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We introduce the logic QKD
S which is a normal multi-modal logic over finitely many modalities that

additionally supports bounded quantification of modalities. An important feature of this logic is that
it allows to quantify over the information components of systems and, hence, can be used to derive
justifications. We compare the proposed logic with Artemov’s justification logic and also report on a
prototypical implementation of a satisfiability solver of this logic and show some examples.

1 Introduction

We are in the process of building complex autonomous systems that perceive their environment, exchange
information and decide on their actions based on their understanding of the world. The hope is that the
multitude of perspectives will lead to a more complete view of the world and enable systems to act more
optimally. The problem is that information from different sources is often inconsistent. Inconsistencies
are one of the major concern of formal methods, as the presence of an inconsistency usually means that a
contradiction is derivable, and thus — ex falso quodlibet — any proposition is derivable.

A wide variety of formal methods have been developed for the analysis and verification of complex
cyber-physical systems (CPS). A central approach is to create a formal model of the system (and its
environment) and then to prove certain properties using rigorous logical-algorithmic methods such as
model checking [1, 11, 10]. However, model checking of cyber-physical systems is often limited to the
verification of temporal properties. Common assumptions are that the internal state and control laws of
the system are precisely known and that such systems are deployed in limited environmental scenarios.
Hence, the temporal behaviour of the system and its environment can be predicted within quantifiable
uncertainties [18].

Especially with regard of autonomous CPS, such simplifying assumptions must be revised or — at
least — be re-examined [28, 6]. Autonomous systems are supposed to operate in complex and open
environments with a high degree of independence and self-determination. An autonomous system knows
its action alternatives and independently decides for one of the possible actions [15]. Such a decision,
however, shall then be justifiable and explainable — a requirement that research projects like XAI [12] or
Perspicuous Computing [27] address. Moreover, a justification shall run through the entire perception
and decision-making process of the system. Ideally, a justification keeps record of the sources from
which the information originates that was used for decision-making. Such sources of information are, for
example, external agents, but also internal subsystems, such as basic control laws, neural networks for
image recognition/classification [28], or a catalogue of traffic rules [2].

Increasingly, modal logic concepts are proposed to formally describe autonomous systems as epistemic
agents [28, 13, 15]. The numerous epistemic logics dealing with belief and knowledge (as true belief) in
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multi-agent systems [14, 36] are joined by other modal logics. E.g., the Center for Perspicuous Computing
[27] proposes to use the knowledge representation of description logics [35, 31, 20], whereas [28] proposes
to use differential dynamic logics, and [15] refers to the belief–desire–intention framework [30]. Another
important candidate is Artemov’s justification logic [5], as this logic promises for the first time to add a
justification component to previous epistemic logics, thus satisfying Plato’s characterisation of knowledge
as justified true belief.

This paper deals with justification in a fallibilist process of cognition and decision making. Instead
of belief and knowledge, it is based on the weaker notion of information, see Barwise [7, Ch. 9] and
Gerbrandy [19] for a short discussion of the contrast of knowledge and information. Unlike belief or
knowledge, information need not be consistent in its entirety. Consequently, we abandon destructive
techniques that contract the current set of beliefs as proposed in the AGM framework1 of belief revision
[36]. Rather, we stockpile and maintain each source of information regardless of whether or not it
contributes to a consistent worldview. A statement is justifiable in this setting if and only if we find a
group of information sources that is free of contradiction in its totality and from which the statement can
be substantiated.

In Sec. 2, I propose to use the well-known multimodal logic KD
S — also referred to as KD

n in [14] — to
model the information distribution within an information processing system S , where S = {s1, . . . ,sn} is
a the set of atomic information components s1, . . . , sn of a system. In KD

S the principle of information dis-
tribution — referred to as distributed knowledge in [14] — holds. That is, we consider arbitrary nonempty
subsets of S , called instances of S . The information of an instance is given as the deductive closure of the
information of its atomic components. Hence, KD

S allows us to reason about the information of arbitrary
combinations of information components. This in turn yields an analogous notion of justifications as
in Artemov’s justification logic [5, 4]. I gradually introduce basic features of KD

S along an application
example of automated driving. Besides proposing KD

S as a justification logic and comparing it with
Artemov’s justification logic, this section does not contain any new results, but compiles those results
which will be used in the rest of the paper.

In Sec. 3, I propose the extension of KD
S by quantification over instances yielding the logic QKD

S , and
propose a tableau calculus for QKD

S . With the help of quantifiers, the justifiability of a statement φ is
defined formally as an existential quantified formula running over consistent instances of the systems
S. Afterwards, I revisit the running example and show some results with the help of a prototypical
implementation of this tableau.

Finally, in Sec. 4, I summarise the presented work, and address a still outstanding comparison of the
solver with other solvers. I also address possible extensions of QKD

S and mention conceivable philosophical
positions that are touched by this approach.

2 A Normal Logic of Justification

The following running example will guide us to through this section. A vehicle with an automated driving
system supporting conditional driving automation (SAE Level 3, [26]) is driving on a multi-lane road.
The vehicle observes that [o1] the current lane is blocked and that [o2] there is a gap on the neighbouring
lane that is just large enough for a lane change. The car has to decide whether it should brake or use the
small gap for the lane change. In addition to the observation data, the driving system of the vehicle uses
the following information in its decision-making process:

1The framework is named after its proponents, Alchourrón, Gärdenfors, and Makinson.
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• The driving system adheres to the following rules: [r1] Whenever the lane is blocked, brake or
change lane. [r2] Never change lane when no gap is available. [r3] Never brake when the goal is to
drive fast. [r4] When the goal is to drive considerately, then change lane only if there is a large gap.

• Since the user is in a hurry, for this trip he set the goal [g1] to drive fast. During the initial start-up
dialog, the user has chosen [g2] a considerate driving behaviour as default.

Let Σ be a formalisation2 of all given information as follows:

[o1]laneBlocked, [o2](gapAvailable∧¬largeGapAvailable),
[r1](laneBlocked→ brake∨changeLane)
[r2](changeLane→ gapAvailable)

[r3](beFast→¬brake)
[r4](beConsiderate∧changeLane→ largeGapAvailable)

[g1]beFast, [g2]beConsiderate.

The given information is contradictory as there is no satisfying truth assignment of the propositional
variables of the formalisation. Hence, the automated driving system sends out a request to intervene to
the user. The surprised user takes control, gets an overview but misses to use the small gap. Since this
situation occurs several times during his trip, he finally misses his appointment and sends a disappointed
experience report to the manufacturer.

2.1 Labels are Normal Modalities

We put ourselves in the role of the manufacturer, analyse the formalisation of the situation described
above, and immediately identify the unsatisfiability of Σ as a cause of the request to intervene. Since
we already structured the information by labels, it is quite natural to ask what labels contribute to the
contradiction.

To this end, let us discuss the role of the labels first. The labels refer to various information components.
For example, [g1] refers to the initial start-up dialog of the car, [r4] refers to the engineer who added comfort
functions to the vehicle, and [o1] refers to the front radar of the vehicle. The notation [o1]φ denotes that
φ belongs to the information of [o1], and — contrary to the given situation above — [o1]¬laneBlocked
describes a situation where the front radar has the information that the lane is not blocked. Moreover, we
use negation of labelled formulae to denote the absence of information: ¬[o1]laneBlocked formalises
that the front radar does not have the information that the lane is blocked, i.e., the front radar considers it
possible that the lane is not blocked. Often, we write 〈o1〉φ instead of ¬[o1]¬φ . Readers familiar with
modal logic immediately recognise that [o1] and 〈o1〉 are a pair of dual modal operators. In the following,
any label s will be a modality and [s] the corresponding normal modal operator. A normal modal operator
[s] has access to all logical tautologies via the necessitation rule

from ` φ infer ` [s]φ , (Nec)

2A hint on the formalisation of rule [r4] seems appropriate. The rule consists of two nested conditionals, the latter
being “change lane only if there is a large gap”. The correct formalisation of the “only if”-expression is changeLane→
largeGapAvailable, just as the popular mathematical jargon “A if and only if B” decomposes into “A if B”, formalised as
B→ A, and “A only if B”, formalised as A→ B. Hence, the whole rule is formalised as beConsiderate→ (changeLane→
largeGapAvailable). Finally, the listed form is obtained by a simple equivalence transformation.
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and its information is closed under logical consequence. The latter is obtained by the Kripke schema

` [s](φ → ψ)→ [s]φ → [s]ψ. (K)

We denote the set of all labels by S and we will refer to elements of S as atomic modalities, or — for
short — as atoms.

2.2 The Principle of Information Distribution

In order to identify those atoms of S that contribute to a contradiction, it is advantageous to consider
arbitrary nonempty sets of atomic modalities, to which in turn we also assign modal operators. We will
refer to such sets as instances. E.g., the instance {o1,o2} consists of the atoms o1 and o2 and [o1,o2]
denotes its assigned normal modal operator. Further, we stipulate that for all instances the following
principle of information distribution — in [14] referred to as distributed knowledge — holds: For all
instances s = {s1, . . . ,sn} ⊆ S and t = {t1, . . . , tm} ⊆ S it holds

` [s](φ → ψ)→ [t]φ → [s, t]ψ (Dist′)

where s, t = {s1, . . . ,sn, t1, . . . , tm}.3 Hence, [o1,o2] has access to all information that o1 or o2 have, and
also to all logical consequences that can be obtained by combining the information of o1 and o2, as [o1,o2]
is again closed under logical consequence.

2.3 Syntax and Axiomatisation of KD
S

We formally introduce the logic KD
S . It turns out that KD

S is actually a normal multi-agent logic with
an axiom for information distribution over (nonempty) groups of agents. The axiom of information
distribution (or an equivalent form thereof) is often found in multi-agent epistemic logics, sometime
referred to as group information or distributed knowledge [21, 14, 19]. However, the presented logic
lags behind most epistemic logics, as it does not make any stronger requirements on the modality of
information. Information neither has to be factually true, like it is the case for epistemic logics dealing
with knowledge, nor be free of contradictions, as it is usually stipulated in logics of belief. The main
difference lies in the designation of the modalities. While the usual epistemic logics identify the modalities
with agents, we use modalities for fairly liberally chosen information sources.

The following two definitions give the language and an axiomatisation of KD
S .

Definition 1. Let V be a enumerable set of propositional variables and S be a finite set of atomic
modalities. A formula φ of KD

S is any expression that satisfies the Backus-Naur form

φ ::=⊥ | A | φ → φ | [s]φ ,

where A ∈ V , and s⊆S is an instance, i.e., nonempty.
We make use of additional logical operators that are defined as abbreviations in the usual way, e.g., ¬φ

abbreviates φ →⊥ and 〈s〉φ abbreviates ¬[s]¬φ . The logical connective→ is treated as right-associative
and the operator precedence is defined according the descending sequence ([s],〈s〉,¬,∨,∧,→,↔).

3Note that we deliberately avoid the obvious use of the set operation s∪ t and prefer to write s, t here, as this would yield
confusion with the reversed notational conventions in Boolean modal logic or description logic ALB. Indeed, in these logics the
proper notation of s, t would be rendered by s∩ t.
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Definition 2. Let S be a finite set of atoms and V be an enumerable set of propositional variables. The
logic KD

S is given by the rules and axioms for all nonempty subsets s and t of S

from ` φ and ` φ → ψ infer ` ψ; (MP)

from ` φ infer ` [s]φ ; (Nec)

` φ if φ is a substitution instance of a propositional tautology; (0)

` [s](φ → ψ)→ [s]φ → [s]ψ; (K)

` [s]φ → [t]φ if s⊆ t. (Dist)

Note that KD
S is the simplest normal multi-modal logic in which the principle of information distribution

Dist′ holds, and in [14] it is referred to as KD
n where n denotes the number of atoms.

2.4 Semantics of KD
S

It is a well-known result (e.g. [21, 14, 19]) of modal logic that KD
S is sound, complete, and also decidable

for the following interpretation over certain Kripke structures.

Definition 3. Let S be a nonempty set of modalities. A multi-modal Kripke structure for KD
S is the tuple

M = (Ω, 7→,π), where

(i) Ω is the nonempty set of possible worlds;

(ii) 7→ is a function that maps any atom s ∈ S to a binary relation 7→s on Ω, called the accessibility
relation of s. The extension of 7→ to all instances is given by the intersection of their atomic
components, i.e., for any instance s⊆S we have 7→s :=

⋂
t∈s 7→t;

(iii) π is a function that maps any possible world ω of Ω to a subset of V , π is called the truth assignment.

For any Kripke structure M as above, ω ∈Ω, A ∈ V , and any instance s⊆S we define:

(M,ω) 6|=⊥,
(M,ω) |= A ⇐⇒ A ∈ π(ω),

(M,ω) |= φ → ψ ⇐⇒ (M,ω) |= φ implies (M,ω) |= ψ,

(M,ω) |= [s]φ ⇐⇒ for all ω
′ ∈Ω with ω 7→s ω

′ it holds (M,ω ′) |= φ .

Whenever the model relation (M,ω) |= φ holds, (M,ω) is a said to be a pointed model of φ . Whenever
there exists ω with (M,ω) |= φ , we say that φ is satisfiable in M and write M |= φ for short. We say that
φ is valid, denoted by |= φ , if and only if M |= φ holds for all Kripke structures M as above.

Let M be a Kripke structure as above. The definition captures the following properties of information.
An instance s has information φ at ω , i.e., (M,ω) |= [s]φ , if and only if φ holds at all possible worlds that
s has access to from ω . An instance s considers an information φ as possible at ω , i.e., (M,ω) |= 〈s〉φ , if
only if s has access from ω to at least one possible world ω ′ where φ holds. As ⊥ cannot be assigned to
true, there is no possible world at which ⊥ holds and > holds at any possible world. It follows that an
instance s has inconsistent information at ω , formally (M,ω) |= [s]⊥, if and only if there is no possible
world that is accessible from ω for s. Now, we specify exactly what it means when we speak of consistent
or inconsistent instances. An instance s is called inconsistent in the model M if and only if M |= [s]⊥
holds. Otherwise, s is called consistent and the dual statement M |= 〈s〉> holds.
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2.5 Running Example Revisited

We return to the running example and consider the following derivation from Σ that shows that KD
S indeed

allows us to identify those atoms that contribute to a contradiction, i.e., there is an instance s⊆S such that
Σ ` [s]⊥ holds.4

[r3,g1]¬brake from [r3] and [g1], (1)

[o1,r1](brake∨changeLane) from [o1] and [r1], (2)

[o1,r1,r3,g1]changeLane from (1) and (2), (3)

[r4,g2](changeLane→ largeGapAvailable) from [r4] and [g2], (4)

[o1,r1,r3,r4,g1,g2]largeGapAvailable from (3) and (4), (5)

[o1,o2,r1,r3,r4,g1,g2]⊥ from [o2] and (5). (6)

Eventually, in (6) we derived that the instance {o1,o2,r1,r3,r4,g1,g4} has contradicting information. We
are tempted to say that the entirety of its atoms o1, o2, r1, r3, r4, g1, g4 provides a justification for a
contradiction. Let us give in to temptation and look at the intermediate derivation steps. In line (1) we see
that rule r3 and goal g1 justify not to brake, in line (3) we see that o1, r1, r3, g1 together justify to change
lane. However, line (5) is a bit out of the ordinary as we usually would not accept rules and goals as a
justification for an observation. For the present we leave it that way and take it as an indicator to introduce
an additional order over the atoms later on.

2.6 Relation to Justification Logic

The reference to justifications in the previous section was given with full intent. Indeed, for each line
(1)–(6) an analogous derivation is also possible in justification logic [5, 4] (with axiomatically appropriate
constant specification). To see this, we briefly outline Artemov’s justification logics.

Justification logics [4] are variants of epistemic modal logics where the modal operators of knowledge
and belief are unfolded into justification terms. Hence, justification logics allow a complete realisation
of Plato’s characterisation of knowledge as justified true belief. A typical formula of justification logic
has the form s:φ , where s is a justification term built from justification constants, and it is read as “φ is
justified by s”. The basic justification logic J0 results from extending propositional logic consisting of 0
and MP by the application axiom and the sum axioms

` s:(φ → ψ)→ t:φ → (s · t):ψ, (Appl)
` s:φ → (s+ t):φ and ` s:φ → (t + s):φ , (Sum)

where s, t, [s · t], [s+ t], and [t + s] are justification terms that are assembled from justification constants
using the operators + and · according to the axioms. Justification logics tie the epistemic tradition together
with proof theory. Justification terms are reasonable abstractions for constructions of proofs. If s is a
proof of φ → ψ and t is a proof of φ , then the application axiom postulates that there is a common proof,
namely s · t, for ψ . Moreover, if we have a proof s for φ and some proof t, then the concatenations of both
proofs, s+ t and t + s, are still proofs for φ . An important predecessor of justification logic is the logic of
explicit proofs, LP [3], which from today’s perspective turns out to be an extension of J0.

The key observation here is that Appl is a variant of the principle of information distribution Dist′.
Hence, many promising features noted so far immediately carry over to KD

S . However, there is a subtle

4The notation Σ ` φ means that there exists a finite subset {σ1, . . . ,σm} ⊆ Σ such that ` (σ1∧·· ·∧σm)→ φ .
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difference. While in KD
S grouping of modalities is an idempotent, commutative, and associative operation,

this is not the case for ·. The justification terms s · t, s · (t · t), and t · s are pairwise different. In KD
S such a

fine grained distinction is not possible. All justification terms noted before coincide to the instance {s, t}
in KD

S .
All substitution instances of classical logical tautologies, like A∨¬A and s:A∨¬s:A, are provable in

justification logics. But in contrast to modal logics, justification logics do not have a necessitation rule.
The lack of the necessitation rule allows justification logics to break the principle of logical awareness,
as s:(A∨¬A) is not necessarily provable for an arbitrary justification term s. Certainly, restricting the
principle of logical awareness is attractive to provide a realistic model of restricted logical resources.
Since we are also interested in revealing and resolving contradictions, restricting the principle of logical
awareness only would hide latent contradictions. E.g., there is no obvious way to derive a justification of
a contradiction from s:(A∧B) and t:¬A without using additional logical resources. Hence, we claim that
the principle of logical awareness is indispensable to discover all contradictions that are logically possible.

Nevertheless, justification logic can simulate unrestricted logical awareness by adding proper axiom
internalisation rules ` e:φ for all axioms φ and justification constants e. In such systems a weak variant
of the necessitation rule of modal logic holds: for any derivation ` φ there exists a justification term t
such that ` t:φ holds. Since φ was derived using axioms and rules only, also the justification term t is
exclusively built from justification constants dedicated to the involved axioms. Beyond that, t is hardly
informative as it does not help to reveal extra-logical sources of a contradiction.

3 Towards a Logic of Justifiability

Our analysis so far has shown that in KD
S instances play the role of justifications. Or, to pronounce that an

instance is the necessary quality of a justification, an information φ is justifiable if and only if there exists
an instance that is consistent and has the information φ . Hence, the canonical next step is to introduce
quantification over instances into our logic. We introduce a variable modal operators x and the quantifiers
∀ and ∃ into our logic and call this extension QKD

S . On the justification logic side, a similar approach has
been explored in Fitting’s paper [17], in which quantification over evidence is introduced for the logic
LP, yielding the logic QLP. However, to the author’s best knowledge it is still unknown whether QLP is
decidable.

Definition 4. Let V be an enumerable set of propositional variables and S be a finite set of atomic
modalities. A formula φ of QKD

S is any expression that satisfies the Backus-Naur form

φ ::=⊥ | A | φ → φ | [s]φ | [x]φ | ∀s⊆x⊆ t(φ) | ∀x⊆ t(φ),

where A ∈ V , s⊆S and t⊆S are instances, and x is the variable modal operator. In formulae of the form
∀s⊆x⊆ t(φ) we call s the lower bound and t the upper bound. The formula ∀x⊆ t(φ) has only an upper
bound. The unbounded quantification in ∀x(φ) is short for ∀x⊆S(φ). As usual, ∃ denotes the dual of ∀.

The variable x is free in the formula φ if there is at least one occurrence of x in φ that is not within
the scope of a quantifier. By φ [s/x] we denote the formula obtained by replacing all free occurrences of
the variable modal operator x by the instance s. A closed formula is a formula where x is not free.

Note that the quantification in QKD
S is very restrictive, as there is only one variable symbol. However,

together with the fact that S is a finite set this allows for an easy transfer principle: Any closed formula
of QKD

S can be transferred to a formula of KD
S by substituting ∃s⊆x⊆ t(φ) with the finite disjunction∨

s⊆r⊆ t φ [r/x], and substituting ∀s⊆x⊆ t(φ) with the finite conjunction
∧

s⊆r⊆ t φ [r/x]. Hence, there is
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no need to provide an extension of the axiomatisation or the semantics. The soundness, completeness, and
decidability results of KD

S carry over to QKD
S directly. Note that the complexity of a decision procedure

might change due to the exponential blow up of the formula size by the translation principle given above.
However, complexity considerations are beyond the introductory character of this paper.

In the following section, we will report a prototypical implementation of a solver accepting formulae
of QKD

S . In particular, it avoids the naive explicit enumeration of the instances indicated above. Since the
solver searches for a satisfying model of a given formula, we feed it with the negation of a formula and
use that the unsatisfiability of the negated formula is equivalent to the provability of the formula under
consideration.

3.1 A Tableau for QKD
S

We use a prefixed tableau prover [25, 9, 31] for QKD
S and reduce the modal satisfiability problem to a

Boolean satisfiability problem by using a similar incremental translation and solving method as has been
proposed in [23]. Due to the usage of prefixes, a tableau proof consists of a single tree, see [16]. The
tableau starts with a single branch that contains the input formula in negation normal form. The tableau
rules are then applied to the branches of the tree until either all branches are closed, i.e., each branch
contains a literal and its negation, or there exists at least one branch that remains open as all possible rules
have been applied to the formulae of the branch. In the former case, the input formula is unsatisfiable. In
the latter case, the input formula is satisfiable and the open branch provides a partial model of the input
formula.

Let S = {s1, . . . ,sn} be a set of n atoms and p = (ps1 , . . .psn) a vector of n Boolean variables. Any
instance s⊆S corresponds to a particular truth assignment of p, i.e., psi is assigned to true if and only if
si ∈ s. We use Boolean formulae over the variables in p to constrain the set of feasible truth assignments.
E.g.,

∧
si∈s psi ∧

∧
si 6∈s¬psi uniquely determines the assignment corresponding to s⊆S as above, and the

formula
∨

si∈S pi encodes a nonempty subset of S, i.e., an arbitrary instance of S.
We extend the Boolean satisfiability problem to support several variable assignments. Each possible

world ω is assigned with an individual Boolean vector p = p(ω), and Boolean formulae over p constrain
the set of instances that have access to ω . E.g., consider the instance s = {s1,sn}. The formula ps1 ∧ psn

ensures that any feasible assignment for p correspond to a superset of s, as at least ps1 and psn have to
be true under the given constraint. Formulae of this kind are denoted by s⊆p and used to ensure that
at least s has access to ω (and possibly also some t with s⊆ t). It follows that the solver only needs to
maintain a single general accessibility relation 7→. The individual accessibility ω 7→s ω ′ is represented by
ω 7→ ω ′ and ω ′ |= s⊆p. An immediate consequence is that ω 7→s ω ′ is represented if only if ω 7→si ω ′ is
represented for all atoms si of s. Hence, the semantic compatibility of this approach is ensured.

In addition, the solver supports an assignment β for the variable modality x. That is, β is an assignment
for the Boolean vector x = {xs1 , . . . ,xsn}. E.g., consider again the instance s = {s1,sn}. The formula
¬xs2 ∧¬xs3 ∧·· ·∧¬xsn−1 ensures that any assignment of x corresponds to a subset of s, as only xs1 and xsn

can be true under this assignment. By x⊆s we denote the Boolean formula as before together with the
additional constraint that β may not correspond to the empty set. We use x⊆s to encode the upper bound
restriction of an existential quantifier.

The prefixes in this tableau consists of pairs (ω,β ), where ω denotes a possible world and β denotes
an assignment for the variable x. We write (ω,β ) |= φ to denote that (ω,β ) is the prefix of φ . The tableau
makes use of an explicit representation of the accessibility relation, i.e., it maintains a map 7→ that allows
it to look up all possible worlds ω ′ that are reachable from ω . We write ω 7→ ω ′ to denote that ω ′ is
reachable from ω .
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Note that, for the clarity of presentation, we only give the rules for upper bounded quantifiers.

• The ∧ and ∨-rules are classical rules for a Boolean tableau.

(∧)
(ω,β ) |= φ ∧ψ

(ω,β ) |= φ

(ω,β ) |= ψ

and (∨)
(ω,β ) |= φ ∨ψ

(ω,β ) |= φ | (ω,β ) |= ψ
.

• The following 〈s〉- and [s]-rules are adapted from [23]. While the 〈s〉-rule is transferred to the
tableau directly, the [s]-rule is extended to supports the principle of information distribution. This
extension was found in [9, Ch. 2, pp. 122–123].
The 〈s〉-rule introduces a new possible world ω ′ and adds ω 7→ ω ′ to the accessibility relation. The
constraint s⊆p stipulates that at least s has access to ω ′. The [s]-rule takes a formula [s]φ and
an accessible world ω ′ and adds the prefixed formula (ω ′,β ) |= s⊆p→ φ to the current branch.
Hence, whenever s has access to ω ′ then φ has to hold.

(〈s〉)
(ω,β ) |= 〈s〉φ

(ω ′,β ) |= s⊆p∧φ

ω 7→ ω ′, ω ′ new
and ( [s] )

(ω,β ) |= [s]φ , ω 7→ ω ′

(ω ′,β ) |= s⊆p→ φ
.

• The following 〈x〉- and [x]-rules for variable modal operators are similar to their variants for constant
modal operators but depend on the assignment β for x. Readers may convince themselves that the
constraint x⊆p can actually be encoded into a Boolean satisfiability solver using the encoding
scheme as indicated above.

(〈x〉)
(ω,β ) |= 〈x〉φ

(ω ′,β ) |= x⊆p∧φ

ω 7→ ω ′, ω ′ new
and ( [x] )

(ω,β ) |= [x]φ , ω 7→ ω ′

(ω ′,β ) |= x⊆p→ φ
.

• The ∃-rule introduces a new valuation β ′ for x and puts the constraint x⊆s on this valuation. The
∀0-rule generates a substitution instance where the variable is substituted by its upper bound.

(∃)
(ω,β ) |= ∃x⊆s(φ)

(ω,β ′) |= x⊆s∧φ

β ′ new
and (∀0 )

(ω,β ) |= ∀x⊆s(φ)

(ω,β ) |= φ [s/x]
.

Finally, the ∀s-rule generates a constrained substitution instance φ [t/x] whenever there occurs
another formula of the form 〈t〉ψ or [t]ψ that has the same ω-prefix in the tableau. The constraint
t⊆s ensures that φ [t/x] has to hold at least if t⊆s. For the implementation, this constraint can be
checked before application of the rule. Similarly, the ∀x-rule takes the valuation β ′ of any variable
modal operator that has the same ω-prefix and adds the constrained formula x⊆s→ φ . That is, if
β ′ assigns x to some subinstance t⊆s, then φ has to hold, and any free occurrence of x in φ is now
interpreted as t by β ′.

(∀s )
(ω,β ) |= ∀x⊆s(φ), (ω,β ′) |= 〈t〉ψ or (ω,β ′) |= [t]ψ

(ω,β ′) |= t⊆s→ φ [t/x]
and
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(∀x )
(ω,β ) |= ∀x⊆s(φ), (ω,β ′) |= 〈x〉ψ or (ω,β ′) |= [x]ψ

(ω,β ′) |= x⊆s→ φ
.

It remains to argue that this tableau is a sound and complete decision procedure for QKD
S . We use that

the rules for ∧, ∨, 〈s〉 and [s] provide a decision procedure for KD
S , see [9, Ch. 2]. While the existential

fragment of this logic is quite directly translated into a Boolean satisfiability problem and not further
discussed here, we show that the rules for the universal quantifier are complete for QKD

S . Clearly, a ∀-rule
that produced all possible substitution instances would yield a complete decision procedure. However, the
∀0-rule ensures that at least the substitution instance of the upper bound is produced. All other substitution
instances are produced only when a corresponding instance occurs in the branch with the same ω-prefix.
This approach is sufficient. Assume we found a pointed model (M,ω) for some formula φ where s is a
least instance occurring in φ . Then for any instances t⊆s we can substitute t for s in φ and construct a
pointed model (M′,ω) for φ [t/s] by setting ω 7→t ω ′ in the new model if and only ω 7→s ω ′ in the original
model. But this means that either there is a specific instances that contradicts a bounded ∀-statement or it
is sufficient to show the satisfiability of the substitution instance for the upper bounding instance.

The solver is implemented in C++ and uses minisat to solve the Boolean satisfiability problem. An
early prototype is available at https://vhome.offis.de/~willemh/episat/. The site will be updated
regularly.

3.2 Justifiability in Practice

Let us use quantified expression to analyse our running example with the help of the solver. Note that
these examples are also distributed with the prototype. Due to nondeterminism the concrete partial model
may change in the satisfiable case.

1. The formula ∃x([x]⊥) holds if and only if there is some instance that has inconsistent information.
As we already have seen, the automated driving system of the vehicle has inconsistent information
and we can expect that Σ→ ∃x([x]⊥) is derivable. Indeed, as we already have shown above, it
suffices to choose x = [o1,o2,r1,r3,r4,g1,g2] to see that the existential formula holds. We use the
solver and verify that the negation Σ∧∀x(〈x〉>) is unsatisfiable. Indeed, the solver cannot find
a model and returns the unsatisfiability result. Notice the difference between the derivation in a
proof calculus as given above and the satisfiability solver. While we could directly read off the
instance having inconsistent information from the derivation, the solver provides us no hint in case
of unsatisfiability.

2. Is there at least some instance that has consistent information? I.e., can we satisfy Σ∧∃x(〈x〉>)?
In this case, the solver returns a satisfying model consisting of two possible worlds ω0 and ω1,
where ω1 is accessible for o1 from ω0. Further, it returns the partial truth assignment ω1 |=
{¬beConsiderate,¬beFast,laneBlocked} and the valuation x = o1. This is indeed a model
for the formula, as there is only one world ω1 accessible from the actual world ω0, and only
o1 can access it. Hence, 〈o1〉> holds. Moreover, also the subformula [o1]laneBlocked of Σ is
satisfied, as laneBlocked holds in any o1-accessible possible world which precisely is ω1. All
other subformulae of Σ are trivially satisfied by the semantics of the modal operator [.]. As this is
an obvious but somewhat uninformative result, we turn to the next analysis.

3. Do the rules have inconsistent information? Can we satisfy Σ∧∀x⊆{r1,r2,r3,r4}(〈x〉>)?
The solver returns a satisfying model that consists of two possible worlds ω0 and ω1 with

https://vhome.offis.de/~willemh/episat/
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ω0 7→{r1,r2,r3,r4} ω1 and the partial truth assignment ω1 |= {¬changeLane,¬largeGapAvailable,
¬laneBlocked,¬brake,¬beFast,¬beConsiderate,¬gapAvailable}. To convince ourselves
that this is again a model, we have to take the model properties into account: As ω1 is accessible
for {r1,r2,r3,r4}, it is also accessible for all instances s⊆{r1,r2,r3,r4}.

4. The previous inquiries were mainly motivated to give the reader an overview of the possibilities
of the solver and enable him to interpret the output models. Let us now turn to a more interesting
inquiry that analyses the role of the user specified goals. Can we find a model where an instance
exists that has consistent information and includes all rules and observations? Can we satisfy
Σ∧∃{r1,r2,r3,r4,o1,o2}⊆x⊆S(〈x〉>)?
The solver returns the model ω0 7→{r1,r2,r3,r4,o1,o2} ω1 with the truth assignment ω1 |= {changeLane,
laneBlocked, ¬largeGapAvailable, ¬beConsiderate, gapAvailable, ¬beFast, ¬brake}
and the valuation x = {r1,r2,r3,r4,o1,o2}. This is a quite convincing result. If the automated
driving system would have given up the user specified goals, it could have found a solution where it
restrained from braking and changed the lane.

5. We ask whether we can find an instance x that includes the rules, has consistent information
and considers braking a possible manoeuvre. Is it possbile to satisfy Σ∧∃{r1,r2,r3,r4}⊆x⊆S
(〈x〉brake∧ [x](>))?
The solver returns the model ω0 7→{r1,r2,r3,r4,o1,o2,g2} ω1 with the truth assignment ω1 |= {¬beFast,
beConsiderate,¬changeLane,laneBlocked,gapAvailable,¬largeGapAvailable,brake}
and x = {r1,r2,r3,r4,o1,o2,g2}. That is, roughly speaking, if braking would be possible, than
{r1,r2,r3,r4,o1,o2,g2} can be made a consistent instance with the information as given for ω1.

4 Conclusion

I presented the logic QKD
S that has strong connections to justification logic. In contrast to justification

logic, QKD
S supports for the quantification over a variable modality. In combination with the proposed

tableau-based satisfiability solver, QKD
S can be used to identify information components justifying given

statements. Moreover, I reported on a prototypical implementation of the satisfiability solver accompanied
by some exemplary inquiries along our running example.

An extensive comparison with other solvers remains as future work. To the best of the author’s
knowledge this is the first proposal of a decidable theory supporting quantification over modalities.
Certainly, there is a lack of comparable solvers and benchmarks. An obvious approach would be to use
the translation of bounded quantification to finite dis- and conjunctions as indicated above and compare
against solvers for KD

n . Unfortunately, such solvers are rare. Neither InKreSAT [23], nor solvers for
description logic like Racer [20] or FaCT++ [35] support the principle of information distribution, as the
intersection of roles is not part of the description logics SHOIQ or SRIQ(D). The only promising
candidate known to the author is the first-order logic theorem prover SPASS that fully supports Boolean
modal logic of which KD

n is a fragment [37]. As the tableau for the multi-modal fragment Kn without the
principle of information distribution follows the same rules as InKreSAT, a detailed comparison of this
fragment has been postponed so far, as we do not expect any interesting insights of such a comparison
beside of potentially revealing weak points of the prototypical implementation.

Another important aspect is to investigate the theoretical complexity of the satisfiability problem for
QKD

S which is at least PSPACE-hard [14], and the complexity of the presented tableau calculus.
The current focus of development is mainly on the extension of this logic. The prototype of the

solver already supports a partial order of the atoms in S. Such a partial order implies that the set of
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instances has the interesting structure of a semilattice presentation [8, 32, 33]. That is, any instance is
either irreducible or it can be written as a finite join of entities. However, the semilattice may contain
entities that are irreducible but not atomic. Nonatomic entities are of special interest. They inherit all
information of smaller instances but allow for the emergence of novel information, e.g., by quantifying
over their instances. This gives rise to powerful nonmonotonic capability as entities can mimic reasoning
by default, autoepistemic reasoning or counterfactual reasoning [24]. More details are planned for a
follow-up paper, until then readers may convince themselves that the partial order of the atoms can simply
be added to the Boolean formulae encoding instances.

Any expectation that QKD
S could be a logic that resolves inconsistencies fully automatically has to

remain unfulfilled. While this logic provides a rigorous framework in which information atoms can be
held and maintained independently, it cannot decide to which atoms should be given preference over
others. Nevertheless, QKD

S gives us raise to a weak notion of belief. We may say that a proposition
φ is believed in a system S if and only if φ is justifiable and ¬φ is not justifiable, i.e., if and only if
∃x(〈x〉>∧ [x]φ)∧∀x(〈x〉> → 〈x〉φ) holds. To put this definition in legal terms, φ is believed if and
only if there is a noncontradictory group of witnesses for φ , and all other groups of witnesses either
contradict themselves or have no argument against φ . This concept of belief thus is a reasonable selection
of appropriate justifications, and remains consistent in itself. A further observation is that this kind of
belief is no longer closed under logical consequence and, hence, is not a normal modality.

Another important extension in this regard is to allow positive or negative introspection axioms [14]
to QKD

S , i.e., for any φ and s ∈ S

` [s]φ → [s][s]φ and (4)

` 〈s〉φ → [s]〈s〉φ . (5)

This would yield the logic QKD
S 45 of instances with additional epistemic power. In contrast, we are less

interested in the extensions

` 〈s〉> or (D)

` [s]φ → φ , (T)

as we consider these axioms as too powerful. Logics where at least one of these principles holds do not
allow for contradicting instances and are therefore of lesser interest for the analysis of justifiability.

A temporal expansion to better understand the dynamic aspects of information distribution within
systems would be very attractive. The interaction of information and time is certainly an appealing
epistemic challenge here.

A profound philosophical reflection of the proposed approach would require an intensive examination
of Hempel and Oppenheim’s concept of a DN-explanation [22], Toulmin’s concept of an argument [34],
and also the fallibilist position of Popper’s critical rationalism [29], just to name a few.
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