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Active automata learning became a popular tool for the behavioral analysis of communication pro-
tocols. The main advantage is that no manual modeling effort is required since a behavioral model
is automatically inferred from a black-box system. However, several real-world applications of this
technique show that the overhead for the establishment of an active interface might hamper the prac-
tical applicability. Our recent work on the active learning of Bluetooth Low Energy (BLE) protocol
found that the active interaction creates a bottleneck during learning. Considering the automata learn-
ing toolset, passive learning techniques appear as a promising solution since they do not require an
active interface to the system under learning. Instead, models are learned based on a given data set.
In this paper, we evaluate passive learning for two network protocols: BLE and Message Queuing
Telemetry Transport (MQTT). Our results show that passive techniques can correctly learn with less
data than required by active learning. However, a general random data generation for passive learning
is more expensive compared to the costs of active learning.

1 Introduction

Behavioral models provide a useful tool for the analysis and verification of autonomous systems. How-
ever, the availability of such a model might be limited. Manually creating a model is tedious and even if a
model exists, keeping it up-to-date presents an ongoing challenge. Cyber-physical systems might consist
of many heterogeneous components, e.g. sensors, which are accessible communication protocols. How-
ever, access to these components or to the protocol implementations might be restricted, especially in
third-party components. Such an environment motivates the automatic generation of a behavioral model
from components of an autonomous system.

Automata learning has successfully been applied to extract behavioral models out of black-box sys-
tems. Besides theoretical research and learning competitions [20, 9, 19], nowadays automata learning is
successfully applied in practice. In recent years, research has focused on learning behavioral models of
network protocols like BLE [28], (D)TLS [32, 13], MQTT [36], or TCP [12]. All of them applied active
automata learning to generate a behavioral model of an implementation of the tested network protocol.

Active learning characterizes that the behavior is explored by active interaction with the System Un-
der Learning (SUL). Depending on the application area, the development of a learning setup that enables
active querying might be a tedious process. For example, consider the learning of wireless network pro-
tocols: sent packets might get lost or arrive delayed. Such behavior could introduce non-determinism.
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Non-deterministic behavior might interfere with the desired learning algorithm, which usually requires
the SUL to behave deterministically. To treat non-deterministic behavior, the implementation of fault-
tolerant mechanisms is necessary. Such mechanisms [28, 13] include, e.g., the repetition of queries or
the introduction of a cache to determine the correct output for a repeated input.

In automata learning, we distinguish between two learning paradigms: active and passive learning.
These two paradigms are different in the generation of the required data set from which the behavioral
model is inferred. As outlined before, active algorithms interact with the SUL to generate the required
learning data. In contrast, passive techniques use a given data set, e.g. log files, to generate a behav-
ioral model. Consequently, passive learning algorithms can only cover the behavior that the given data
includes. However, passive learning techniques might be better suited if the development of a sufficient
active learning setup is costly in terms of the effort required to enable fault tolerance.

The previous work [32, 36, 12, 28] argues that active learning provides in-depth behavioral aspects
of the SUL. However, none of the techniques have been compared with passively generated data. We
raise the question if randomly generated data is good enough to cover important behavioral aspects of the
SUL. Furthermore, we approach the reduction of the data set size required for correct passive learning.

In this paper, we will compare passive and active techniques for the learning of Bluetooth Low En-
ergy (BLE) devices and Message Queuing Telemetry Transport (MQTT) protocol implementations. In
previous work [28], we discussed the difficulties in the wireless learning of BLE protocol implementa-
tions on different devices via a handcrafted interface. One of the main challenges was to guarantee that
the device was sufficiently reset before performing the next query. Furthermore, the results show that
timing constraints might differ between the BLE devices. Tappler et al. [36] faced similar challenges in
learning the MQTT protocol. They also required individual learning setups for different MQTT server
implementations. In passive learning, these challenges do not need to be handled during learning. Hence,
we are interested to see if passive learning can achieve similar results to active learning.

The aim of this paper is not only to discuss whether an active or a passive learning technique is
preferable. In addition, we want to approach the challenge of generating a minimal adequate sample for
both learning paradigms. We denote the optimization of data by minimizing the sample. Based on these
problems, we discuss the following three research questions:
(RQ 1) Can passive learning based on a random sample outperform active learning?

(RQ 2) Does the considered active automata learning algorithm generate an optimal sample?

(RQ 3) Can random sampling support active automata learning?
Structure. The paper is structured as follows. In Sect. 2, we introduce background concepts of our

performed evaluation. Section 3 introduces the methodology and presents the result of the performed
case study. We show related work in Sect. 4. Finally, Sect. 5 concludes the paper with a summary, a
discussion of the found results, and an outlook on future work.

2 Background

2.1 Mealy machine

Mealy machines represent a modeling formalism for the behavioral description of reactive systems. A
Mealy machine is a finite state machine with transitions labeled with an input action and the correspond-
ing observable output. We define a Mealy machine M as a 6-tuple 〈Q,q0, I,O,δ ,λ 〉 where Q is the finite
state set, q0 is the initial state, I is the finite set of inputs, O is the finite set of outputs, δ : Q× I→ Q is
the state transition function, and λ : Q× I→ O is the output function.
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Figure 1: Angluin’s [5] adapted Minimally Adequate Teacher (MAT) framework. The adaptions relate
to learning of reactive systems based on Smeenk et al. [34] and Tappler et al. [1].

We assume that M is input-enabled. Hence, for every q ∈Q and i ∈ I, δ (q, i) and λ (q, i) are defined.
Furthermore, the definition of δ as a non-set-function implies that M is deterministic. Let |S| denote the
number of elements in a set S. We denote the size of M by the number of states, i.e. |Q|.

A sequence of input/output pairs is denoted as s ∈ (I ×O)∗, where sI ∈ I∗ and sO ∈ O∗ are the
corresponding input and output sequences. We write s · s′ for the concatenation of two sequences. Addi-
tionally, we write ε for the empty sequence and also lift a single element e∈ (I×O) to sequences. Let |s|
express the number of input/output pairs in a sequence. We extend δ and λ for sequences. The function
δ ∗ : Q× I∗→ Q returns the state reached after executing the given input sequence and λ ∗ : Q× I∗→ O∗

returns the observed output sequence. An execution on M returns the output sequence of an input se-
quence starting from the initial state, i.e. sO = λ ∗(q0,sI). A trace is an input/output sequence of an
execution on M . Let T be the set of traces that can be generated from executions on a Mealy machine
M . We denote two Mealy machines M , M ′ as equivalent if they generate the same set of traces T .

2.2 Automata Learning

In automata learning, we infer a behavioral model from the system’s data where this data could be given
log files or actively queried. Generally, we assume that the SUL is a black box, where no insight into
internal behavior is provided. Depending on the generation of data for learning, we distinguish between
two paradigms: active and passive learning.

2.2.1 Active Automata Learning

Active automata learning actively queries the SUL to infer a behavioral model. For this, the algorithms
require an interface that enables the querying of input sequences.

Many active learning algorithms build on Angluin’s L∗ algorithm [5]. In her seminal work, she intro-
duced an algorithm that learns a Deterministic Finite Automaton (DFA) representing an unknown regular
language. For this, she introduced the Minimally Adequate Teacher (MAT) framework. Figure 1 depicts
a modified version of Angluin’s MAT framework. The MAT framework distinguishes two members: the
learner and the teacher. The teacher knows the regular language that is depicted as SUL and the learner
wants to learn a behavioral model of the SUL.

The L∗ algorithm is an iterative procedure where each iteration includes two stages. According to
the current stage, the learner asks two different kinds of questions: membership queries and equivalence
queries. In the first stage, the learner aims to generate a hypothesis of the SUL. The hypothesis is
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Table 1: Observation table for Mealy machines from Shahbaz and Groz [33] with a modified E set.

E
i1 i2 i1 · i1

S ε o1 o1 o1 ·o2

S · I i1 o2 o1 o2 ·o1
i2 o1 o1 o1 ·o2

a conjecture about the behavioral model of the System Under Learning (SUL). For the creation of
the hypothesis, the learner asks if a word is included in the regular language. The teacher answers
these membership queries either by yes or no. The learner collects the answers of the teacher in an
observation table. Based on the adequately filled observation table, the learner constructs a hypothesis.
This hypothesis is then proposed to the teacher, who checks the equivalence to the SUL. The equivalence
check between the provided hypothesis and SUL is considered the second stage of the learning algorithm.
If they are equivalent, the teacher answers with yes and the learning algorithm terminates by returning
the proposed hypothesis. Otherwise, the teacher provides a counterexample to the conformance between
the hypothesis and SUL, and the algorithm returns to the first stage. In the next iteration, the provided
counterexample is then taken by the learner to retrieve new membership queries and to construct a new
hypothesis. Hence, one iteration in active automata learning includes in the first stage the posing of
several membership queries and in the second stage the equivalence check. We call one iteration learning
round. This iterative procedure is repeated until a conforming model is found.

The L∗ algorithm and the MAT framework have been extended for other modeling formalism. Shah-
baz and Groz [33] inferred Mealy machines from reactive systems. For this, they modified the original
MAT framework as follows: Instead of asking membership queries, output queries are posed. An out-
put query is an input sequence that the teacher executes on the SUL and then returns the corresponding
output sequence. Again, the learner stores the received output sequences in the observation table. For
learning Mealy machines, the observation table can be described with a triplet 〈S,E,T 〉, where S and E
are non-empty sets of input sequences and T : (S∪S · I)×E→O∗ is a function with I and O as input and
output set of the Mealy machine. S is prefix-closed and E is suffix-closed. According to Shahbaz and
Groz [33], S is initialized with the empty sequence ε and E with the inputs I. Table 1 shows an extended
example of an observation table taken from Shahbaz and Groz [33]. The columns of an observation table
are defined by E, and the rows by S and S∪ I. The function T accesses an output sequence stored in a
table cell. A table row can be accessed via entries of S∪S · I and is defined by the outputs of the corre-
sponding values of E. The outputs in the cell T (s,e) correspond to the outputs observed on the execution
of λ ∗(δ ∗(q0,s),e) with s ∈ S∪S · I and e ∈ E. For example, the learner wants to query the output for a
cell accessed by T (i2, i1 · i1). For this, the learner asks the teacher the following output query: i2 · i1 · i1,
and the teacher responds with the query output o1 ·o1 ·o2. The output sequence o1 ·o2 of the E set entry
i1 · i1 is then stored in the row of the observation table indexed by i2. We refer to Shahbaz and Groz [33]
for a detailed description of creating a Mealy machine from the observation table.

The application of automata learning is limited by the assumption of a perfect teacher that can deter-
mine the equivalence between a hypothesis and the SUL. In practice, we substitute the equivalence oracle
with model-based testing techniques as shown in Fig. 1. Tretmans [37] introduces an implementation
relation I imp S which defines that an implementation I conforms to a specification S. In conformance
testing, we want to find a test suite TS that can assess for every implementation I if it implements a
specification S. The aim of conformance testing in learning is to create a test suite that enables the
assessment if a provided hypothesis H conforms to implementation I which represents our SUL. We say
that the implementation I passes a test sequence t ∈ TH I passes t, if the output sequence generated from
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Figure 2: Steps of the RPNI algorithm starting from the initial PTA to the final merged automaton.

the execution on the learned model H is equal to the obtained outputs sequence on I. Based on Tretmans
implementation relation, we define conformance by the following equation.

I imp H ⇐⇒ ∀t ∈ TH : I passes t. (1)

The objective of conformance testing during learning is to find a test sequence that violates Eq. 1. A
found counterexample is then used to refine the hypothesis. In practice, the challenge of active automata
learning is the selection of a conformance testing technique that is efficient in the number of required
interactions with SUL, but also effective in the sense of finding counterexamples to the conformance
between the hypothesis and the SUL.

2.2.2 Passive Automata Learning

Passive automata learning infers an automaton from a given data set. Gold showed that the problem of
inferring a DFA with k states from a given data set is NP-complete [16]. State merging is one of the key
technologies that is used in passive learning algorithms like in the Regular Positive Negative Inference
(RPNI) [26, 17] algorithm. RPNI takes a set of positive and negative traces. Positive traces include
behavior that should be described by the learned automaton, whereas the behavior shown in negative
traces must not be included. Based on the positive traces, RPNI builds a Prefix Tree Acceptor (PTA).
States of the PTA are then merged to create a finite automaton. A merge is valid if no negative trace
can be generated by the merged automaton. Otherwise, if the merged automaton now includes negative
examples, the merge is dismissed and a different merge is attempted.

Variants of the RPNI algorithm can learn Mealy machines from input/output traces. For Mealy
machines, states are merged iff outputs for a corresponding input are similar. For example, consider the
following two traces:

(1) (i1, o1) · (i1, o2) · (i1, o1)
(2) (i2, o1) · (i1, o1)

The PTA for these two traces is shown in Fig. 2a. To generate a more general behavioral model, RPNI
merges states. The red states indicate the states that will be included in the final automaton and the blue
states are currently candidates for merging with red states. For example, in the PTA presented in Fig. 2a,
we first check if we can merge the blue state q1 into the red state q0. This merge is not possible since the
input i1 generates different outputs (o1 vs. o2). However, q2 can be merged into q0. Figure 2b shows the
automaton after merging. In the next step, q3 can be merged into q0, which leads to the final automaton
presented in Fig. 2c. Note that passive learning algorithms can only model behavior that is included in
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Figure 3: BLE sequence diagram for the establishment of a connection between two devices. The central
device initiates the connection to the peripheral device. Note that after the initiation of the connection
both devices could send requests that must be replied to by the other party. This figure is taken from [28].

the given data set. For example, the learned automaton presented in Fig. 2c is not input enabled, since
no trace was given that described the behavior of input i2 in state q1.

2.3 Bluetooth Low Energy

Bluetooth Low Energy (BLE) is a wireless communication protocol that has been introduced by Blue-
tooth Standard 4.0. Similar to the Bluetooth classic protocol, also known as Basic Rate, BLE is used for
short-range peer-to-peer communication. However, BLE and Bluetooth classic are not compatible and
depend on different implementations. The design of the BLE protocol also enables communication via
Bluetooth for low-energy devices as they occur in the Internet of Things (IoT).

The Bluetooth standard [7] distinguishes between two communicating parties: the central and the
peripheral device. For simplicity, we refer to the central device as central and to the peripheral device
as peripheral. Figure 3 shows the sequence diagram of the connection procedure. The peripheral starts
in the advertising state by sending advertisements to publicly announce that it is ready for a connec-
tion. The central device searches for advertisements by sending a scan request (scan_req), to which
the peripheral responds either by an advertisement or a dedicated scan response. Both answers are ab-
stracted as scan_rsp. Afterward, the central initiates the connection by sending a connection request
(connection_req), which is responded by a connection response (connection_rsp). After the initiation
of the connection, the central and the peripheral negotiate connection parameters. For example, the cen-
tral can indicate the used Bluetooth version or request the maximum transmission unit (MTU). Both, the
central and the peripheral, can send requests for specific parameters that should be valid for the current
session. To further proceed to the pairing procedure these posed requests must be answered accord-
ingly by the receiving party. After the negotiation phase, the pairing procedure can start. In the pairing
procedure, keys for an encrypted communication are exchanged.
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2.4 Message Queuing Telemetry Transport

The MQTT protocol [25] is a publish/subscribe protocol. Due to its lightweight design, it is also a
popular protocol for applications in the IoT. The MQTT protocol distinguishes two members: the client
and the broker. The broker is a central server unit that distributes messages from the clients. Clients
connect to the broker and publish messages on a topic and the broker forwards then these published
messages to clients who subscribed to the topic. In addition, some brokers offer advanced features
like the definition of the client’s will. The will of a client is a message assigned to a specific topic.
The broker publishes the will of a client when the client disconnects. In the literature, we find several
case studies [36, 1, 27] which applied active automata learning to learn behavioral models of different
MQTT-broker implementations. The learned behavioral models revealed inconsistencies in the MQTT
specification. Note that the used modeling formalism requires the SUL to be deterministic. To simulate a
deterministic behavior, the used learning setups required individual configurations since timed behavior
led to non-deterministic observations. The observed non-determinism motivates the MQTT case study
for comparison to passive learning where non-determinism could be handled offline.

3 Evaluation

In the following, we present our conducted case study and investigate the following research questions:

(RQ 1) Can passive learning based on a random sample outperform active learning?

(RQ 2) Does the considered active automata learning algorithm generate an optimal sample?

(RQ 3) Can random sampling support active automata learning?

Firstly, we introduce our applied methodology. For this, we present the used learning setup and the
case study subjects. Furthermore, we explain the applied assessment technique of the gained learning
results. Secondly, we discuss different sampling techniques that are used to generate data sets for passive
learning. Finally, we present our gained results. The implemented framework is available online [23].

3.1 Methodology

Learning setup. For automata learning, we used the learning framework AALPY [22] which is a Python
library that implements many state-of-the-art automata learning algorithms. Originally, AALPY mainly
focused on active automata learning algorithms. Beginning from the latest version (v.1.2.8), the tool also
implements the passive learning algorithm RPNI for different modeling formalisms including Mealy
machines. The latest version of AALPY is available on GitHub1.

For active learning, we use the L∗ algorithm for Mealy machines proposed by Shahbaz and Groz
[33]. For conformance testing during active learning, we applied a model-based testing technique that
provides state coverage. Every state is accessed nwalk times via the shortest prefix and then a random
input sequence of length nstep is executed. We set nwalks = 25 and nstep = 30. For counterexample
processing, we applied the improved algorithm proposed by Rivest and Schapire [31]. We used Rivest
and Schapires L∗ algorithm since the performed benchmark for active automata learning conducted by
Aichernig et al. [4] concluded that this algorithm and the TTT algorithm [18] require approximately a
similar number of queries and perform better compared to other active learning algorithms.

1https://github.com/DES-Lab/AALpy

https://github.com/DES-Lab/AALpy
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Figure 4: Model of the nRF52832. Input and output actions in the model are abbreviated or abstracted
by the ‘+’ character. The complete model and all other BLE models can be found online [23].

For passive learning, we used a variant of the RPNI algorithm for Mealy machines implemented in
AALPY. To test the conformance between two Mealy machines, we require input-enabledness. Since
passive data might not be complete, the passively learned model might not be input-enabled. To over-
come this problem, AALPY offers two strategies for conformance testing: self-looping transitions or
transitions to a sink state. For our case study, we assume the transition to a sink state in the case of an
undefined input. Hence, the execution of such an undefined input always leads to a counterexample to
the conformance between the actively learned and passively learned model.

We performed all experiments presented in Table 3, 4, 5, and 6 on an Apple MacBook Pro 2019 with
an Intel Quad-Core i5 with 2.4 GHz and 8 GB RAM. The experiments for the heatmaps (Fig. 5) were
conducted on a Dell Latitude 5410 with Intel Core i7-10610U with 2.3 GHz and 16 GB RAM.
Case study subject. In our case study, we compare active and passive learning for two network protocols:
BLE and MQTT. For both protocols, we do not interact with the actual SUL but consider the already
learned models from previous case studies [29, 36]. To generate output sequences, we simulate the given
input sequence on the provided model, which also eases the reproducibility of our results. To maintain
our black-box assumption, we do not access any further properties of the given models. Our previous
work [28] introduces the BLE case study which we extended in a follow-up work [29] by learning-based
fuzzing. For this evaluation, we consider the BLE devices from our learning-based fuzzing case study
[29]. Figure 4 depicts the model of the BLE device nRF52832. We indicate the initial state by a transition
with an empty source. The input and output labels are abbreviated. The model of the nRF52832 describes
that during an established connection the version_req and mtu_req lead to a different output after the
first execution.

For the MQTT case study, we consider a subset of the learned automata presented by Tappler et
al. [36]. The MQTT automata are available as a benchmark set on the Automata Wiki [24]. The con-
sidered subset comprises the models of five different MQTT brokers. To evaluate larger models, the
models include also the will-message functionality. All brokers interact with two clients, where one
client connects with a will that the server retains. The other client can subscribe to the will’s topic.

Table 2 shows the investigated examples for the BLE and MQTT case study including the number of
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Table 2: The evaluation considers two case studies: BLE and MQTT. All considered automata are
available online [23].

BLE MQTT
SUL |Q| |I| SUL |Q| |I|
CC2640 [excl. feat] 11 8 ActiveMQ 18 9
CC2640 [excl. pair] 6 8 emqtt 18 9
CC2650 5 9 HBMQTT 17 9
CC2652R1 4 7 Mosquitto 18 9
CYBLE-416045-02 3 9 VerneMQ 17 9
CYW43455 4 7
nRF52832 5 9

states |Q| and the input alphabet size |I| of the ground-truth models. All considered models are available
online2 [23]. Note that for the execution on real systems, the generated traces must have been checked in
advance for non-deterministic behavior. However, for passive learning, this process has to be done only
once and can be separated from the learning process.

Result evaluation. For measuring the correctness of the learned models, we need to compare the
learned models with the ground truth. For this, we test the conformance between the SUL and the
learned model. Let M be a Mealy machine that represents the behavior of the SUL and ML be the
learned Mealy machine. We define the following conformance relation.

ML imp M ⇐⇒ ∀t ∈ T : ML passes t. (2)

We consider T as a finite set of traces generated from executions on M . To generate these traces,
we use two different model-based testing techniques: random and state coverage-based test generation.
For both techniques, the size of the test set T is set to 10000 traces. The generation of random traces
for conformance testing is equal to the one used to generate the random sample for passive learning
as later described in Algorithm 1. We define the minimum trace length nmin = 3 and the maximum
length nmax = 32. The second model-based testing technique is based on state coverage similar to the
equivalence oracle used in active learning. For this, we generate a finite set of test sequences for each
state, which include the access sequence to the state and a random word as a suffix. We set the test
sequences per state to d10000

|Q| e, where Q is the set of states of the SUL. The random word length that is
executed in every state is set to 10. We provide for every technique the percentage of passed test cases.
In the remaining discussion, we refer to the conformance based on state coverage, if not stated otherwise.

3.2 Data Generation

We compare active and passive automata learning based on the required data to learn the correct be-
havioral model of the SUL. We motivate this criterion from a theoretical and practical perspective.
Theoretically, the conformance of a passively learned model to the behavior of the SUL depends on
the given data set. The learned behavioral model can only cover model behavior that is included in the
provided data set. Therefore, we approach the problem of finding an adequate data set that sufficiently
covers the behavior of the SUL.

From the practical perspective, previous work [28, 36] showed that active automata learning could
successfully create behavioral models of the actual black-box systems. However, the required active in-
teraction and the error recovery mechanisms during learning hampered the applicability of active learn-
ing. The objective is to decrease the interaction with the SUL without missing behavioral information.

2https://github.com/apferscher/ble-learning-passive

https://github.com/apferscher/ble-learning-passive
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Algorithm 1: Generation of set of random input/output traces.
Input: data set size ndata, minimum length nmin, maximum length nmax, SUL M = 〈Q,q0, I,O,δ ,λ 〉
Output: SR ∈ (I×O)∗

1 SR←− [ ]
2 for i← 1 to ndata do
3 nlen←− randInt(nmin,nmax)

4 sI ←− [ ]
5 for j← 1 to nlen do
6 sI ←− sI · rand(I)

7 sO←− λ ∗(q0,sI)

8 SR←− SR∪ trace(sI ,sO)

To tackle the theoretical as well as the practical challenge, we first evaluate if randomly generated
data sufficiently represents the behavior of the SUL. Secondly, we optimize the data generated during ac-
tive automata learning under the premise that the SUL’s behavior is still adequately represented. Thirdly,
we investigate if random sampling could support active learning.
Random Data Generation. Algorithm 1 describes the random data generation which depends on three
parameters: data set size ndata, the minimum length of the trace nmin, and the maximum length of the
trace nmax. To generate traces, we execute input sequences on Mealy machine M of the SUL. The
algorithm returns the set SR of generated traces. In Line 3, we select the input sequence length uniformly
at random between the minimum and maximum length. Next, the algorithm selects uniformly at random
an input from the input alphabet I of the SUL (Line 6). In Line 7, the input sequence is executed on the
SUL to generate the corresponding output trace. Let trace(sI,sO) be a function that creates a trace by a
pairwise concatenation of inputs and outputs. In Line 8, we append the generated trace to SR. We repeat
this procedure until we generate ndata traces.

As a baseline for our comparison, we run Rivest and Schapire’s [31] L∗ algorithm variant. Let
SL∗ ∈ (I×O)∗ be the set of traces that L∗ queries to correctly learn a Mealy machine of the SUL. Note
SL∗ also includes the conformance tests performed during equivalence checking. We include these traces
since they are required to make a statement about conformance in a black-box setup.

For the evaluation with the random data generation, we considered the following four different setups:
Sample 1: Set of random sequences of size |SL∗ | (rand |SL∗ |) This experiment setup evalu-
ates the quality of a randomly generated set with approximately the same properties as the one for active
learning. The size of random sequences ndata = |SL∗ |. We set the minimum nmin and maximum nmax
accordingly to the mean length of traces for SL∗ . Let nL∗ be the mean length of the traces in SL∗ , then we
set nmin = 1 and nmax = b2nL∗−1e3.
Sample 2: Set of random sequences of size 2 ∗ |SL∗ | (rand 2 ∗ |SL∗ |) This experiment setup
evaluates if a randomly generated set with approximately the same properties but doubled in size as the
one for active learning is sufficient. The other parameters, nmin and nmax, are equal to Sample 1.
Sample 3: Set of longer random sequences (rand long) Given that we know the number of
states of the minimal Mealy machine M representing the SUL, we evaluate if traces that correspond to
the size of M are good enough. The randomly generated traces are at least |Q| long, nmin = |Q|, and
have a maximum length of nmax = 2∗ |Q|. The random set is of size |SL∗ |.
Sample 4: Set of sufficient random samples (rand corr) The goal is to find a parameter setup

3bxe denotes the nearest natural number to the real number x, where a distance of 0.5 is associate to the higher natural
number.



B. K. Aichernig et al. 11

that generates a random sample that sufficiently represents the SUL. For this, we evaluated how the trace
length and the data set size influence the success of learning. Based on these two parameters we generate
different random samples.
Optimized Data Generation. Our second data set approaches the minimization of the data set generated
by the L∗ algorithm. Due to the design of the used version of the L∗ algorithm, we assume that the
generated data set is not minimal. The data set generated by the L∗ algorithm is not minimal due to two
aspects: performed queries might be a prefix of other queries and a non-minimal characterization set.
Firstly, considering the incremental state exploration of the L∗ algorithm, we assume that some traces are
a prefix of other traces that are later queried in the L∗ algorithm. Since the RPNI algorithm relies on the
construction of a PTA, traces that are a prefix of another trace do not provide any further knowledge for
passive learning. Secondly, we can make a reduction of the required traces based on the characterization
set of the learned Mealy machine. The characterization set is a set of input sequences that generate
different output sequences for each state of the SUL. In the L∗ algorithm version proposed by Shahbaz
and Groz [33], introduced in Sect. 2, the E set defines the characterization set and is initialized with the
whole input alphabet. However, not necessarily all inputs are required to distinguish a state. Consider
the observation table, Table 1, presented in Sect. 2. In this table, the input i2 does not provide any
information that enables the distinction of states. Hence, i2 is not part of the characterization set and is
not required in set E. We, therefore, can remove all queries that are required to fill this column. To get
an optimized data set, we calculate the characterization set based on the Mealy machine of the SUL. The
reduced data set is then used as a base for passive learning and we expect the learned automaton to be
equal to the Mealy machine of the SUL.

Cache in active learning. Our third evaluation investigates if random data could support active au-
tomata learning. The learning library AALPY supports the caching of queries using a PTA. Before
executing a query, the algorithm first checks if the query is already included in the PTA. If the PTA in-
cludes the query output, then the query is not performed on the SUL. This reduces the number of required
interactions with the SUL. In our evaluation, we investigate the impact on the required SUL interactions
with a cache initialized by random samples. For this, we initialize the cache of the L∗ algorithm with a
random sample that has the same properties as the one initially required by L∗, i.e. Sample 1.

3.3 Findings

Table 3 and 4 present the results of actively learning the BLE and MQTT models using the L∗ algorithm.
All learned models conform to the original models of the corresponding SUL. In addition, the tables
show the minimized data size, where the minimization is performed as described in Sect. 3.2.

A comparison of both tables shows that the MQTT example requires significantly more queries to
learn the final model. We explain this increase based on two observations. Firstly, Table 2 shows that
the state space for the MQTT examples is larger. Secondly, the MQTT examples require more than one
learning round. This circumstance substantially increases the sum of performed queries during active
learning. All BLE models could be learned within one learning round. Hence, the conformance test
during learning was only performed once and did not add any new behavior to the SUL. However, the
active learning of the MQTT examples requires at least three conformance testing rounds. Regarding
the minimization of data, we see a significant decrease in the data that is actually required to learn
correctly. This observation agrees with our assumption that the data set includes redundant and non-
essential queries.

Table 5 and Table 6 present the evaluation results of passive learning considering the different ran-
domly generated data sets Sample 1-3. For Sample 4, we created a heatmap which is presented in Fig. 5.
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Table 3: Active learning results for the BLE case study. Every experiment was repeated five times. Every
device could be learned within one learning round. Hence, the reported results were deterministic.

CC2640
excl. feat.

CC2640
excl. pair. CC2650 CC2652R1 CYBLE-

416045-02 CYW43455 nRF52832

Output queries 704 384 405 196 243 784 405
Output queries steps 3136 1472 1458 588 729 3136 1458
Conformance tests 275 150 125 100 75 400 125
Conformance tests steps 8925 4775 3950 3100 2325 12800 3950
Sum queries 979 534 530 296 318 1184 530
Sum steps 12061 6247 5408 3688 3054 15936 5408
nlen 12.32 11.70 10.20 12.46 9.60 13.46 10.20
Optimized queries 312 129 123 50 50 388 123
Optimized nlen 4.55 3.9 3.65 3.08 3.04 4.13 3.65

Table 4: Active learning results for the MQTT case study. Every experiment was repeated five times,
numbers in brackets show the standard deviation. If no standard deviation is given, the deviation is zero.

ActiveMQ emqtt HBMQTT Mosquitto VerneMQ
Output queries 5890.40 (695.77) 5900.60 (1834.84) 4009.40 (533.83) 4056.40 (846.08) 4356.20 (976.87)
Output queries steps 55771.60

(14265.88)
62134.80

(33276.46)
33176.40
(8277.56)

34335.80
(10979.61)

33850.80
(12344.85)

Conformance tests 450 450 425 450 425
Conformance tests steps 14721.2 (70.33) 14654.2 (24.69) 13794 (16.41) 14737 (88.12) 13834.4 (87.33)
Learning rounds 5.20 (1.30) 5.20 (1.30) 3.60 (0.55) 4.00 (1.00) 5.20 (1.10)
Sum queries 6340.40 (695.77) 6350.60 (1834.84) 4434.40 (533.83) 4506.40 (846.08) 4781.20 (976.87)
Sum steps 70492.80

(14208.67)
76789.00

(33275.29)
46970.40
(8282.37)

49072.80
(10998.34)

47685.20
(12364.07)

nlen 11.04 (1.18) 11.77 (2.21) 10.55 (0.86) 10.85 (1.00) 9.90 (0.66)
Optimized queries 1450 1450 959 1015 959
Optimized nlen 6.26 6.26 5.91 6.05 6.05

For each experiment setup, we state the size of the learning set ndata, the mean length of the traces nlen,
the conformance to the SUL, and the number of correctly learned models. Every experiment was re-
peated five times and we give the mean value of these five repetitions. We consider here one exception:
the number of correctly learned models gives the absolute number and not the mean. For example, if we
write “1” then one out of five learning repetitions learned the correct automaton.

In the following, we describe the obtained results based on our three research questions.
(RQ 1) Can passive learning based on a random sample outperform active learning? A comparison

of Table 5 and Table 6 shows that the obtained results for two case studies provide a slightly different
conclusion. For the BLE case study, in some cases, it was possible to learn the correct model with a
random sample size equal to the active sample size. More precisely, for one BLE device, CYW43455,
we always learn correctly with a random sample. We could also correctly learn for most experiments of
the CC2652R1. The CYW43455 and CC2652R1 are two SULs with a smaller input alphabet size. We
see that if the number of inputs increases, the chance to learn correctly decreases. Note that for the BLE
case study the average length of Sample 3 is shorter than the one of Sample 1. This is due to the fact
that the generation of Sample 3 is based on the size of the SUL.

For the MQTT case study (Table 6), we never managed to learn correctly with the considered random
samples. Even if active learning requires a large set of queries, passive learning seems to be no alternative
for this case study. However, the passive learning conformance was always quite high with around
99% conformance. A closer look at the passively learned automata revealed that the size of the learned
automata was considerably larger than the size of the ground truth automata. For example, the average
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Table 5: Passive automata learning results for the BLE case study. Every experiment was repeated five
times. The table gives the mean value and the corresponding standard deviation in brackets. For the
number of correctly learned models, the sum over all five experiments is given.

CC2640
excl. feat.

CC2640
excl. pair. CC2650 CC2652R1 CYBLE-

416045-02 CYW43455 nRF52832

ndata 979.00 534.00 530.00 296.00 318.00 1184.00 530.00
nlen 12.64

(0.25)
11.46
(0.32)

9.84
(0.30)

12.69
(0.37)

9.47
(0.23)

13.54
(0.20)

10.04
(0.24)

Conformance
(random) %

99.92
(0.01)

99.93
(0.02)

99.89
(0.06)

100.00
(0.00)

99.93
(0.06)

100.00
(0.00)

99.94
(0.03)

Conformance
(coverage) %

99.80
(0.02)

99.86
(0.03)

99.82
(0.08)

100.00
(0.00)

99.89
(0.08)

100.00
(0.00)

99.85
(0.09)

Sample 1
rand
|SL∗ |

Correct model 0 0 0 5 1 5 0
ndata 1958.00

(0.00)
1068.00
(0.00)

1060.00
(0.00)

592.00
(0.00)

636.00
(0.00)

2368.00
(0.00)

1060.00
(0.00)

nlen 12.49
(0.16)

11.62
(0.15)

10.02
(0.20)

12.33
(0.24)

9.61
(0.16)

13.55
(0.10)

10.10
(0.15)

Conformance
(random) %

99.97
(0.01)

99.98
(0.03)

99.98
(0.02)

100.00
(0.00)

100.00
(0.00)

100.00
(0.00)

99.97
(0.02)

Conformance
(coverage) %

99.92
(0.04)

99.96
(0.06)

99.96
(0.04)

100.00
(0.00)

100.00
(0.00)

100.00
(0.00)

99.93
(0.06)

Sample 2
rand

2∗ |SL∗ |

Correct model 0 2 2 5 5 5 0
ndata 979.00 534.00 530.00 296.00 318.00 1184.00 530.00
nlen 16.55

(0.05)
9.03

(0.07)
7.46

(0.09)
5.99

(0.07)
4.49

(0.10)
24.08
(0.12)

7.54
(0.07)

Conformance
(random) %

99.93
(0.04)

99.87
(0.04)

99.87
(0.06)

99.81
(0.14)

99.79
(0.10)

100.00
(0.00)

99.91
(0.03)

Conformance
(coverage) %

99.83
(0.09)

99.76
(0.07)

99.76
(0.08)

99.86
(0.10)

99.72
(0.11)

100.00
(0.00)

99.81
(0.04)

Sample 3
rand
long

Correct model 0 0 0 1 0 5 0

model size for HBMQTT based on Sample 1 was 64.4 instead of 17. We assume that this increase in
size results from sparse data. Since observations are missing, states could not be merged.

For one BLE and MQTT device, we evaluated how the average trace length and the number of sam-
ples influence the success of passive learning (Sample 4). Figure 5 presents the results in two heatmaps.
The x-axis indicates a factor by which the L∗ learning sample size |SL∗ | is multiplied. The y-axis gives
the mean length of the traces. The darker the green and the higher the number, the more the passively
learned model conforms to the SUL. We observe that shorter traces are not sufficient to learn correctly,
even if the sample size is large. However, to achieve 100% conformance large random samples with long
traces are required. Hence, considering that the interaction with the SUL should be decreased, passive
learning does not provide an alternative.

(RQ 2) Does the considered active automata learning algorithm generate an optimal sample? Since
passive learning does not improve the number of required interactions with the SUL, we investigate if
there still is potential for optimization in active learning. To evaluate the potential of active learning, we
generated an optimized learning sample set as described in Sect. 3.2. With this optimized sample, passive
learning could correctly learn the minimal model of the SUL for all examples. Table 3 and 4 show the
same potential for improvement in both case studies. On average, the BLE active learning sample size
could be reduced by 76% and for MQTT by 78%. For example, the BLE device CC2652R1 could be
learned with a sample of size 50 instead of 296. Additionally, the average length can be significantly
reduced. The reduction for BLE is on average 67% and for MQTT 43%.

If we compare the experimental results between the random data sizes shown in Fig. 5 and the
learning with the data set from L∗, we conclude that the generation of a sufficient data set via random
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Table 6: Passive automata learning results for the MQTT case study. The data presentation is similar to
Table 5. The values in the brackets indicate the standard deviation.

ActiveMQ emqtt HBMQTT Mosquitto VerneMQ
ndata 6340.00 6351.00 4434.00 4506.00 4781.00
nlen 11.00

(0.11)
12.00
(0.05)

10.46
(0.08)

10.98
(0.06)

10.07
(0.10)

Conformance
(random) %

99.97
(0.01)

99.96
(0.01)

99.85
(0.01)

99.95
(0.00)

99.95
(0.02)

Conformance
(coverage) %

99.95
(0.02)

99.94
(0.02)

99.79
(0.02)

99.91
(0.01)

99.92
(0.04)

Sample 1
rand
|SL∗ |

Correct model 0 0 0 0 0
ndata 12680.00 12702.00 8868.00 9012.00 9562.00
nlen 11.02

(0.06)
11.99
(0.03)

10.54
(0.03)

11.00
(0.04)

9.94
(0.05)

Conformance
(random) %

99.98
(0.01)

99.97
(0.01)

99.98
(0.01)

99.98
(0.01)

99.98
(0.01)

Conformance
(coverage) %

99.97
(0.01)

99.97
(0.01)

99.96
(0.02)

99.96
(0.02)

99.97
(0.02)

Sample 2
rand

2∗ |SL∗ |

Correct model 0 0 0 0 0
ndata 6340.00 6351.00 4434.00 4506.00 4781.00
nlen 26.99

(0.05)
27.00
(0.02)

25.52
(0.02)

27.00
(0.15)

25.45
(0.12)

Conformance
(random) %

99.97
(0.01)

99.97
(0.01)

99.99
(0.01)

99.95
(0.06)

99.97
(0.02)

Conformance
(coverage) %

99.96
(0.02)

99.96
(0.02)

99.97
(0.01)

99.94
(0.06)

99.97
(0.02)

Sample 3
rand
long

Correct model 0 0 0 0 0

techniques requires significantly more traces than the L∗ data set. For example, the heatmap on the right
side representing the results of the MQTT broker ‘Mosquitto’ shows that even if the random data set size
is 9 times larger and the average trace length is approximately 9 inputs longer than in the set required
by L∗, passive learning still is not able to learn correctly. These results motivate the usage of active
automata learning techniques. Based on the observation of Aichernig et al. [4], the choice of the learning
algorithm and the corresponding conformance testing technique influences the required interaction with
the SUL. Further improvements might be observable by the usage of other active learning algorithms,
e.g. TTT [18], that avoid redundancy in the performed queries.

(RQ 3) Can random sampling support active automata learning?

To reduce the redundancy of performed queries, we supported active automata learning by the usage
of a cache. The motivation is to avoid query executions on the SUL since the observations can be
retrieved from data already visible in the cache. For this, we initialized the cache with a random sample
as it is generated in Sample 1. Hence, the size of the sample conforms to the number of queries required
by the L∗ algorithm to learn correctly. In the performed experiments, we measure how many additional
queries are required by the L∗ algorithm to generate a conforming model.

Our obtained results show that a cache initialized by a random sample only covers the minority of
the data that must be queried by active learning. On average, for the BLE case study, randomly generated
data only represents 27% of the total data required to learn correctly. As a result, additionally 63% more
queries had to be made by active learning. For MQTT, only 10.6% of the performed queries were already
present in the randomly initialized cache.
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Figure 5: Each heatmap presents, for one example of the BLE and MQTT case study, the influence of
size and average trace length required to learn correctly.

4 Related Work

In the literature, the topic of model inference from network protocols is well studied. Several presented
approaches used active automata learning to generate behavioral models of different protocols like 802.11
4-way handshake [35], BLE [28, 29], (D)TLS [32, 13], MQTT [36], QUIC [30], SSH [14], or TCP [12].
They motivate the usage of an active technique by considering it as a testing approach. Assuming that
the system is input-enabled, every input is executed in every state. Therefore, input sequences are tested
that might be rare during common usage. This technique is also known as protocol state fuzzing since
the execution of unusual input sequences might reveal unexpected behavior.

There is also work that uses passive techniques. Comparetti et al. [10] presented a general framework
for passively learning communication protocols. Their evaluation includes protocols like malware bots,
SMTP, or SIP. For learning, they used recorded sessions. Hence, their learned behavioral models only
cover parts of the protocol that can be observed during normal user sessions. Other behavioral aspects
have been excluded. Doupé et al. [11] generate behavioral models of web applications. Their proposed
technique uses a web crawler to generate a set of traces that navigates through the web application. These
crawled traces are then used to infer a model of the web application. Both passive techniques [10, 11]
use their inferred models to fuzz test the SUL.

The comparison of automata learning techniques mainly focuses on algorithms of the same paradigm.
Initially, the Zulu challenge [9] addressed the problem of performing equivalence queries in active au-
tomata learning. The goal is to establish a conformance testing technique that can effectively test equiv-
alence considering a limited testing budget. This challenge has now been replaced by the Rigorous
Examination of Reactive Systems (RERS) [19] challenge. RERS provides new benchmarks for eval-
uating learning techniques based on reactive systems. Aichernig et al. [4] published a comprehensive
evaluation of different combinations of active automata learning algorithms and conformance testing
techniques. In their work, they conclude that the improved L∗ version from Rivest and Schapire [31] or
the TTT algorithm [18] should be used for active learning. For conformance testing, they recommend
the randomized version of the partial W-method [15] or a mutation-based technique [3]. For passive
learning, Lang et al. [20] proposed a challenge to passively learn DFAs via state merging, including also
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the aspect of sparse data. The winning algorithm is based on evidence-driven state merging which was
able to generalize better on sparse data. Lo et al. [21] performed an empirical case study that evaluated
different passive learning algorithms, e.g. kTail [6], also considering sparse data. A comparison of pas-
sive and active learning was performed by Aichernig et al. [2]. In their work, they compared a passive
and an active variant of a search-based learning algorithm for timed automata. Their comparison shows
that the active algorithm outperforms the passive variant in terms of required data to learn correctly.

5 Conclusion

Summary. Active automata learning of network protocols has been an active research area in recent
years. However, this technique might be limited in practice since a fault-tolerant learning setup that
enables active interaction is required. This might hamper the application to autonomous systems. Passive
automata learning, instead, infers a behavioral model from a given data set and does not require an
interface that enables an active interaction with the SUL. Motivated by this, we compared active and
passive learning by evaluating practical case studies. Our results show that we require a larger randomly
generated sample for passive learning than the data set used by active automata learning. Furthermore,
we showed that the data set generated by active learning can be optimized in terms of size. In summary,
our results justify the costs of establishing an interface that allows an active interaction with the SUL.
Discussion. The primary goal for the inference of network protocols is to learn a conforming model with
the lowest possible number of interactions. This goal is motivated by the fact that the interaction over
a network to the SUL can be expensive in the sense that queries might be repeated since they were lost
or arrived delayed. Our presented evaluation discusses if passive learning paradigms can overcome this
problem of active interaction since they are based on a given data set. In practice, log files might represent
such a data set. However, for our presented evaluation, we considered a randomly generated data set,
since real-world logging data is assumed to be incomplete. For example, consider the BLE use case:
logging data would probably not contain any parameter request that is not required for the establishment
of a valid connection. The comparison with L∗ shows that even an active learning algorithm that queries
a lot of redundant information is better than passive learning. However, our experiments on optimizing
the data set of the L∗ algorithm indicate that there is room for improvements also on the side of active
learning. We expect that other active algorithms, like TTT [18], or other conformance testing techniques
can help to improve active learning in the reduction of the required interaction with the SUL.
Future Work. For future work, it would be interesting to compare active and passive automata learning
based on other practical case studies discussed in the literature. For example, to consider also addition-
ally modeling formalisms like stochastic or timed systems, for which also active and passive learning
algorithms exist. Additionally, a general comparison between several active and passive learning tech-
niques on theoretical challenges, like RERS [19], could be useful. Furthermore, other learning algo-
rithms should be considered to further optimize the required data set. A different direction would be
the evaluation of a combination of passive and active learning as proposed by Walkinshaw et al. [38].
Such an approach might unite the advantages of both learning paradigms since the proposed technique
only requires an active interaction for conformance testing. Such a technique might reduce the required
interaction with an SUL compared to an entirely active technique.
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