAB-EX framework [7] for self-explaining systems
that uses explanation models to construct explanations on demand. Afterwards, we present our explana-
tion model extraction and refinement process in Sect.3 and introduce our running example in Sect. 4. We
explain the extraction phase in detail in Sect. 5 and the refinement phase in Sect. 6. In Sect. 7, we discuss
reasons for run-time adaptation of explanation models. We discuss our approach in Sect. 8 and conclude
the paper in Sect. 9.

22 From Specification Models to Explanation Models

2 Preliminaries: MAB-EX Framework for Self-explaining Systems

To enable the design of self-explainable systems, we have proposed the MAB-EX Loop (Monitor, Anal-
yse, Build, Explain) in previous work [7]. The main idea of this reference framework is to adopt the main
principles of the well-known MAPE Loop [1] for self-adaptive systems to build self-explaining systems.
We depict the MAB-EX Loop in Fig. 1.

The MAB-EX Loop monitors and analyses the behaviour of a system and decides whether the user
(or another stakeholder) requires an explanation. This decision can depend on different factors: on the
current context, on the user’s experience with similar situations, or on the characteristics of the situation
(e.g., rareness). For more factors that influence the need for an explanation, we refer to [22]. If such an
explanation need was detected, the next phases of the loop then build an explanation from explanation
models and convey this explanation in a suitable way to the stakeholder. Building an explanation and ac-
tually presenting the explanation are separated in the MAB-EX Loop to allow for individual explanations
for different stakeholders and contexts.

Control Software

World

EX-Model
Learning

 A B M EX

EX-Model

recipient

Figure 1: MAB-EX Loop from [7].

Possible implementations for an explanation model, that were discussed and illustrated in the paper,
are (fault/decision) trees that connect observations to possible reasons and executable behaviour models,
e.g., state machines. In the Build-phase, the observed behaviour is used to identify the current state in
the explanation model and the events that have led to this state. These events form a trace, which we
refer to as explanation path in the remainder of the paper. This path is an internal representation of the
explanation that is further processed in the EX-phase of the loop, e.g. enriched with further information
and transformed into a suitable presentation format that is given to the explainee (i.e. the recipient of the
explanation).

Note that dynamically building explanations makes most sense for complex context-sensitive, maybe
self-adaptive or learning systems where it is impossible to predict all situations that require an explanation
beforehand. Furthermore, by adding an explanation layer that follows the MAB-EX framework, it is
possible to add explanation capabilities to an existing system.

In this paper, we focus on constructing explanation models that can be used in the MAB-EX frame-
work. Additionally, and in contrast to [7], we propose to already tailor the explanation models to different
types of explainee. By this, the generated explanation path is reduced to events that are relevant for the
explainee and the subsequent processing in the EX-phase can be simplified.

Maike Schwammberger and Verena Klös 23

3 Explanation Model Extraction and Refinement Process

Our overall goal is to introduce a multi-level extraction and refinement process for making a variety of
existing systems self-explainable. For this, we suggest that an explanation model is extracted from an
existing system model and then further refined to cope with different explanation purposes and explainees.
As motivated in Sect. 2, an explanation model is a causal structure that connects system actions with
their reasons (i.e. events preceding the action). From such an explanation model, explanations may be
generated on demand, at run-time. In the following, we motivate some key concepts of our approach,
before we introduce the actual explanation model extraction and refinement process.

3.1 Type of system model.

In our terminology, a system model is some technical description of the system’s behaviour, goals and
general functionality. We envision that our approach is not limited to a specific type of system: it sum-
marises engineering steps needed to derive an explanation model from a system model. The extraction of
an initial explanation model is done by exploiting the syntactical and semantical structure of the system
model. In this paper, we use timed automata system models. Similar steps are also applicable for other
types of system models. However, the notion of causality in different models might be very different,
and influences the steps in our process.

3.2 Types of explanations.

Across domains and throughout research disciplines, different types of explanations are examined for
their applicability and usefulness. In the context of semi-autonomous driving, the authors of [16] dis-
covered that “why” (e.g., “Obstacle ahead”) explanations are preferred over “how” explanations (e.g.,
“The car is braking”) by drivers and led to a better driving performance. A combination of both “why”
and “how” explanations led to the safest driving performance. Research results of [19] substantiate these
findings as the authors describe that “why” explanations can improve a user’s trust in a system and are
more easily understood by the user than “why not” explanations.

We follow these approaches and consider reasoning traces that combine “how” and “why” explana-
tion types, e.g.: “The car did brake (“how”), because an obstacle is ahead (“why”). In our case, these
reasoning traces relate to the explanation paths, that we introduced in Sect. 2.

3.3 Explainee types and explanation purposes.

A key feature of our approach is that we take different types of explainees into account. The term ex-
plainee comprises the recipient of an explanation. In [18], the authors also suggest, as a first requirement
for explainability, to characterise traits of different types of explainees. Such different types of explainees
can, for example, be deduced from the stakeholders that are identified in the requirements engineering
phase of the system engineering process [9]. Here, we postulate that differently detailed explanation
models are needed for different explainee types and for different explanation purposes. By explanation
purpose, we mean the topic or circumstance that needs to be explained. Examples of explainee types and
explanation purposes are:

• an end-user, who needs to cooperate with the system or who simply wishes to understand some
system behaviour;

• an engineer, who needs to understand a system failure;

24 From Specification Models to Explanation Models

• a lawyer or the general public, who need to figure out whether a system is responsible for an
accident; or

• another system that interacts with the considered system, e.g. two autonomous cars from different
manufacturers that need to cooperate.

Note that mechanisms for exploring the needs of different explainee types are out of the scope of this
paper, but we refer to [18] for this, where requirements for explainability in general are explored.

3.4 The multi-level extraction and refinement process – Overview.

We give an overview of our framework in Fig. 2. We distinguish three different phases (each having a
separate box in Fig. 2) which lead from a formal system model SysModel to a user-specific explanation
model EM5(x1), EM5(x2), ..., EM5(xn), for specific individual explainees x1, x2, ..., xn. We list and
briefly describe these three phases in the following and give more details in Sects. 5 to 7, respectively.

Note that each of the steps that we propose is meant to optimise an initially extracted explanation
model. This means that each of the intermediate explanation models is already functional on its own.
Such intermediate models might be useful for an integration into other approaches and implementations
of explainability. If necessary, for example to achieve a fully automatic extraction and refinement, it is
possible to skip some of the steps, although then the resulting explanation model may not be optimised
towards giving explanations.

SysModel

EM1
(detailed)

EM2
(cleaned up)

Extraction + Preparation

EM3(X)

EM3(Y)

EM3(Z)

• • •

EM4(X)

EM4(Y)

EM4(Z)

• • •

X

Y

Z

Tailoring
(for explainee types X, Y, Z, ...)

Design Time Run-Time

EM5(x1)

EM5(x2)

• • •
• • •

EM5(z1)

EM5(z2)

• • •

x1

x2

• • •

z1

z2

• • •
Runtime Adaptation
(for explainees x1,x2,...)

extract

hide
context
details

hide
impl.
details

hide
impl.
details

hide
impl.
details

add
info

add
info

add
info

deploy

deploy

deploy

deploy

deploy

update
+

refine
update

+
refine

update
+

refine
update

+
refine

Figure 2: Overview of the explanation model creation process.

Phase 1: Extraction and Preparation (Sect. 5). This phase of the framework contains two differ-
ent steps: Extraction of a first version of the explanation model (EM1) from the system model and a
preparation of this extracted model for further phases.

Step 1: Extraction. In the case of a system model that is modelled as an automaton, this could, e.g.,
be done by connecting actions with their causes, as is done in the vision paper [24]. However, [24] does
not give any methodology for retrieving the explanation model from the crossing controller and omits
details in the model without giving reasons for that. The data contained in such an extracted explanation

Maike Schwammberger and Verena Klös 25

model EM1 is not yet filtered and contains reasons for all details from the system model, possibly also
details that are irrelevant for the explanation topic.

Step 2: Preparation. As an unnecessarily large explanation model is not desirable (e.g. because of too
large computation times for time-critical explanations), some details are hidden in the preparation step
of this phase, leading to EM2. Let us consider an example from a smart factory, where an autonomous
robot fetches and delivers parcels between different work stations: We assume that the behaviour of the
robot is modelled via two different system models that are working in parallel:

• System model 1: Identify, grab or lay down a parcel

• System model 2: Move, stop, turn left, turn right

If an engineer is interested in explanations for the acceleration or deceleration of the robot (i.e. reasons
for the actions “move” and “stop”), it might be not necessary to keep the reasons for turning left and
right within the explanation model EM1. Thus, these parts from EM1 are hidden upon the creation of
EM2 in this example.

Phase 2: Tailoring (Sect. 6). The second phase is again parted into two steps: Firstly, explainee
specific parts of EM2 are hidden, and secondly the resulting model EM3 is enriched by details that were
missing in the system model. These details are added by human experts or could be extracted from
requirements specifications or other (formalised) documents.

Step 1: Hiding explainee specific details. For different explainees, differently detailed information is
needed for an explanation and hence also for the explanation model. For instance, while exact values of
internal data variables might be of interest for an engineer explainee type X, e.g. for analysing the system,
these values will have little to no meaning for an end-user explainee type Y (X,Y ∈ ExplaineeTypes).
Thus, in this step, we start with EM2 and hide those details, that are irrelevant for a specific type of
explainee X or Y. The result of this first step are explanation models EM3(X)and EM3(Y), for respective
explainee types X, Y.

Step 2: Add expert information. Specific information, e.g., that an autonomous vehicle is breaking
because of a traffic rule, might not be directly included in SysModel. Instead, it might be encoded that the
car brakes because the value of a variable b is not allowed to exceed a constant value c. Thus, we enrich
abstract internal system data with environmental information. Such information may be, e.g., gathered
from the system requirements or a system engineer. Although this step requires some high-level insights
into reasons for the system behaviour, it is still less complex than having to create the whole explanation
model from scratch. The needed level of detail of this information is again dependant on the explainee,
as, e.g., the value of a variable might have a sufficient meaning for an engineer or another system, but not
for an end-user. The result of phase 2 is explanation model EM4(X). Note that, when involving a human
expert, this step can only be semi-automated. However, there exist possibilities for automating this step:
additional information may be extracted from formalised requirements (cf. [10]), formalised traffic rule
books (cf. [15]) and similar sources.

Phase 3: Run-time Adaptation (Sect. 7). In our framework, the result of phase 2, the explanation
model EM4(X), is meant to be deployed in a system to make it self-explainable for explainee type
X. During run-time, further updates and adaptations can be necessary to consider evolving personal
preferences of individual explainees or changes in the system behaviour due to self-adaptation, learning
or software updates. The initially deployed explanation model EM5(x1) for explainee x1 ∈ X in this
phase is the same as EM4(X).

Note that, depending on the used system model SysModel, the explanation purpose and the consid-
ered type of explainee, it may be that some of the steps are omitted. For instance, if all of the details in
EM2 are needed for an engineer explainee type, we may not hide details and EM2is also used as EM3.

26 From Specification Models to Explanation Models

4 Set-Up for Running Example

We showcase the use and key features of our framework by using a specific running example with a
specific system model SysModel in this paper: an extended timed automaton. Our example is from
the domain of autonomous driving and considers a crossing protocol for autonomous turn manoeuvres
at urban intersections. It is a simplified adaptation of a crossing protocol that was introduced in [6,
23]. We chose this example, as it comprises a concise, formal, definition of traffic manoeuvres and
its soundness and the key features of the protocol have already been formally proven (e.g. safety).
Furthermore, timed automata [4] are a popular mechanism for the specification of various system types.
With this, our running example also conforms to other systems. We decided to simplify the protocol, as
the introduction to the underlying formalism Automotive Controlling Timed Automata (ACTA) with its
traffic logic Urban Multi-lane Spatial Logic (UMLSL) from [6, 23] would be beyond the scope of this
paper, and the formal details are not necessary for the purpose of the running example: Showcasing and
illustrating our extraction and refinement process from Sect. 3. We refer to [6, 23] for the formal details.

A first visionary approach for extracting an explanation model for the crossing controller from [6]
was introduced in [24]. An example for a traffic situation that can be handled by the protocol is depicted
in Fig. 3, where an ego car E approaches an intersection at which cars B and C are currently perform-
ing turn manoeuvres. With ego car, we refer to the car from whose viewpoint the traffic situation is
considered. The ego car’s goal is to turn left at the intersection.

C
D

D F

CB

A
B

E

CB

dc

Figure 3: Example traffic situation where cars A to F meet at an urban intersection.

The simplified crossing controller that we present in Sect. 4.1 is an extended timed automaton. For
extracting an explanation model from a timed automaton, we suggest to identify and connect actions and
reasons in the automaton. For this, consider the schematic timed automaton transition that we depict in
Fig. 4. Actions are elements that appear after / and their reasons are the transition guards before /, as
well as possible invariants in the starting location of the transition. Actions can be communicating events
or operations on data and clock variables, which can also be specified in method code in some dialects
of timed automata. Guards specify logical propositions on data and clock variables, which can also
be encapsulated in method code, or specify communication events that have to be received. Invariants
describe data and clock constraints that must not be violated while staying in the location.

q0 : invariant q1
guard / action

Figure 4: Schematic timed automaton transition.

Maike Schwammberger and Verena Klös 27

4.1 Crossing Controller Protocol

We depict our simplified crossing protocol in Fig. 5 and explain it in the following. The goal of this
protocol is that an autonomous car, like the ego car E from Fig. 3, can safely turn at an intersection. The
protocol also implements a fairness property, where only the car with the highest priority may enter an
intersection. Each car C starts with a priority pc = 0 and the longer a car waits, the more this priority
increases.

q0: Far Away
q1: Crossing Ahead

x ≤ tw

q2: Manoeuver Pending
x ≤ tw

q3: On Crossing
x ≤ tm

cr ahead(E) /
prio![pE] ; x := 0

prio?[pc] : pc ≥ pE ∨ path coll(E) /
abort(); counta ++

¬ path coll(E) ∧ x ≥ tw /
prepare() ; x := 0

prio?[pc] : pc ≥ pE + s /
abort(); counta ++

¬ path coll(E)
∧ x ≥ tw /
start() ;
x := 0 ;
countm ++

x ≥ tm /
finish()

Figure 5: Simplified crossing controller protocol, inspired by [6].

The protocol from Fig. 5 summarises four phases, where each phase relates to one location q0 to q3
in the depicted timed automaton:

1. q0 FAR AWAY: No crossing is in range.

2. q1 CROSSING AHEAD: On approaching a crossing (cr ahead()), the ego car E sends its own
priority pE for entering via broadcast (prio![pE]) and compares it with the priorities of other traffic
participants, and potential path collisions (path coll(E)) are checked.

3. q2 MANOEUVRE PENDING: The ego car E determines that its priority is the highest and that the
desired path is free (¬path coll(E)) before entering this phase. If E’s priority pE were smaller than
the priority pc of an arbitrary car C, the guarded input action prio?[pc] : pc ≥ pE on the transition
from location q1 to q0 would be valid and q1 would be left for q0.

4. q3 ON CROSSING: The crossing is only entered if E has the highest priority pE and no potential
path collisions have been detected (¬path coll(E)).

Note that in phase 3 of the protocol, q2 MANOEUVRE PENDING, the ego car E is about to enter the
intersection, as its priority is higher than any other cars’ priorities and as no collisions with its planned
path through the intersection have been identified. The only possibility for ego to abort its manoeuvre in
this phase of the protocol is if a car with a significantly larger priority pc with pc ≥ pE + s arrives, e.g.
an emergency vehicle. Such an emergency vehicle would not start with a priority of 0 on arriving at the
intersection, but with a much larger initial priority value.

In the timed automaton crossing protocol of Fig. 5, we observe three different types of actions:

• Communication actions: With prio![pE], E’s priority pE is sent via broadcast to all other cars.

28 From Specification Models to Explanation Models

• Controller actions: Preparing (prepare()), aborting (abort()), starting (start()) and finishing
(finish()) a crossing manoeuvre.

• Operations on data variables and clock resets: E.g., x := 0 to reset the value of a clock variable x
or countm (resp. counta) to increase a counter for started (resp. aborted) manoeuvres.

The controller actions are a construct that has been defined for the special type of extended timed au-
tomata, Automotive-Controlling Timed Automata, in [23], but can be understood as abstract functions
for our purposes in this paper. To model that actions like start() do not happen immediately, we add
a time invariant, combined with a respective guard on the outgoing transitions, to most locations of the
protocol. For instance consider the invariant x≤ tw in location q1, which specifies that the location must
be left after at most tw time units. Combined with the guard x ≥ tw on the outgoing transition to q2, this
transition can only be taken after exactly tw time units. Location q1 can only be left for location q0 earlier
than tw time units, if either a path collision was detected with the guard path coll() or if a higher priority
pc has been received and identified via the guarded input action prio?[pc] : pc ≥ pE . The communica-
tion semantics of timed automata specifies that, if a communication via the output action prio![pC] has
been received from another car C’s timed automaton controller, and if the communication guard pc ≥ pE

holds for a variable valuation ν(c) = C of the variable c, the ego controller must synchronise with this
communication and thus change back to location q0. For more details on this type of guarded broadcast
communication, we refer to [23].

5 Phase 1: Extraction and Preparation

The first phase of our framework in Fig. 2 contains two steps, which we describe separately: First
(Sect. 5.1), the explanation model is extracted from the system model and then (Sect. 5.2) the extracted
model is prepared for the next phase of the framework. In each section, we first describe the respective
step in general, and after that we apply the step to our running example (cf. Sect. 4).

5.1 Extraction

In this step, we extract a first version EM1 of the explanation model from the system model SysModel.
For this, we require the following assumptions to hold for our system model:

1. Completeness: Each possible system behaviour is modelled within the system model SysModel.

2. Correctitude: The system model is required to accurately and correctly represent the system’s
behaviour.

If the first assumption is not satisfied, we can still extract an explanation model but this then only allows
for partially explaining the system behaviour. Equally, if the second assumption is not satisfied, we
can also still extract an explanation model, but it most likely would not be correct. With such a faulty
explanation model, we could then apply debugging methods to actually eliminate incorrect behaviour
from the system model itself through faulty explanations. However, for our example, we assume that
both assumptions hold to extract a correct explanation model.

For now, we focus on timed automata system models. For other types of system models, the extrac-
tion process may differ, as we discuss in Sect. 8.

For the extraction, we readopt the idea of [24] to connect system actions with their reasons. However,
we broaden the idea of actions to observables. Such an observable may be any behaviour that can be
observed from the outside of the system. We assume that a communication action or setting an internal

Maike Schwammberger and Verena Klös 29

variable to a new value is also an observable, as, e.g., an engineer or another system might be interested to
keep track of the valuation of certain system variables. Possible reasons basically are the preconditions
for an observable. Note that the term “observable” does not only comprise those elements that are
“visible” for a human. Instead, an observable in our sense is some observable system behaviour, which
could, e.g., be identified via observer automata, as they are generally used for timed automata.

To retrieve the reasons for an observable, a backwards search through our system model can find all
possible explanation paths that may lead to an observable. On assembling these explanation paths to one
model, we get a causal tree structure that is structurally comparable to the causal diagram that has been
described in [24]. The merits of such a tree structure are that on observing a certain phenomenon, the
potential reasons and explanations can be directly extracted from this causal tree structure. However, we
discuss potential limits of using a causal structure in Sect. 8.

Running Example: In our running example, we assume that our explanation purpose is to explain
unexpected behaviour of an AV at an intersection, and that the explainee is a passenger of the AV.

To connect observables with their reasons, we exploit the extended timed automata semantics of
our crossing protocol and connect actions in our timed automaton model with all their possible reasons
(cf. Sect. 4). This idea of connecting actions with their reasons (resp. causes) stems from the “models of
causality” approach [8]. A specific example for an action that we use in our protocol is the communica-
tion action prio![pE], with which the ego car communicates its priority pE for turning at the intersection
(cf. Fig. 5). A guard (i.e. reason) preceding this action is the function cr ahead(). An example of an
explanation path would connect the action prio![pego] with the reason cr ahead().

Note that for this example we do not include clock reset actions x := 0 for a clock variable x into our
notion of observables. This is because we assume that resetting of clock variables is an internal concept
of timed automata. The explanation model that we extract by connecting actions with their reasons is
depicted in Fig, 6. Note that this first version EM1 contains reasons for all observables. Also note that
the superstates which we use in Fig. 6 are only used to simplify the figure: Their meaning is that, e.g.,
both the observables counta and start() have the same reasons.

prio![pE] prepare() start() countm abort() counta finish()

cr ahead(E) x ≥ tw

cr ahead(E)

¬ path coll(E) x ≥ tw

¬ path coll(E) ∧x ≥ tw

x ≥ tm

¬ path coll(E)
∧x ≥ tw

prio?[pc] : pc ≥ pE

prio?[pc] : pc ≥ pE + s

path coll(E)

because because
and

since

because
and

since

because
or or

because

since

Figure 6: Explanation model EM1 connects all possible actions of the system model SysModel with their
possible reasons.

30 From Specification Models to Explanation Models

5.2 Preparation

In our second step of phase 1, we hide context details that are irrelevant for our explanation purpose.
Thus, we reduce the content of our explanation model EM1 to behaviour that actually fits the explanation
purpose within EM2.

In our meaning, relevant information is such information that helps the explainee to better understand
system behaviour and functionality, w.r.t. an explanation purpose. To formally capture this notion of
understanding explanations, related approaches [3,12] compare the actual world model W with a locally
believed model Mi of an explainee i. A relevant explanation is one that helps in transforming a believed
model Mi closer to the actual world model W . As an example for irrelevant information, we refer back
to our factory robot from Sect. 3, p. 23. Note that we do not yet hide information that are irrelevant for
specific explainee types in this step. For this we refer to Sect. 6.1.

To reduce the content of explanation model EM1, we hide entire branches: Those that contain actions
that are not connected to our explanation purpose. However, we do not add or remove, nor alter in any
way, information within any of the other branches. With this, the suggested procedure is a variation of
program slicing, which was introduced in [25], where the explanation purpose is used as slicing criterion.
For future work, we want to investigate more sophisticated slicing methods, were we do not necessarily
hide entire branches in the explanation model.

Running Example: Consider again our running example, where we stated in Sect. 5.1 that our
explainee is a passenger (cf. end-user) of an AV. We assume that internal system variables are not of
interest for explaining visible behaviour of the AV to a passenger. Thus, we hide those actions that
assign new values to data variables. I.e., we hide all branches that relate to the actions counta and
countm. This means that the superstates containing multiple actions in EM1 are obsolete in EM2. The
resulting explanation model EM2 is depicted in Fig.7.

prio![pE] prepare() start() abort() finish()

cr ahead(E) x ≥ tw

cr ahead(E)

¬ path coll(E) x ≥ tw

¬ path coll(E)
∧x ≥ tw

x ≥ tm

¬ path coll(E)
∧x ≥ tw

prio?[pc] : pc ≥ pE

prio?[pc] : pc ≥ pE+s

path coll(E)

because because
and

since

because
and

since

because
or or

because

since

Figure 7: In explanation model EM2, branches that are related to actions out of the scope of the expla-
nation purpose are removed from EM1 using a variation of slicing.

Maike Schwammberger and Verena Klös 31

6 Phase 2: Tailoring and Refinement

This second phase of our framework from Fig. 2 contains again two steps, which we again describe sep-
arately: First (Sect. 6.1, the explanation model is tailored towards specific explainees and then (Sect. 6.2)
context information is added. After this phase, the explanation model may be deployed. Note that we
again explain our concepts by using our running example.

6.1 Tailoring Towards Explainee

Recall that before, in Sect. 5.2, we suggested to hide information that are irrelevant w.r.t. an explanation
purpose. In this step, we use another notion of relevance: Relevance w.r.t. a specific explainee type.

Thus, the goal of this step is to tailor the explanation model EM2 towards a specific type of explainee,
e.g. to an end-user, an engineer or another system. For this, explainee-specific details of the model may
be eliminated. The intuition is that an end-user may not be interested in internal data variables, while an
engineer might very well need explanations for values of such variables. We again suggest to use slicing
methods to reduce the explanation model EM2 to a user-type-specific explanation model EM3. We again
hide entire branches that contain reasons for actions out of the scope for a specific explainee.

Running Example: We continue our case-study, where we consider that our explainee is an end-
user and that the explanation purpose is to explain the behaviour of the crossing controller from Fig. 5.
We assume that an end-user will only be interested in explanations for visible behaviour of the AV, not
perceiving the invisible behaviour. Thus, we omit the explanation branch for the action prio![pE], where
the AV communicates its priority to other traffic participants. Further on, we assume that both the actions
prepare() and finish() are not of interest for an end-user: the manoeuvre preparation comprises an
internal system state, which is not visible to an end-user and while finishing the manoeuvre is visible
(“leaving the intersection”), from the perspective of an end-user, this might not be perceived as an action
that needs to be explained.

Thus, the resulting explanation model EM3 that we depict in Fig. 8 only comprises the explanation
branches for the actions start() and abort(). Especially the latter one is of interest, as it is a version of
a “why not” explanation (“Why do we not start the manoeuvre?”). Such explanations have been found
to be of interest in [19].

start() abort()

¬ path coll(E) x ≥ tw

¬ path coll(E) ∧x ≥ tw

path coll(E)

prio?[pc] : pc ≥ pE + s

prio?[pc] : pc ≥ pE

because
and

since

because
or or

Figure 8: For tailoring explanation model EM2 towards an end-user as explainee, invisible, internal
system actions are omitted, resulting in a smaller explanation model EM3.

32 From Specification Models to Explanation Models

6.2 Refinement: Add environmental information

In this step, the explanation model EM3 is extended by explainee-specific environmental information.
The intuition is that some of the information that is needed for a good explanation might not be contained
within the system model SysModel. Such information could be rules that the system abides by that are
only encoded by abstract data variables within SysModel. These information can be obtained by different
sources: for example, from an engineer or from system requirements. If the addressee is an end-user or
non-expert, we also suggest that abstract system data is annotated with natural language text snippets in
this step. Note that these text snippets are not yet fragments of a formulated explanation that is provided
to an addressee but should rather be understood as modules from which an explanation may be retrieved
later on. We further clarify this progress from EM3(X) to EM4(X) with our running example in the
following.

Running Example: In the case of our end-user, we suggest to annotate EM3 with text snippets that
can later be used to formulate explanations. For instance, the abstract clock variable x and it exceeding
some constant tw has no meaning to an end-user. However, if the right-hand branch of the action start()
is summarised by “manoeuvre time exceeded”, this text snipped might be integrated into an explanation
later on. Further on, consider the reasons for abort(): A special case is the reason where the priority
pc of another AV exceeds the priority pE of our AV E under consideration significantly (by a constant
value “s”). While this value “s” is abstract and without any meaning for an end-user, its meaning reflects
the traffic rule where an emergency vehicle has the right of way at an intersection. This again is a
user-understandable, and moreover, user-acceptable information.

“start manoeuvre”
start()

“abort manoeuvre”
abort()

“no path collision”
¬ path coll(E)

“manoeuvre
time exceeded”

x ≥ tw

“potential collision exists”
path coll(E)

“another car has a significantly
higher priority (emergency vehicle)”

prio?[pc] : pc ≥ pE + s

“another car has higher priority”
prio?[pc] : pc ≥ pE

because
and

because

or
or

Figure 9: Explanation model EM4 is enriched by natural language annotations to simplify the generation
of explanations from this model later on. Further on, information about traffic rules, for instance that
emergency vehicles have a right of way (“having the highest priority”) is reflected within EM4.

7 Phase 3: Run-time Adaptation

We consider the explanation model EM4(X) from the previous phase to be ready for deployment for the
explainee type X . However, we postulate that an explanation model should be individualised towards a
specific explainee x ∈ X . Thus, on deploying the explanation model, we consider an initial explanation

Maike Schwammberger and Verena Klös 33

model EM5(x1) with EM5(x1) ∼ EM4(X) for an individual explainee x1 ∈ X . For different explainees
x1,x2, a further individualisation or personalisation of the initial models EM5(x1), EM5(x2) is necessary
as different explainees have different explanation preferences, prior system knowledge and attention lev-
els that may influence their cognitive workload. Such different attention levels have, e.g., been identified
for air-plane pilots within the Salience, Effort, Expectancy and Value (SEEV) model in [27]. Also, users
gain experience with the system during its lifetime and might want to hide specific (types of) explana-
tions on demand. Equally, a run-time adaptation of EM5(x1) will be necessary, whenever the system
model itself changes, e.g. due to self-adaptation, learning or software updates. We identify possibilities
to detect the need for model updates in the following and leave the techniques to update the explanation
model for future work.

System Update-triggered Adaptations.

The need for model updates of EM5(x1) due to an updated system model can be automatically identified
if a corresponding update process for the system model exists. With this updated model, we can start
the extraction and refinement process again. To do this automatically at run-time, all steps need to be
fully automated. However, to reduce the computation overhead, we plan to investigate an incremental
approach that adds or removes parts of the explanation models in future work. This requires a meta model
for the explanation model that defines operations with which the explanation model can be adjusted. This
could, for example, be realised by graph transformation rules.

During run-time, the explanation layer could also detect the need for updating the system model
when an explanation cannot be extracted from the existing explanation model EM5(X), e.g. due to a
novel situation that the system encounters.

User-centered Adaptations.

We identify several possibilities to detect the need for those updates that are necessary for the further
individualisation towards the explainee x1:

• The explainee x1 requests a more detailed explanation that cannot be extracted from the existing
explanation model EM5(X)

• The explainee x1 requests to hide a specific explanation

• Through observation of the user’s behaviour, the system detects that they have gained experience
with the system and do not need detailed explanations for known situations.

The first case is connected to findings that “explaining” is not a static process, where an explanation is
given only once. Instead, related work [17] suggests that not only one isolated explanation, but instead
an explanation process should be considered. In such a process, the system may start with a brief expla-
nation and refine this explanation later, if the user is not initially satisfied with it. For this, a differently
detailed explanation model might be needed, for which the different phases of our approach are ideal.
We will consider such dynamic explanation processes in future work. To enable adjustments for specific
explainees at run-time, we assume that the explainee can give feedback for each explanation, e.g., by
rating whether the explanation was helpful and whether the level of detail was adequate.

34 From Specification Models to Explanation Models

8 Discussion and Future Work

In this paper, we introduce an extraction and refinement process for explanation models that allows
making existing systems self-explainable by using an additional explanation layer like it is done in our
MAB-EX framework. We showcase the usability of our approach with a timed automata running exam-
ple. Nonetheless, our process is only the first stepping stone towards an automatic, generalised process
of deriving explanations directly from system models. Here, we discuss and assess the main strengths of
our approach, but also name its limits and potential topics for future work.

Running Example and Generality.

We have chosen a timed automaton specification (SysModel) for our running example, as timed automata
allow to formalise a good variety of system types. Also, for our specific example, a formal semantics and
proofs for system properties like safety, already exist in [6,23]. With our running example, we enrich [6]
by an explainability module. In future work, we plan to examine whether, for timed automata, some state
history should also be integrated into the explanation model EM1.

Note that our extraction and refinement process from Fig.2 itself is not limited to timed automata.
Indeed, our general framework is capable of retrieving explanation models from arbitrary types of system
models. To use our approach for other types of systems, we currently identify an important additional
requirement for the system model SysModel (apart from those that were introduced in the beginning of
Sect. 5.1): It must be possible to identify observables (“actions”) and reasons within the system. We
intend to examine whether this additional requirement indeed is enough with further case-studies. Also,
a generalised definition for the explanation model extraction process for causality-based system models
should be provided.

Automation.

Most steps of our approach do not require human intervention and could be done automatically. In future
work, we thus aim to formally define the requirements for all steps of our process and to implement them
to automatically extract an explanation model from a system model. To this end, we will also investigate
elaborate slicing techniques to tailor the extracted explanation model to different stakeholders. Only for
the tailoring of EM3(X) to EM4(X), we suggest to involve an expert, e.g. to connect internal system data
to rules. For future work, we intend to examine whether such information could also be automatically
retrieved from other sources. While currently, we only use the system model SysModel for constructing
our explanation model, one could also exploit other available sources from the entire system development
process: For instance, a requirements document or system code and its code documentation might be of
help to annotate abstract observables and reasons with text fragments (cf. as in Sect. 6.2).

Integration into MAB-EX.

Following the MAB-EX framework, the explanation model that we present here is not intended to gener-
ate actual explanations that would be presented to an end-user. Instead, we retrieve internal explanation
paths from our explanation model in the Build phase. The next step would be to translate these inter-
nal explanation paths into actual explanations in the last MAB-EX phase. For this, e.g., [21] discusses
translation problems between language and logical representations and a variety of approaches exists that
discuss how to best present explanations.

Maike Schwammberger and Verena Klös 35

Formal Models for Explainability.

Our explanation model is a formal model for explanations, as it is retrieved from a formal system model.
With that, we have internal, formalised explanation paths that allow for a translation for different types of
explainees, e.g. experts or other systems. Also, our explanation paths are concise, formal representations
of explanations. With this, information loss due to natural language translation is minimised. Further on,
we envision that we can actually formally analyse and prove certain properties of explanations in future
work. For this, our notion of explanation paths would need to be integrated into a formal definition of
explanations.

9 Conclusion

We present a high-level process for extracting and refining explanation models from formal system mod-
els, thus allowing to make an existing system self-explainable. From our explanation model, explanation
paths may be automatically retrieved at run-time and then be translated into explainee-understandable
explanations. A strength of our approach is that we take different types of explainees into account: e.g.
an end-user, an engineer, or another system. Further on, our formal approach to explanations ensures that
future formal analyses are possible. Also, not only the final explanation model EM5(x1) is of use for the
process of explaining system behaviour. The different intermediate explanation models from each of our
phases themselves show a different degree of detail which could be used to integrate these models into
other approaches. We showcase our approach using a case-study from the automotive domain, where we
extract and refine an explanation model from an extended timed automaton controller for turn manoeu-
vres at intersections. While our reference process is a first step towards a system capability of automatic
self-explanation of system behaviour, we identify and sketch further tasks in our future work section.

References

[1] (2005): An Architectural Blueprint for Autonomic Computing. White Paper, IBM.

[2] Ankit Agrawal & Jane Cleland-Huang (2021): Explaining Autonomous Decisions in Swarms of Human-on-
the-Loop Small Unmanned Aerial Systems. In: Proceedings of the AAAI Conference on Human Computation
and Crowdsourcing, 9, pp. 15–26. Available at https://ojs.aaai.org/index.php/HCOMP/article/
view/18936.

[3] Astrid Rakow Akhila Bairy, Willem Hagemann & Maike Schwammberger (2022): Towards formal concepts
for explanation timing and justifications. In: 2022 IEEE 30th International Requirements Engineering Con-
ference Workshops (REW).

[4] Rajeev Alur & David L. Dill (1994): A Theory of Timed Automata. Theoretical Computer Science 126(2),
pp. 183–235, doi:10.1016/0304-3975(94)90010-8.

[5] Sule Anjomshoae, Amro Najjar, Davide Calvaresi & Kary Främling (2019): Explainable agents and robots:
Results from a systematic literature review. In: 18th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2019), Montreal, Canada, May 13–17, 2019, International Foundation for
Autonomous Agents and Multiagent Systems, pp. 1078–1088, doi:10.5555/3306127.3331806.

[6] Christopher Bischopink & Maike Schwammberger (2019): Verification of Fair Controllers for Urban Traffic
Manoeuvres at Intersections. In Emil Sekerinski, Nelma Moreira, José N. Oliveira, Daniel Ratiu, Riccardo
Guidotti, Marie Farrell, Matt Luckcuck, Diego Marmsoler, José Campos, Troy Astarte, Laure Gonnord,
Antonio Cerone, Luis Couto, Brijesh Dongol, Martin Kutrib, Pedro Monteiro & David Delmas, editors:
Formal Methods. FM 2019 International Workshops - Porto, Portugal, October 7-11, 2019, Revised Selected

https://ojs.aaai.org/index.php/HCOMP/article/view/18936
https://ojs.aaai.org/index.php/HCOMP/article/view/18936
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.5555/3306127.3331806

36 From Specification Models to Explanation Models

Papers, Part I, Lecture Notes in Computer Science 12232, Springer, pp. 249–264, doi:10.1007/978-3-030-
54994-7 18.

[7] Mathias Blumreiter, Joel Greenyer, Francisco Javier Chiyah Garcia, Verena Klös, Maike Schwammberger,
Christoph Sommer, Andreas Vogelsang & Andreas Wortmann (2019): Towards Self-Explainable Cyber-
Physical Systems. In: 22nd ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems Companion, pp. 543–548, doi:10.1109/MODELS-C.2019.00084.

[8] Francisco Javier Chiyah Garcia, David A. Robb, Xingkun Liu, Atanas Laskov, Pedro Patron & Helen Hastie
(2018): Explainable Autonomy: A Study of Explanation Styles for Building Clear Mental Models. In: Pro-
ceedings of the 11th International Conference on Natural Language Generation, Association for Computa-
tional Linguistics, Tilburg University, The Netherlands, pp. 99–108, doi:10.18653/v1/W18-6511. Available
at https://www.aclweb.org/anthology/W18-6511.

[9] Jeremy Dick, M. Elizabeth C. Hull & Ken Jackson (2017): Requirements Engineering, 4th Edition. Springer,
doi:10.1007/978-3-319-61073-3.

[10] Marie Farrell, Matt Luckcuck, Oisı́n Sheridan & Rosemary Monahan (2022): FRETting About Requirements:
Formalised Requirements for an Aircraft Engine Controller. In Vincenzo Gervasi & Andreas Vogelsang,
editors: Requirements Engineering: Foundation for Software Quality - 28th International Working Confer-
ence, REFSQ 2022, Birmingham, UK, March 21-24, 2022, Proceedings, Lecture Notes in Computer Science
13216, Springer, pp. 96–111, doi:10.1007/978-3-030-98464-9 9.

[11] Randy Goebel, Ajay Chander, Katharina Holzinger, Freddy Lecue, Zeynep Akata, Simone Stumpf, Peter
Kieseberg & Andreas Holzinger (2018): Explainable AI: the new 42? In: International cross-domain confer-
ence for machine learning and knowledge extraction, Springer, pp. 295–303, doi:10.1007/978-3-319-99740-
7 21.

[12] Martin Fränzle Goerschwin Fey & Rolf Drechsler (2022): Self-Explanation in Systems of Systems. In: 2022
IEEE 30th International Requirements Engineering Conference Workshops (REW).

[13] Joel Greenyer, Malte Lochau & Thomas Vogel (2019): Explainable software for cyber-physical sys-
tems (es4cps): Report from the gi dagstuhl seminar 19023, january 06-11 2019, schloss dagstuhl.
arXiv:1904.11851, doi:10.48550/arXiv.1904.11851.

[14] Andreas Holzinger, Anna Saranti, Christoph Molnar, Przemyslaw Biecek & Wojciech Samek (2020): Ex-
plainable AI Methods - A Brief Overview. In Andreas Holzinger, Randy Goebel, Ruth Fong, Taesup Moon,
Klaus-Robert Müller & Wojciech Samek, editors: xxAI - Beyond Explainable AI - International Workshop,
Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended Papers, Lecture
Notes in Computer Science 13200, Springer, pp. 13–38, doi:10.1007/978-3-031-04083-2 2.

[15] Louise Dennis Joe Collenette & Michael Fisher (2022): Advising Autonomous Cars about the Rules
of the Road. In: Proceedings of the Fourth Workshop on Formal Methods for Autonomous Systems,
FMAS@SEFM’22, 26th-27th of September 2022, EPTCS.

[16] Jeamin Koo, Jungsuk Kwac, Wendy Ju, Martin Steinert, Larry Leifer & Clifford Nass (2015): Why did my
car just do that? Explaining semi-autonomous driving actions to improve driver understanding, trust, and
performance. International Journal on Interactive Design and Manufacturing (IJIDeM) 9(4), pp. 269–275,
doi:10.1007/s12008-014-0227-2.

[17] Douglas S. Krull & Craig A. Anderson (1997): The Process of Explanation. Current Directions in Psycho-
logical Science 6(1), pp. 1–5, doi:10.1111/1467-8721.ep11512447.

[18] Maximilian A. Köhl, Kevin Baum, Markus Langer, Daniel Oster, Timo Speith & Dimitri Bohlender (2019):
Explainability as a Non-Functional Requirement. In: 2019 IEEE 27th International Requirements Engineer-
ing Conference (RE), pp. 363–368, doi:10.1109/RE.2019.00046.

[19] Brian Y. Lim, Anind K. Dey & Daniel Avrahami (2009): Why and Why Not Explanations Improve the
Intelligibility of Context-Aware Intelligent Systems. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’09, Association for Computing Machinery, New York, NY, USA, p.
2119–2128, doi:10.1145/1518701.1519023.

http://dx.doi.org/10.1007/978-3-030-54994-7_18
http://dx.doi.org/10.1007/978-3-030-54994-7_18
http://dx.doi.org/10.1109/MODELS-C.2019.00084
http://dx.doi.org/10.18653/v1/W18-6511
https://www.aclweb.org/anthology/W18-6511
http://dx.doi.org/10.1007/978-3-319-61073-3
http://dx.doi.org/10.1007/978-3-030-98464-9_9
http://dx.doi.org/10.1007/978-3-319-99740-7_21
http://dx.doi.org/10.1007/978-3-319-99740-7_21
http://dx.doi.org/10.48550/arXiv.1904.11851
http://dx.doi.org/10.1007/978-3-031-04083-2_2
http://dx.doi.org/10.1007/s12008-014-0227-2
http://dx.doi.org/10.1111/1467-8721.ep11512447
http://dx.doi.org/10.1109/RE.2019.00046
http://dx.doi.org/10.1145/1518701.1519023

Maike Schwammberger and Verena Klös 37

[20] Swantje Plambeck, Görschwin Fey, Jakob Schyga, Johannes Hinckeldeyn & Jochen Kreutzfeldt
(2022): Explaining Cyber-Physical Systems Using Decision Trees. In: 2nd International
Workshop on Computation-Aware Algorithmic Design for Cyber-Physical Systems (CAADCPS),
doi:10.1109/CAADCPS56132.2022.00006. Available at https://conferences.computer.org/

cpsiot/pdfs/CAADCPS2022-5TICzWIXsIbzy5ctgEfHPL/820100a003/820100a003.pdf.
[21] Aarne Ranta (2011): Translating between Language and Logic: What Is Easy and What Is Difficult. In Niko-

laj Bjørner & Viorica Sofronie-Stokkermans, editors: Automated Deduction - CADE-23 - 23rd International
Conference on Automated Deduction, Wroclaw, Poland, July 31 - August 5, 2011. Proceedings, Lecture
Notes in Computer Science 6803, Springer, pp. 5–25, doi:10.1007/978-3-642-22438-6 3.

[22] Mersedeh Sadeghi, Verena Klös & Andreas Vogelsang (2021): Cases for Explainable Software Systems:
Characteristics and Examples. In: IEEE 29th International Requirements Engineering Conference Work-
shops (REW), pp. 181–187, doi:10.1109/REW53955.2021.00033.

[23] Maike Schwammberger (2018): An abstract model for proving safety of autonomous urban traffic. Theoreti-
cal Computer Science 744, pp. 143–169, doi:10.1016/j.tcs.2018.05.028.

[24] Maike Schwammberger (2021): A Quest of Self-Explainability: When Causal Diagrams meet Autonomous
Urban Traffic Manoeuvres. In: 2021 IEEE 29th International Requirements Engineering Conference Work-
shops (REW), pp. 195–199, doi:10.1109/REW53955.2021.00035.

[25] Mark Weiser (1981): Program Slicing. In: Proceedings of the 5th International Conference on Software
Engineering, ICSE ’81, IEEE Press, p. 439–449, doi:10.1109/TSE.1984.5010248.

[26] Danny Weyns, Jesper Andersson, Mauro Caporuscio, Francesco Flammini, Andreas Kerren & Welf Löwe
(2021): A Research Agenda for Smarter Cyber-Physical Systems. J. Integr. Des. Process Sci. 25(2), p. 27–47,
doi:10.3233/JID210010.

[27] Christopher D. Wickens, John Helleberg, Juliana Goh, Xidong Xu & William J. Horrey (2001): Pilot Task
Management : Testing an Attentional Expected Value Model of Visual Scanning. Available at http://apps.
usd.edu/coglab/schieber/psyc792/workload/Wickens-etal-2001.pdf.

[28] Florian Ziesche, Verena Klös & Sabine Glesner (2021): Anomaly Detection and Classification to enable
Self-Explainability of Autonomous Systems. In: Design, Automation Test in Europe Conference Exhibition
(DATE), pp. 1304–1309, doi:10.23919/DATE51398.2021.9474232.

http://dx.doi.org/10.1109/CAADCPS56132.2022.00006
https://conferences.computer.org/cpsiot/pdfs/CAADCPS2022-5TICzWIXsIbzy5ctgEfHPL/820100a003/820100a003.pdf
https://conferences.computer.org/cpsiot/pdfs/CAADCPS2022-5TICzWIXsIbzy5ctgEfHPL/820100a003/820100a003.pdf
http://dx.doi.org/10.1007/978-3-642-22438-6_3
http://dx.doi.org/10.1109/REW53955.2021.00033
http://dx.doi.org/10.1016/j.tcs.2018.05.028
http://dx.doi.org/10.1109/REW53955.2021.00035
http://dx.doi.org/10.1109/TSE.1984.5010248
http://dx.doi.org/10.3233/JID210010
http://apps.usd.edu/coglab/schieber/psyc792/workload/Wickens-etal-2001.pdf
http://apps.usd.edu/coglab/schieber/psyc792/workload/Wickens-etal-2001.pdf
http://dx.doi.org/10.23919/DATE51398.2021.9474232

	1 Introduction
	2 Preliminaries: MAB-EX Framework for Self-explaining Systems
	3 Explanation Model Extraction and Refinement Process
	3.1 Type of system model.
	3.2 Types of explanations.
	3.3 Explainee types and explanation purposes.
	3.4 The multi-level extraction and refinement process – Overview.

	4 Set-Up for Running Example
	4.1 Crossing Controller Protocol

	5 Phase 1: Extraction and Preparation
	5.1 Extraction
	5.2 Preparation

	6 Phase 2: Tailoring and Refinement
	6.1 Tailoring Towards Explainee
	6.2 Refinement: Add environmental information

	7 Phase 3: Run-time Adaptation
	8 Discussion and Future Work
	9 Conclusion

