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Behavior Trees (BT) are becoming increasingly popular in the robotics community. The BT tool is
well suited for decision-making applications allowing a robot to perform complex behavior while be-
ing explainable to humans as well. Verifying that BTs used are well constructed with respect to safety
and reliability requirements is essential, especially for robots operating in critical environments. In
this work, we propose a formal specification of Behavior Trees and a methodology to prove invari-
ants of already used trees, while keeping the complexity of the formalization of the tree simple for
the final user. Allowing the possibility to test the particular instance of the behavior tree without the
necessity to know the more abstract levels of the formalization.

1 Introduction

Autonomous Systems (AS) like Humanoid Robots, Autonomous Vehicles, or Unmanned Aerial Vehicles
are becoming increasingly complex and need to interact with dynamic environments and with each other.
For this reason, robots require tools to enable advanced perception and understanding of the environment,
or capabilities to operate in complex situations. Artificial Intelligence is extending the capability of
perception and action of the agents and allows robots to operate in environments not suitable for robots
just a few years ago.

In most common scenarios the complexity of the environment requires to the robot to have different
skills, the capability of different actions, and hence also a certain degree of reasoning and understanding
of which action to take and when. A relevant example could be an urban road, with car, pedestrian, and
signals. That’s why planning becomes more important with the increasing complexity of the Operational
Design Domain (ODD). Various techniques have been developed to solve this challenge. They include
a variety of machine learning approaches as well as Behaviour Trees. Behaviour Trees started as a tool
for video-game development of Non-Playable Character [19], and are now being applied also to robotics
due to their flexibility and high usability.

Usually, robotics systems should be dependable, i.e., being able to operate without putting at risk
others, or themselves, while continuing to provide their service in a reliable way. Formal approaches
can be used to provide these characteristics and ensure the safety and reliability of the systems. Apply-
ing formal methods to AI techniques, however, is still challenging given the enormous search space and
states possibility, and became particularly relevant when dealing with Neural Networks with billions of
parameters. The importance of safety in robots that need to operate in a day-to-day basis in a critical
environment is extremely important, as well as the capability of the system to explain why certain deci-
sions have been made. For this reason Behaviour Trees (BT) have become particularly interesting in the
robotics industry. This mathematical model follows simple principles and allow readability, modularity
and re-usability. And for this reason, it has gain popularity especially in decision making tasks.

However, even with these properties BT can become quite complex and easy to contain design mis-
takes that could mine the safety and reliability of the system. For these reasons, it is important to ensure
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that certain properties are kept during the execution of the BT that ensure the dependability of the system
built. The usage of formal methods to ensure the correctness of BT is still scarce, and difficult to build.

In this work, we try to advance in this direction by providing a formal specification of the Behaviour
Tree framework that will allow the verification of correctness of specific BT instances and holding of
interesting invariant properties that the system should maintain. In particular, we are able to define safety
invariants and prove that these hold for specific BTs, while maintaining the re-usability and modularity
of the tree structure. The system modeling has been built using the Event-B modeling method [2] and
the Rodin [1] platform as a support for the refinements and mathematical proofs.

The rest of this paper is structured in the following way: we first provide an introductory explana-
tion of Behaviour Trees and Event-B in the Background section, we continue with the Method section
presenting the BT formal specification, followed by a case study section where we show a simple BT
instance and the method to convert a BT to a formal specification that can be checked. We will then
move to the related work and end with the conclusion section.

2 Background

2.1 Behaviour Trees

At a high level, a Behaviour Tree is a mathematical model that structures the switching of different tasks,
which a virtual agent or a robot can perform [9]. This model uses a rooted tree where every node has a
single parent and no loops. The nodes in a BT can be subdivided into three categories:

• root: the root node. It does not have parents, and it normally has just one child.

• internal node: also known as control flow nodes, those are nodes that are at the intermediary level
of the tree. They all have a parent and at least a child. They represent how to navigate the tree.

• leaf node: also known as execution nodes, these nodes have a parent but do not have a child.
They represent the tasks that the agent needs to perform (like "go to point A") or conditions (like
"battery > than 30%) that needs to be true before executing an action.

In practice, the BT is navigated from the root to the leaves to decide which task needs to be executed
at every time. To navigate the tree a process called ticking is used. An example of a BT and its ticking
process can be seen in Fig 1. The navigation starts by ticking the root and then recursively ticking the
left-most child of the node. When a leaf node is ticked it immediately replies with the status and sends the
signal back to its parents, then the continuation of the navigation is pursued by following the rules of the
internal nodes. A node is executed only if it has been ticked. At each time step, the tree is explored and
returns the execution status of the agent. The output value can be SUCCESS, RUNNING, or FAILURE
which, respectively, represent if the behavior of the agent, is in a success state, in a failure, or if it is still
running. We call this the status of the tree.

The status of the tree is due to the composition of the statuses of the nodes in each subtree analyzed,
and each node follows different rules to provide its status.

More specifically, for the leaf nodes we can distinguish two kinds:

• Conditions: these nodes represent guards check, they are normally placed before tasks nodes, they
can provide just SUCCESS or FAILURE, but not RUNNING)

• Tasks or Actions: these nodes represent the actual actions executed by the agent. Once ticked,
they immediately return SUCCESS, RUNNING, or FAILURE.
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Figure 1: A sample of a BT and its ticking process. The execution of the tree returns RUNNING while
executing the action of opening the door.

The leaf nodes are the ones that check the status of the agent and execute actions. The internal nodes
instead define how leaf nodes are, or are not, executed.

The internal nodes, analyzed, are divided into two categories:
• Sequence: these nodes execute a series of children in sequence. The next child is executed only if

the previous child has returned SUCCESS. The sequence node return to their parent SUCCESS if
and only if all the children have returned SUCCESS. It returns RUNNING if one of the children
is RUNNING, and FAILURE otherwise (hence one of the children has returned FAILURE). The
sequence symbol is a box with the "→" label.

• Fallback: these nodes tick a series of children following a left-to-right order, starting from the
leftmost child. The next child is executed only if the previous child has returned FAILURE. The
fallback node return to their parent FAILURE if and only if all the children have returned FAIL-
URE. It returns RUNNING if one of the children is RUNNING, and SUCCESS otherwise (hence
one of the children has returned SUCCESS). The fallback symbol is a box with the "?" label.

BT can be extended also with other two internal nodes categories called PARALLEL and DECORA-
TORS. Those nodes, less frequent, are not treated in this work.

The main strengths of Behaviour Tree are that they are simple and readable, and each subtree is
reusable given the modularity property of this structure. But they can represent also complex behaviors
for robots operating in challenging environments. Moreover, BT can also be extended with different
properties like Stochastic BTs [5] or automatically generated as in [7].

2.2 Event-B and Rodin

The formal development framework used in this work is the Event-B formalism. In Event-B a system
specification is defined using the concept of abstract-state machine. This model encapsulates a collection
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Figure 2: Event-B machine and context

of variables and contains the set of operations to interact with the states of the machine called Events.
We can thus define the behavior of the machine by describing the dynamic part of the state machine.
Another component of the Event-B method is the so-called context, these components contain the static
part of the system. For instance, in the context user-defined types are defined or constant components of
the system. The context can be seen by the abstract machines as shown in 2.

The dynamic part of the system is represented by the variables of the abstract-state machines and the
Cartesian product of their range represents the state space of the machine. The variables are strongly
typed by invariant statements and are initialized using a special initialization event. The invariant state-
ments, not only define the type of the variables but most importantly, are used to define properties that
the system should hold for the entire time of execution. For instance, a possible invariant could be a
safety property like: "the distance to the obstacles needs to be at least 5 meters from the robot".

The changing of the variables, and hence the state of the machine, is represented through a set of
Event clauses defined in the machine. An event is normally defined as follows:

evt =̂ any variables where guards then S end

where variables is a new list of local variables, guards are predicates defining when the event can be
triggered, and S is a set of statements or assignment that changes the state of the machine. However, both
the variables and the guards are optional in the definition of an event. Multiple events can be enabled at
the same time, in this case, any of them can be chosen to be executed in a non-deterministic way.

One of the strong points of Event-B is that it allows the possibility of machine refinement. This
allows us to start the definition from a very high and abstract level, and include more details, variables,
and events at every refinement. We can then introduce implementation details in steps while preserving
functional correctness.

The semantics of an Event-B model is formulated as a collection of proof obligations [2], and the
process of verification and generation and proving of proof obligations, has been facilitated by the Rodin
platform [1].
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3 Specification of Behaviour Trees in Event-B

The formal specification of a generic Behaviour Tree has been implemented and proven using Event-B
and Rodin1. To do that, we have used 4 different refinements. We built initially the abstract figure of the
nodes, till arriving at the instances of the BT, which can be found as a refinement of the 4th level. Each
abstract machine is coupled with a corresponding context. The four abstraction levels are described in
detail in the following subsections, and are:

• Nodes

• Tree

• Behavior Tree

• Specific Instance of a BT.

3.1 Specifying a node

We start defining the nodes and certain properties that the nodes composing the Tree need to have. At
this level, we are not interested in the connection and relationship between the nodes but just in their
properties.

First of all, we define two new types to define the kind of node and the result that each node can
return.

The TY PE type represents the category that each node can be and it is defined as follow:

TY PE = {ROOT,SEQUENCE,FALLBACK,CONDIT ION,ACT ION}

It contains the types for the root, control flow nodes, and execution nodes, this will be used in a future
refinement to define the different navigation behavior of the nodes.

The RESULT type, instead, represents the value of return that each node can contain. We define it as
follows:

RESULT = {SUCCESS,RUNNING,FAILURE,UNKNOWN}
The first three elements are the normal return value of a node in a BT, the UNKNOWN element instead
is used as the default value when a node has not been ticked yet, and hence the return value is unknown.

We wanted to define the single nodes as a data structure containing the following members:

node {
int n_id; //constant value in context
TYPE n_type; //constant value in context
bool n_tick; //dynamic value in machine
RESULT n_result; //dynamic value in machine

};

Where n_id represents a unique identifier of the node that starts from 0 with the root. This value is
used to define an order on the nodes used in a future refinement to identify the order of the children, used
to navigate the tree from left to right. And n_tick is a boolean variable to see if the node has been ticked
or not.

Since in Event-B there is not a standard definition of a structure, the members of the nodes have been
defined as relationships between the nodes and the corresponding type as follows:

1The source code can be found here: https://github.com/tadteo/BT_eventb

https://github.com/tadteo/BT_eventb
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n_type ∈ NODES→ TY PE
n_id ∈ NODES→ N
n_tick ∈ NODES→ BOOL
n_result ∈ NODES→ RESULT

and initialized as:

n_tick ∈ NODES×{FALSE}
n_result ∈ NODES×{UNKNOWN}

where NODES is the set of all possible nodes that can be used to build the tree, and that has been defined
in the node context together with the types, and the constant values. n_id and n_type does not require
initialization since they are defined in the context and remain constant.

3.2 Formal model of tree

In the first refinement, we give the nodes a structure and build the rules to construct a tree. We used the
following four requirements to define the tree structure:

• Req1: There is a single root object

• Req2: Each object other than the root has a parent

• Req3: There are no loops in the parent structure

• Req4: Each object is reachable from the root
First of all, we define the nodes constant which represents the set of nodes (a subset of NODES) in

the tree, with root as the ROOT node.
For Req1 we define an axiom that states that for every pair of nodes, if one is a ROOT then the other

is not ROOT:

∀n1,n2 · (n1 ∈ nodes∧n2 ∈ nodes∧n1 6= n2∧n_type(n1) = ROOT =⇒ n_type(n2) 6= ROOT ) (1)

For Req2 we define the relation parent as following:

parent ∈ nodes\{root}→ nodes (2)

For the no loop property we use the inverse of the parent function (i.e. the children)2 in the following
way:

∀n · (n⊆ parent−1[n] =⇒ n = /0) (3)

For Req4 we use a transitive closure on a node relation, that in a graph represents a relation to any
other node in the graph [14].

To achieve that, we first define a generic relation between two nodes, and then we define the transitive
closure of it.

node_rel = NODES↔ NODES
tcl ∈ node_rel→ node_rel
∀r · (r ∈ node_rel =⇒ r ⊆ tcl(r)
∀r · (r ∈ node_rel =⇒ r; tcl(r)⊆ tcl(r) // The unfolding of tcl is also part of tcl
∀r, t · (r ∈ node_rel∧ r ⊆ t ∧ r; t ⊆ t =⇒ tcl(r)⊆ t //tcl(r) is least
∀r · (r ∈ node_rel =⇒ r∪ (r; tcl(r))

2In Event-B in Rodin, the inverse is written using the ∼ symbol.In this case, the parent function would be written as:
parent ∼ [{node}]
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3.3 Behavior Tree level

The Behavior Tree level starts from the definition of the tree present in the level above and adds all the
rules to allow the correct navigation and return of the result.

In this level, we simulate the ticking process, which starts from a completely unvisited and unticked
tree. As the first step, the root needs to be ticked. After this, a chain reaction of events brings to
the exploration of the tree which eventually returns a result. The exploration ends whenever the result
arrives at the root node. At this point, the tree got reinitialized and the root get ticked again, restarting
the cycle.

To achieve correct navigation of the tree, each type of node needs to be treated separately with
specific events.

3.3.1 Root related events

To deal with the root we have 3 distinct events:
The first tick_root is used to tick the root node. It is used whenever the tick status of the root is

FALSE and the result is UNKNOWN:

tick_root =̂
any node

where
n_tick(node) = FALSE
n_type(node) = ROOT
n_result(node) =UNKNOWN
node ∈ NODES
node ∈ nodes

then
n_tick(node) := T RUE

We then have an event that is used to tick the first unticked child of the root as soon as the root is
ticked. In our specification, the root has just one child and is treated as a special node. This allows a
simpler way to manage the start and end of an exploration of the tree.

root_ticked =̂
any

node
child

where
n_tick(node) = T RUE
n_type(node) = ROOT
n_tick(child) = FALSE
node ∈ nodes
child ∈ {x|x ∈ parent−1[{node}]∧n_tick(x) = FALSE ∧

∀y · (y ∈ parent−1[{node}]∧n_tick(y) = FALSE =⇒ n_id(y)≥ n_id(x)}
then

n_tick(child) := T RUE
analyzing_subtree(child) := T RUE

Figure 3: The event root_ticked
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root_reinitialize =̂
any

node
where

n_tick(node) = T RUE
n_type(node) = ROOT
n_result(node) 6=UNKNOWN
node ∈ NODES
node ∈ nodes

then
n_result := NODES×{UNKNOWN}
n_tick := NODES×{FALSE}

Figure 4: The event root_reinitialize

To identify the first unticked child we make use of the id of the node. The id of the nodes has been
given in a way that respects the order of visiting of the tree, following a left-to-right order, with siblings
having the leftmost with a smaller id and the rightmost with the highest id. When choosing which node
to visit, we select as a child the node that has the n_id smaller than all the other nodes, and that is not
yet ticked. Finally, when the ticking process return to the root an event called result_arrived is used to
copy the result of the child of the root to the root.

result_arrived =̂
any

node
child

where
node ∈ NODES
n_tick(node) = T RUE
n_type(node) = ROOT
n_result(node) =UNKNOWN
child ∈ parent−1[{node}]
child ∈ {x|x ∈ parent−1[{node}]∧n_result(x) 6=UNKNOWN}

then
n_result(node) := n_result(child)

Before restarting the ticking process an event called root_reinitialize is used to reinitialize the tree
nodes as unexplored and with unknown results.

3.3.2 Leaf nodes related events

The leaf nodes can be of two types: CONDIT ION or ACT ION. The leaf nodes are the only ones that
directly provide a result with the ticking of the nodes. However, these events need to be refined at the
next level for each case of result (SUCCESS, FAILURE for the CONDIT ION nodes and SUCCESS,
FAILURE and RUNNING for the ACT ION nodes). And providing the correct logic to return the result
wanted, since for each BT the logic to return the result can be different.
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At this level of abstraction, the only action executed by these nodes is setting the analyzing_subtree
variable of the parent node to FALSE. This is done as follows:

analyzing_subtree(parent(node)) := FALSE (4)

3.3.3 Internal nodes related events

The internal nodes are the ones in charge of controlling the flow of execution and analysis of the tree.
In this work, we have analyzed the sequence node and the fallback node. To formalize the behavior of
this kind of node, we have used 5 different events for each kind covering all the possible ways in which
the node can be found while analyzing the tree. At each step of the tree exploration, the control flow
nodes either have enough information to return a value to the parents or need to continue the analysis of
the children and tick the next child on the list. The five events have the following form: 1. *_ticked_-
initial, 2. *_ticked_success, 3. *_ticked_failure, 4. *_ticked_running, 5. *_ticked_continue, with * used
as a wildcard that can be substituted with the name of the node (like fallback_ticked_continue).

The *_ticked_initial event is used to start the ticking process of the children and it’s only purpose is
to tick the first children of these nodes.

Let’s analyze now the events of the fallback node.
The definition is "The Fallback node [...] corresponds to routing the ticks to its children from the left
until it finds a child that returns either SUCCESS or RUNNING, then it returns SUCCESS or RUNNING
accordingly to its own parent. It returns FAILURE if and only if all its children return FAILURE. Note
that when a child returns RUNNING or SUCCESS, the Fallback node does not route the ticks to the next
child (if any)" [9].
To be able to route the ticks to the correct child (from left to right), we first need to correctly identify the
first unticked child and last analyzed child. To do that we use a similar approach to the one used in the
root_ticked event. We use the inverse of parent to identify the children of a node and then we use the
n_id of the children to analyze the order, finally, we use the n_result and n_tick variables to check the
correct value we are looking for.

For instance, to identify if the last child analyzed has returned the RUNNING result (used in fall-
back_ticked_running, Figure 5, we use the following guard:

∃x · (x ∈ parent−1[{node}]∧n_tick(x) = T RUE∧
∀y · (y ∈ parent−1[{node}]∧n_tick(y) = T RUE =⇒ n_id(y)≤ n_id(x))

∧n_result(x) = RUNNING) (5)

In this code, we check if exists a node of the children set, which has been ticked, that has the greatest id
of all the other ticked children, and that has the result set to RUNNING. To find the first unticked children
instead we use the same approach but instead check that the n_tick variable is set to false and that the n_id
value is the minimum of the unticked children. This can be seen in the events fallback_ticked_continue
Fig. 5, and sequence_ticked_continue Fig. 6,

In some events, we want also to be able to identify whenever all the children have been analyzed
(ticked). In these cases, we just check that the set of children of a node that has n_tick set to FALSE is
an empty set. The guard used to check this is:

{x| x ∈ parent−1[{node}] ∧ n_tick(x) = FALSE}= /0 (6)

With these guards, we are now able to define the 4 events that allow us to correctly manage the
Fallback node (Figure 5).
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Events

fallback_ticked_running =̂
any node
where

n_type(node) = FALLBACK
n_tick(node) = T RUE
n_result(node) =UNKNOWN
∃x · (x ∈ parent−1[{node}]∧n_tick(x) = T RUE ∧

∀y · (y ∈ parent−1[{node}]∧n_tick(y) = T RUE =⇒
n_id(y)≤ n_id(x))∧n_result(x) = RUNNING)

then
n_result(node) := RUNNING
analyzing_subtree(parent(node)) := FALSE

end

fallback_ticked_failure =̂
any node
where

n_type(node) = FALLBACK
n_tick(node) = T RUE
n_result(node) =UNKNOWN
∃x · (x ∈ parent−1[{node}]∧n_tick(x) = T RUE ∧

∀y · (y ∈ parent−1[{node}]∧n_tick(y) = T RUE =⇒
n_id(y)≤ n_id(x))∧n_result(x) = FAILURE)
{x| x ∈ parent−1[{node}] ∧ n_tick(x) = FALSE}= /0

then
n_result(node) := FAILURE
analyzing_subtree(parent(node)) := FALSE

end

fallback_ticked_success =̂
any node
where
n_type(node) = FALLBACK
n_tick(node) = T RUE
n_result(node) =UNKNOWN
∃x · (x ∈ parent−1[{node}]∧n_tick(x) = T RUE ∧

∀y · (y ∈ parent−1[{node}]∧n_tick(y) = T RUE =⇒
n_id(y)≤ n_id(x))∧n_result(x) = SUCCESS)

then
n_result(node) := SUCCESS
analyzing_subtree(parent(node)) := FALSE

end

fallback_ticked_continue =̂
any node,child
where
n_type(node) = FALLBACK
n_tick(node) = T RUE
n_result(node) =UNKNOWN
∃x · (x ∈ parent−1[{node}]∧n_tick(x) = T RUE ∧

∀y · (y ∈ parent−1[{node}]∧n_tick(y) = T RUE =⇒
n_id(y)≤ n_id(x))∧n_result(x) = FAILURE)
{x| x ∈ parent−1[{node}]
∧ n_tick(x) = FALSE}= /0
node ∈ nodes
child ∈ {x ∈ parent−1[{node}]
∧n_tick(x) = FALSE ∧

∀y · (y ∈ parent−1[{node}]∧n_tick(y) = FALSE =⇒
n_id(y)≥ n_id(x))

analyzing_subtree(node) := FALSE
then
n_tick(child) := T RUE
analyzing_subtree(node) := T RUE

end
end

Figure 5: The events to manage the Fallback node

At every event either we return a result or we tick a child node. And we set the analyzing_subtree
label true or false accordingly.

For the Sequence node, we follow a similar approach we the modified event to control it according
to its definition.
The definition is "The Sequence node [...], corresponds to routing the ticks to its children from the left
until it finds a child that returns either Failure or Running, then it returns Failure or Running accord-
ingly to its own parent. It returns success if and only if all its children return Success. Note that when a
child returns Running or Failure, the Sequence node does not route the ticks to the next child (if any)." [9].
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Events

sequence_ticked_running =̂
any node
where

n_type(node) = SEQUENCE
n_tick(node) = T RUE
n_result(node) =UNKNOWN
∃x · (x ∈ parent−1[{node}]∧n_tick(x) = T RUE ∧

∀y · (y ∈ parent−1[{node}]∧n_tick(y) = T RUE =⇒
n_id(y)≤ n_id(x))∧n_result(x) = RUNNING)

then
n_result(node) := RUNNING
analyzing_subtree(parent(node)) := FALSE

end

sequence_ticked_failure =̂
any node
where

n_type(node) = SEQUENCE
n_tick(node) = T RUE
n_result(node) =UNKNOWN
∃x · (x ∈ parent−1[{node}]∧n_tick(x) = T RUE ∧

∀y · (y ∈ parent−1[{node}]∧n_tick(y) = T RUE =⇒
n_id(y)≤ n_id(x))∧n_result(x) = FAILURE)

then
n_result(node) := FAILURE
analyzing_subtree(parent(node)) := FALSE

end

sequence_ticked_success =̂
any node
where
n_type(node) = SEQUENCE
n_tick(node) = T RUE
n_result(node) =UNKNOWN
∃x · (x ∈ parent−1[{node}]∧n_tick(x) = T RUE ∧

∀y · (y ∈ parent−1[{node}]∧n_tick(y) = T RUE =⇒
n_id(y)≤ n_id(x))∧n_result(x) = SUCCESS)
{x| x ∈ parent−1[{node}]
∧ n_tick(x) = FALSE}= /0
node ∈ nodes

then
n_result(node) := SUCCESS
analyzing_subtree(parent(node)) := FALSE

end

sequence_ticked_continue =̂
any node,child
where
n_type(node) = SEQUENCE
n_tick(node) = T RUE
n_result(node) =UNKNOWN
∃x · (x ∈ parent−1[{node}]∧n_tick(x) = T RUE ∧

∀y · (y ∈ parent−1[{node}]∧n_tick(y) = T RUE =⇒
n_id(y)≤ n_id(x))∧n_result(x) = SUCCESS)
{x| x ∈ parent−1[{node}]
∧ n_tick(x) = FALSE}= /0
node ∈ nodes
child ∈ {x ∈ parent−1[{node}]
∧n_tick(x) = FALSE ∧

∀y · (y ∈ parent−1[{node}]∧n_tick(y) = FALSE =⇒
n_id(y)≥ n_id(x))

analyzing_subtree(node) := FALSE
then
n_tick(child) := T RUE
analyzing_subtree(node) := T RUE

end
end

Figure 6: The events to manage the Sequence node

The guards and events are similar to the Fallback node but with different logic. The events of the
Sequence node can be seen in Figure 6.
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3.4 Instantiating generic specification

The fourth refinement finally allows us to deal with real instances of BTs. At this level, actual Behaviour
Trees can be verified and checked for invariants of interest for the agent. We now explain how the context
and the machine need to be built to properly check an existing tree.

The context contains the static part of the machine, the BT in itself is a static part of the agent, and
for this reason, the definition of the topology and of the nodes type of the BT needs to be defined here.

To define a BT instance we start by extending the BT_level and listing all the nodes contained in the
tree (excluding the root, already defined in the previous refinement), as constants.

We then need to define the axioms regarding the type: that every node defined in the constant part is
of type nodes. After this we need to initialize all the nodes giving to them a n_type, and a n_id. Finally,
we construct the parent function, defining for each node which node is its parent, defining in this way the
topology of the tree.

Numbering the nodes correctly is essential to correctly navigate a tree. To correctly give a n_id to
the nodes, is required to follow the same principle as a breadth-first search: firstly considering the depth,
and then starting counting the children from left to right. Therefore, The root, receive the number 0. We
will then give to all its children the next numbers starting by counting from the left-most node (i.e. the
first to be ticked). When all the children have been assigned a number we start to analyze the children
of the first child, numbering them left-to-right in the same way as before. And so on, until all the nodes
have been numbered.

Moving on the machine of the BT instance, we start as a refinement of the BT_machine of the
previous level. The only effort required here is the extension and refinement of the events of the leaf
nodes. Since the leaf nodes (conditions and actions) are very specific to the application, we need to
extend the corresponding events for any action and condition we want to check. For instance, let’s sup-
pose that our agent has two condition nodes: condition_1 and condition_2, the first condition checks
if the agent is more than 3 meters from an obstacle, and the second that the battery level is more than
30%. To cover the two conditions we would need to extend the condition_ticked event of the BT level
four times: 1. condition_1_ticked_success, 2. condition_1_ticked_failure, 3. condition_2_ticked_suc-
cess, 4. condition_2_ticked_failure, covering all the possible results that the nodes can output. The
modifications to be added would be minimal, in the condition_1 case we would just need a guard to
check the condition (something like distance_to_obstacle ≥ 3) and an action that explain which value
to return (n_result(node) := SUCCESS). For the failure case, we would add the condition for failure
(distance_to_obstacle < 3) and the corresponding returning value (n_result(node) := FAILURE)

Moreover, if we want to check some safety invariant or other parameters, we would need to model
the part of the environment we are interested to check and how the various actions would change the
environment itself. For instance, if a robot is moving in an environment with some obstacles we could
define two variables (pos_x, pos_y to define the position of the robot and another variable (distance_to_-
obstacle), to keep track of the distance to the closest obstacle. These would then be modified by actions.
For instance, if we have an action "move one step up", in the event of the corresponding action we would
also need to add something like: pos_y := pos_y+1.

4 Case Study – A moving robot

As a case study, we analyzed a very simple case, considering a robot that is moving toward a wall. The
goal is to avoid the robot from going too close to a certain distance to the obstacle Fig: 7.
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Figure 7: Case study of a robot moving towards a wall, without going too close to it. The robot can move
closer to the wall, but it is not allowed to enter the unsafe area.

Figure 8: Behaviour tree used to model the decision-making process of the agent.

To model this simple environment we have defined in the machine different variables: 1. distance_-
to_object, 2. time, 3. prev_time. We use the distance_to_object variable to identify the position of the
robot and hence its distance to the wall, while a time variable (together with the previous time step) is
used to control the real-time passed during the execution.

To define the behavior of the robot we have defined BT represented in Figure 8.
As invariant to be checked we set:

distance_to_ob ject ≥ 3

In the initialization, we set the robot at a distance of 10 meters from the wall.
The first leaf node of the tree is a condition that the robot needs to be at least 5 meters from the wall.

If this condition holds then the robot can perform the action of moving one step closer to the wall.
To model this environment, we followed the same approach described at the instance level above. We

first defined the tree in the context described below. In the machine, we define the variables described
above to define the environment and we refine the leaf node events.
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For the condition, we create the two refinements of the event for the SUCCESS and FAILURE case
as described in the methodology section. For the action, we simplify the scenario enforcing that, once
selected, the action will take effect instantly and that can never fail. Allowing us to refine the action event
just for the SUCCESS case.

context robot_wall_context
extends 03_BT _context

constants
sequence_1
condition_1
action_1

axioms
sequence_1 ∈ nodes
condition_1 ∈ nodes
action_1 ∈ nodes
n_type = {root 7→ ROOT, sequence_1 7→ SEQUENCE, condition_1 7→ CONDIT ION, action_1 7→

ACT ION}
n_id = {root 7→ 0, sequence_1 7→ 1, condition_1 7→ 2, action_1 7→ 3}
parent = {sequence_1 7→ root, condition_1 7→ sequence_1, action_1 7→ sequence_1}

Figure 9: The context of the BT for the robot moving towards the wall

We can note that the action ticked event is very similar to the previous definition, with the only
difference due to the addition of the last two propositions.

action_ticked_success =̂
REFINES action_ticked
any node
where

n_type(node) = ACT ION // not changed
n_tick(node) = T RUE // not changed
n_result(node) =UNKNOWN // not changed
node ∈ nodes // not changed

then
analyzing_subtree(parent(node)) := FALSE // not changed
n_result(node) := SUCCESS // added in refinement
distance_to_ob ject := distance_to_ob ject−1 // added in refinement

end

Figure 10: The context of the BT for the robot moving towards the wall

We then added a statement to increase the timestep whenever the result reaches the root node, con-
sidering an entire exploration of the tree as a timestep in the real world since the changes in the position
of the robot have been applied to the action event.

In general, just with these modifications at the machine from the BT level, we are able to ensure
the safety properties of the system by proving the safety invariant that we have defined for this BT. This



Matteo Tadiello & Elena Troubitsyna 153

ensures us that, after the initialization, the safety statement that we have described will hold for each
possible state that the BT can reach. This can be expanded, with multiple safety statements and multiple
requirements, allowing us to formally prove the safety of the system that will implement this specific BT.

5 Related Works

Although Behavior Trees have started to become widely used in various robotics applications, still little
research has been done to increase the dependability of robots using them. The importance of providing
safe and reliable agents becomes more and more critical, especially given the fact that these tools are
starting to be used at a larger level, especially with the support of open source software like the Nav2
package for ROS [13]. Work in the safety assessment of Behavior Trees has been done, for instance, [12],
but these studies normally refer to specific cases and become difficult to generalize for other BT. BT can
also be safely generated as in [17, 6] and that BT is an optimal tool to build safe and reliable systems
[8]. However, formal verification of safety properties is rarely done on new trees especially in manually
constructed ones, risking in this way the overall dependability of the systems using them. Other works
propose the formal verification of BT using Linear Temporal Logic [4], but they do not provide a tool to
support the verification process.

Event-B was used for modelling robotic systems by Troubitsyna et al. [11, 18, 15]. These works
adopted goal-oriented model as a basis of robot’s decision making and demonstrated goal reachability
despite robot’s failures. However, these works rely on an assumption that the robot’s operating environ-
ment remains static, i.e., once a certain goal is accomplished, its status remains unchanged throughout
the entire system execution. In our work, reliance on BT allows us to adopt dynamic model of system
environment, because at each tick the status of all tasks is getting checked, i.e., this work offers a more
flexible basis for modeling robot’s decision making.

6 Conclusion

In this work, we present a formal specification of Behaviour Trees in Event-B. We also provide a method-
ology to test new instances of BT in a fairly simple manner for newcomers hiding the definition of the
BT at more abstract levels, allowing a user to focus just on test and checking the properties the specific
BT needs to hold. Our approach aimed to facilitate the formal verification of Behaviour Trees without
the need to build the formalization of the tree and the control flow node from scratch and simplifying
also the modeling of the leaf nodes.

In future works, we propose to improve the actual specification by adding the support for parallel
nodes and the most common decorator used in practice. Moreover, we would like to simplify further
the possibility to check already used BT, creating a tool to automatically import trees built using already
used libraries like py_tree [16] or Behaviour_Tree.CPP [3]. Of particular interest is also the analysis of
already used BT in robotic frameworks like the ones used in the Navigation 2 [13] package in ROS.
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