
M. Farrell & M. Luckcuck (Eds.):
Third Workshop on Formal Methods
for Autonomous Systems (FMAS2021)
EPTCS 348, 2021, pp. 1–19, doi:10.4204/EPTCS.348.1

© M. Schwammberger & G. Vaz Alves
This work is licensed under the
Creative Commons Attribution License.

Extending Urban Multi-Lane Spatial Logic to Formalise

Road Junction Rules∗

Maike Schwammberger
University of Oldenburg
Oldenburg, Germany

schwammberger@informatik.uni-oldenburg.de

Gleifer Vaz Alves
Federal Univeristy of Technology - Parana

Ponta Grossa, Brazil

gleifer@utfpr.edu.br

During the design of autonomous vehicles (AVs), several stages should include a verification
process to guarantee that the AV is driving safely on the roads. One of these stages is to
assure the AVs abide by the road traffic rules. To include road traffic rules in the design
of an AV, a precise and unambiguous formalisation of these rules is needed. However, only
recently this has been pointed out as an issue for the design of AVs and the few works on this
only capture the temporal aspects of the rules, leaving behind the spatial aspects. Here, we
extend the spatial traffic logic, Urban Multi-lane Spatial Logic, to formalise a subset of the
UK road junction rules, where both temporal and spatial aspects of the rules are captured.
Our approach has an abstraction level for urban road junctions that could easily promote the
formalisation of the whole set of road junction rules and we exemplarily formalise three of the
UK road junction rules. Once we have the whole set formalised, we will model, implement,
and formally verify the behaviour of an AV against road traffic rules so that guidelines for
the creation of a Digital Highway Code for AVs can be established.

1 Introduction

Even though autonomous vehicles (AVs) are not yet thoroughly used on our roads [19], we are
aware that sooner or later we shall see AVs driving on the roads [15]. We consider autonomous
vehicles that comply with SAE levels 4 or 5 [18], meaning that the vehicle is either completely
driverless, or it manages specific manoeuvres driverless, without a human driver intervening at
any point.

So, there is a need to face many challenges. Especially, those issues related to the safety
of AVs, i.e. how to assure that the AV behaves safely on the roads? For that, several issues,
like obstacle avoidance, sensing the environment, speed control, object detection and recognition
and the proper use of traffic rules, need to be addressed.

So far, the issue of traffic rules has not been a major concern for the design of an AV in the
research community, as discussed by Prakken [26] and Alves et al. [3]. However, some recent
work like the references [5], [25] and [21] have started to draw attention to the challenge of
transforming a Highway Code into a Digital Highway Code. Notice that a set of traffic rules
composes the rule book or precisely the Highway Code, while a Digital Highway Code is the
version of the Highway Code supposed to comprehend those traffic rules designed for AVs. There
is a clear trade-off on how to wrap the traffic road rules into a digital format in a way that the
fewest possible changes are made considering the existent Highway Codes [5]. At the same time,
this digital version of the Highway Code should be understandable for the AVs [21].
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2 Extending UMLSL for Road Junction Rules

However, for a Digital Highway Code that works for AVs, it is necessary to tackle the
challenges of translating road traffic rules (written in natural language) into a language under-
standable for autonomous systems. Such language needs to be precise and unambiguous since
these rules are involved in the process of safety assurance of road users. Once these rules are
formalised and deployed into an AV, the AV behaviour can be properly checked against road
traffic scenarios to assure that safety road requirements are being followed by the AV (NB: here
safety requirements are only those related to the road traffic rules).

In this paper, we follow ideas related to previous work (see ref. [4]), where the UK Highway
Code (specifically the section of Road Junction rules [11]) has been used as a basis for the proof-
of-concept presented in ref. [4]. For the road traffic rules from the UK Highway Code, temporal
and spatial aspects can be identified. For instance, “look all around before entering the junction”;
“do not cross a road until there is a safe gap” (“before” and “until” reveal a temporal aspect,
while “safe gap” reveals a spatial aspect). As a consequence, we need a formalism suitable to
abstract not only the temporal aspects but also the spatial elements of the road traffic rules.
Linear temporal logic (LTL) is a clear answer to capture the temporal aspects, and was used in
references [3,4], to represent the temporal elements of the road junction rules. Ref. [4] presents
an architecture for modelling, implementing, and formal verifying the behaviour of an agent
(representing an AV) against three road traffic rules (from the UK Highway Code).

As a proper candidate to represent spatial elements of traffic rules we identify Urban Multi-
lane Spatial Logic (UMLSL), which is used to formalise traffic situations at intersections in [29].
UMLSL is an interval logic that bases on Interval Temporal Logic (ITL) from [22] and is thus
dedicated to capture spatial aspects of traffic. Also, automotive-controlling timed automaton
(ACTA) are presented as a formal semantics for a crossing controller for turn manoeuvres. We
aim to extend the logic UMLSL from [29] so that the road junction rules from the UK Highway
Code can be formalised and analysed with it.

Our key goal is to enrich the approach from [3,4] so that not only the temporal order between
events, but also spatial aspects, e.g. a safe gap, can be formalised. For this, we introduce
formalisations for non-autonomous traffic participants and road side units (e.g. a traffic sign)
and dedicated traffic rule controllers to the approach from [29].

Our contribution is organised as follows. As a background, we present an overview over the
specification of temporal aspects of traffic rules from [4] and give an overview over the spatial
traffic logic UMLSL from [29] in Sect. 2. We motivate and define our UMLSL extension for
traffic rules in Sect. 3 and exemplarily formalise some of the UK traffic rules in Sect. 4. We
present related work to our approach in Sect. 5 and conclude our work in Sect. 6 with a summary
and some insights into future work possibilities.

2 Background

We give preliminary information about the approach on formalising traffic rules using temporal
logic from [3] in Sect. 2.1 and in Sect. 2.2, we present details on the abstract model and logic
Urban Multi-lane Spatial Logic UMLSL from [29].

2.1 The Road Junction Rules

In the UK Highway Code there are different sections which handle the road traffic rules for
Overtaking, Roundabouts, Road Junctions, among others [11]. Here we are concerned with the
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section of Road Junction rules, which is composed by 14 rules, from rule 170 to 183. The road
junction rules describe how the driver is supposed to behave when entering a road junction,
turning to right or left, waiting for a traffic light, etc. As it follows we show the first three
rules (170, 171, and 172) that we have been previously formalised in LTL [3] and subsequently
used in our agent-based architecture [4]. Observe that LTL can be used for specifying temporal
properties and it uses basic propositional operators (∧, ∨, →, ¬) and temporal modalities (�,
♦, ©, ∪, representing resp. always, eventually, next, and until).

Rule 170 (UK Highway Code): You should watch out for road users (RU). Watch out for
pedestrians crossing a road junction (JC) into which you are turning. If they have started to
cross they have priority, so give way. Look all around before emerging (NB: For the sake of
clarity, we choose to use the term enter as an action which represents not only a driver entering
a road junction, but also emerging from a road junction to another road). Do not cross or join
a road until there is a safe gap (SG) large enough for you to do so safely.

Rule 170, represented in LTL, describes when the autonomous vehicle (AV) may enter the
junction (JC):

� ((watch(AV, JC, RU) ∧ (¬ cross(RU, JC) ∧ (exists(SG, JC)))

→ ((exists(SG, JC) ∧ ¬ cross(RU, JC)) ∪ enter(AV, JC))))

Informal Description: it is always the case that the AV is supposed to watch for any road
users (RU) at the junction (JC) and there are no road users crossing the junction and there is a
safe gap (SG). Then, no road users crossing the junction and the existence of a safe gap should
remain true, until the AV may enter the junction.

Rule 170 represented in LTL, when the autonomous vehicle (AV) should give way at the
junction (JC):

� (watch(AV,JC,RU) ∧ (cross(RU,JC)) → give-way(AV,JC))

Informal Description: it is always necessary to watch out for road users (RU) and check
if there is a road user crossing the junction. Then, the AV should give way to traffic.

Rule 171 (UK Highway Code): You MUST stop behind the line at a junction with a ‘Stop’
sign (ST) and a solid white line across the road. Wait for a safe gap (SG) in the traffic before
you move off.

Rule 171 represented in LTL:

exists(ST,JC) → � (stop(AV,JC) ∪ (exists(SG,JC)

∧ (exists(SG,JC) ∪ enter(AV,JC))))

Informal Description: when there is a stop sign (ST), then it is always the case the AV

should stop at the junction until there is a safe gap (SG). And the safe gap must remain true
until the AV enter at the junction.

Rule 172 (UK Highway Code): The approach to a junction may have a ‘Give Way’ sign (GW)
or a triangle marked on the road (RO). You MUST give way to traffic on the main road (MR)
when emerging from a junction with broken white lines (BWL) across the road.

Rule 172 represented in LTL:

� ((exists(AV,RO) ∧ enter(AV,JC))

∧ ((exists(BWL,JC) ∨ exists(GW,JC)) → give-way(AV,MR)))

Informal Description: It is always the case that when there is an AV driving on a Road
(RO) and the AV enters the junction and there is a Broken White Line (BWL) or a Give Way sign
(GW), then the AV should give way to the traffic on the Main Road (MR).
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2.2 An Abstract Model for Urban Traffic Scenarios

We introduce the Urban Multi-lane Spatial Logic (UMLSL) of [29] which allows for the formal-
isation of traffic manoeuvres at intersections. The term intersection is equal to the term road
junction that is used in the UK Highway Code and in [3] (cf.Sect. 2.1). Hitherto, no traffic
rules have been considered using UMLSL. Nonetheless, some road junction rules are already
expressible with it “by accident”. E.g. safety in the sense of collision freedom has been formally
proven in [8, 29,30] through mathematical proofs and UPPAAL model-checking [6].

Formulae of UMLSL are evaluated over an abstract representation of real-world intersections.
Thus, we first introduce details about this abstract model before giving details on the logic
UMLSL itself. We focus on those concepts from [29] that we actually extend in Sect. 3 and
we leave out formal definitions for most of the concepts in this section. We refer the interested
reader to [29] for more formal and in-depth details for our basis. As a running example, we use
the traffic situation that is depicted in Fig. 1.
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Figure 1: Example for the abstract model from [29].

The abstract model contains a set CS of crossing segments c0,c1, . . . and a set L of lane
segments 0,1, . . . that connect different crossings. Each crossing segment and each lane segment
has a finite length. Each car is assigned a unique car identifier A,B, . . . ∈ I and a real value for
the position pos of its rear on a lane or crossing segment. For our example from Fig. 1, we use
car E as the ego car with a valuation ν(ego) = E to refer to this car. We distinguish between the
reservation of a car that formalises the space a car is actually occupying (cf. res(D) = {3}) and
the claim of a car, indicating the space a car plans to drive on in the future (cf. clm(D) = {2},
where car D plans to change back to lane 2 after it finished overtaking the slower car F). A
claim is thus comparable to setting the turn signal. We also differentiate between claims and
reservations on lane segments (clm, res) and on crossing segments (cclm, cres).

Urban road network. Connections of lane and crossing segments are formalised by a di-
rected graph structure called urban road network N with the set of nodes V = L∪CS. The
directed edges between lane and crossing segments specify the driving direction for continuous
lane segments. For instance, while a car is allowed to drive from lane 6 onto crossing seg-
ment c3, this is not allowed the other way around. Each car C ∈ I follows an infinite path
pth(C) with pth : I → (Z → V ), resembling its travelling route through the urban road net-
work. E.g. in Fig. 1, the path of car E for turning right at the depicted crossing is given by
pth(E) = 〈. . .6,c3,c2,c1,1, . . .〉.

Traffic snapshot. Information like the road network N , reservations, claims, positions and
paths of all cars are collected in a global traffic snapshot TS. For the example from Fig. 1, we
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have clm(E) = cclm(E) = /0, as no space on a lane or crossing segment is claimed for car E (only
car D has an active claim clm(D) = {2}). Further on, we observe cres(E) = /0 and res(E) = {6}
as car E does not occupy a crossing segment but has some space reserved on lane 6. Car B,
currently turning at the intersection, has reserved lanes res(B) = {5,6} and a crossing reservation
cres(B) = {c3}.

One traffic snapshot can be compared to one snapshot of the overall traffic at an intersection
at one moment. Whenever, e.g., time passes or a car claims or reserves a new lane or crossing
segment, the traffic snapshot changes with respective traffic snapshot evolution transitions. For

instance, with a time transition TS0
t−→ TS1 a traffic snapshot TS0 evolves to a traffic snapshot

TS1, meaning that new positions are determined for all cars C ∈ I after t time units passed and
cars moved along their paths with respect to their speed and acceleration values. Other traffic
snapshot evolution transitions are triggered by the cars themselves. E.g., with a transition

TS0
cc(E)−−−→TS1, crossing segments are claimed for car E along its path through the intersection.
Virtual view. For reasoning about traffic manoeuvres with the two-dimensional logic Urban

Multi-lane Spatial Logic (UMLSL), it is unrealistic and moreover unnecessary to consider an
arbitrarily large traffic snapshot TS. Instead, we consider only a finite excerpt of TS called
Virtual View (cf. [32]). A virtual view V (E) = (L,X ,E) is built around the ego car E and
contains a sequence of parallel virtual lanes L and an extension interval X that determines how
far “ahead” and “back” car E looks. For the example from Fig. 1 and for a right-turn view V (E)
for car E, we have virtual lanes L = 〈〈6,c3,c2,c1,1〉,〈7,c0,0〉〉.

Urban Multi-lane Spatial Logic. Formulae of UMLSL are built from (spatial) atoms, Boolean
connectors and first-order quantifiers. Further on, spatial concepts that are inspired by Interval
Temporal Logic (ITL) [22] are used. UMLSL introduces four different types of spatial atoms;
The atom re(C) (resp. cl(C)) formalises the reservation (resp. claim) of an arbitrary car C on
some lane or crossing segment. With the atom free, free space on a lane or crossing segment is
formalised and cs represents crossing segments. Note that no differentiation between between a
crossing claim or reservation and a lane claim or reservation is done on the syntactical level of
UMLSL. Also note that the lane number of a reserved lane is not available on the syntactical
level of the atom re(C). This is as the goal of this atom is neither to specify the identifier of a
reserved lane nor the exact position of a car C on that lane, but rather to formalise whether a
lane exists on which car C has a reservation. By combining these atoms with Boolean connectors,
we can, e.g., state that car E occupies a crossing segment (cs∧ re(E)) or that a crossing segment
is free (cs∧ free).

With the spatial connector a , UMLSL uses a variation of the chop operator ; from ITL.
With a spatial formula re(E)a free, we can, e.g., state that there is free space in front of the
reservation of our ego car E. Note that “in front of” or “right of” are informal descriptions for
the adjacency of the two space intervals that are formalised by the atoms re(E) and free.

Beside the horizontal chop operator a , UMLSL also introduces a vertical chop operator
which is used by arranging two UMLSL formulae φ1 and φ2 one above the other. With this,
elements that are located on two neighbouring lane segments can be formalised. E.g., the

formula
re(D)
cl(D) describes the situation where car D has a reservation on lane 3 and a claim on the

neighbouring lane 2.
UMLSL introduces a comparison u = v of variables u,v ∈ Var to, e.g., compare two car iden-

tifiers and a comparison ` = r, to reason about the length ` of a spatial interval. This is, e.g.,
used for checking the distance of a car to an upcoming intersection.
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Definition 1 (Syntax of UMLSL). Consider a car variable c ∈ CVar, a real variable r ∈ RVar and
general variables u,v ∈ Var. The syntax of atomic UMLSL formulae is defined by a ::= cs | true |
u = v | ` = r | free | re(c) | cl(c), whereas an arbitrary UMLSL formula φU is formalised as follows:

φU ::= a | ¬φ | φ1∧φ2 | ∃c : φ1 | φ1aφ2 | φ2
φ1

We denote the set of all UMLSL formulae by ΦU.

In the following, we frequently use the abbreviation 〈φ〉 to state that an arbitrary formula
φ ∈ΦU holds somewhere in a view V (E) of car E. This modality is used to abstract from exact
positions in UMLSL formulae.

Example 1 (Syntax of UMLSL). For the example from Fig. 1, the UMLSL formula

ca(E) ≡ 〈re(E)a(free∧ ` < dc∧¬cs)acs〉 (1)

formalises the “crossing ahead check” for car E, meaning that in front of (in Fig. 1: “right of”)
the reservation re(E) of car E there is some free space, that is not on an intersection, with a
length smaller than dc and in front of (in Fig. 1: “right of”) that there is a crossing space. 4

The logic UMLSL is given a semantics that defines when a traffic snapshot satisfies a given
formula. For this, the semantics of a UMLSL formula is evaluated over a traffic snapshot TS,
a virtual view V (E) and a variable valuation ν . The variable valuation ν respects types of
variables, so that ν : CVar→ I and ν : RVar→ R. Giving formal definitions for the semantics
of the basic logic UMLSL would go beyond the scope of formalising traffic rules. However, we
explain the semantics of our extension in Sect. 3.

3 UMLSL for Traffic Rules (USL-TR)

To formalise traffic rules (cf. [11]), we need to be able to reason about traffic signs and non-
autonomous traffic participants (e.g. pedestrians, cyclists, human-driven cars, . . .), which is not
yet possible using UMLSL.

Our goal is to keep the necessary UMLSL extension as minimal and elegant as possible.
At the same time, we aim for a versatile UMLSL extension that is not tailored around the
three traffic rules from Sect. 2.1 that we exemplarily formalise in the following Sect. 4 with our
extension. This is as we want to keep the extension as general as possible so that a wider variety
of traffic rules is formalisable. This includes that our extension is not limited to UK traffic.

To avoid a cumbersomly long abbreviation like “UMLSL-TR”, we name the extended logic
by Urban Spatial Logic for Traffic Rules (USL-TR). USL-TR contains all elements of UMLSL
and extends its abstract model and logic by two elements:

• A formalism for static objects (i.e. pedestrians, road-side units like traffic signs, traffic
lights, . . .), and

• a formalism for non-autonomous road users (e.g. cyclists, human-driven cars...).

While it may seem unusual to capture pedestrians within the term “static objects”, this is a
reasonable design decision for the scope of this paper as we explain in the following; One of
the main features of the basic logic UMLSL is that formulae of UMLSL are evaluated over a
cut-out of an abstract model, which again is built upon a directed graph topology called urban
road network. This urban road network contains lane and crossing segments that are connected
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via (un-) directed edges and does not contain sidewalks or a roadside in general in its current
version. A semantical introduction of such aspects is non-trivial but seems interesting for future
work (cf. Sect. 6). Due to this, we cannot formalise the movement of a pedestrian, e.g. that a
pedestrian on a sidewalk “is about to cross a road”. Thus, for now, we capture a pedestrian that
is about to cross a road at a crosswalk or already does so with an abstract static object which
is either present or not in one traffic snapshot TS. Informally, this can be compared to a virtual
cross-walk that appears whenever a pedestrian wishes to cross a road and that reserves the
whole width of the road for crossing pedestrians. With this, we can, e.g., formalise the fragment
“Watch out for pedestrians crossing a road junction” from Rule 170 of the UK Highway Code
(cf. Sect.2.1). Note that this paper’s goal is to formalise traffic rules and that we do not to reason
about collision avoidance strategies with pedestrians. For the latter, e.g., movement directions
of pedestrians would need to be considered in future work.

Also note that the described design decision implies that we deviate from the term road user
that was used in the UK traffic rule book [11] and in the approach that we enrich [3]. Thus, from
now on, the term road user comprises non-autonomous and autonomous entities that are not
only crossing a road, but are actually able to drive on lane and crossing segments, e.g. cyclists,
(non-) autonomous cars, motorcyclists, . . .. We frequently abbreviate the term “autonomous
road user” to AV. In the following, we first describe two approaches that inspire our work in
Sect. 3.1. After that, we define the necessary extensions to the abstract model for urban traffic
in Sect.3.2 and then introduce syntax and semantics for the new logic USL-TR in Sect. 3.3.

3.1 From Hazards to Road-Side Units and Road Users

The extension USL-TR is inspired by two previous approaches that are presented in [9, 23].
Both approaches introduce moving or stationary hazards to UMLSL’s predecessor logic MLSL
from [17] to allow for hazard warning protocols. MLSL focuses solely on highway traffic, i.e. one-
way traffic and no road intersections. Thus, our contribution is to adapt the ideas from [9,23] to
the urban traffic case. The term “stationary hazards” from [23] comprises, e.g., a road accident,
dense fog or a damaged road and the term “moving hazards” is used in [9] for non-autonomous,
human-driven, cars. The main goal of both works is to show that a car receives a hazard warning
message early enough and that no collisions with a hazard occur. Basically, we broaden the term
“hazard” to a larger variety of objects to formalise traffic rules. We describe key differences and
adaptation ideas in the following for both works [9, 23].

In [23], the authors introduce an object, namely a single stationary hazard, to the highway
logic MLSL. The key difference from our approach is that [23] is tailored to cope with multi-lane
highway scenarios and not with urban intersections. The second difference is that only one single
hazard is allowed for the entire world and that this single hazard is hard-coded into the traffic
snapshot TS. To formalise traffic rules, we allow for an arbitrary number of road-side units in
one traffic snapshot TS and we add a possibility to add new and delete outdated static objects
to a traffic snapshot TS. E.g., the need to install a warning sign for a damaged road might exist
after an accident occurred but becomes obsolete after the damage was repaired.

In [9], the author proposes adaptations of [23] that allow for multiple stationary and moving
hazards on a highway. We adopt a function from [9] that allows for an AV to turn into a moving
hazard and vice versa. This is motivated by reality, as it allows for a take-over by a driver, e.g. if
the AV has a malfunction that blocks an autonomy function or simply because only some types
of manoeuvres can be handled autonomously by the AV (cf. SAE level 4).
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Besides the domain “urban traffic”, a key difference of our approach from [9] is that we do
not give stationary objects a positive extension on a lane or crossing segment. This is because
we assume road-side units to be positioned beside the road, not on it and because collisions with
road-side units are not a topic of this paper. Further on, we are not restricted to “hazards”, but
instead consider a larger variety of static objects and non-autonomous road users.

3.2 Changes to the Abstract Model for Urban Traffic

We explain how to integrate static objects and road users into the existing abstract model for
urban traffic from [29]. Throughout the remainder of this paper, new concepts are explained
using the traffic situation that is depicted in Fig. 2.
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2B

34 A
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Figure 2: Example for an abstract model with both static objects (stop and give-way sign, a
pedestrian), a non-autonomous road user (cyclist M) and autonomous road users A, B and E.

We introduce the set O containing identifiers for static objects like roadside units into our
model. E.g., a stop sign could be identified with stop ∈O. To include static objects o ∈O into
the traffic snapshot TS, we introduce a function obj, which assigns a set of tuples containing a
position and a lane or a crossing segment to each object o. With this, the same type of object
can exist more than only once in the overall traffic snapshot TS (cf. the two priority signs in
Fig. 2). Note that, as motivated in the previous section, we do not assign a positive extension
(“size”) to static objects. This means that in our case an object is a dot with a position on
the road. This also holds for objects that would have a positive extension in reality, like the
pedestrian depicted in Fig. 2. The intuition is that some of the traffic rules, e.g. rule 170 from
the UK Highway Code (cf. Sect. 2.1), demand that a car should “watch out for pedestrians
crossing a road junction” and that for this, it is sufficient that an autonomous car realises that
there exists a pedestrian at a position at the roadside. However, for future work it might be of
interest to add objects with an extension to our model (cf. Sect. 6).

We include identifiers for road users into the existing set Iof car identifiers and name I by
set of identifiers in the following. With this we follow the intuition of [9], which is to allow for
an AV C to turn into a non-autonomous road user and vice versa.

Note that, in our abstract model, we do not formally distinguish between different types
of non-autonomous road users and that the visualisation of a bicycle for road user M is only
depicted in Fig. 2 as a visual reminder that not all road users are AVs as before in Sect. 2.2 in
Fig. 1. This differentiation is not necessary as those three UK traffic rules that were introduced
in Sect. 2.1 and that we formalise in Sect. 4 also do not differentiate between different road
users. E.g., rule 170 says to “watch out for road users” in general. However, for future work it
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is of interest to distinguish between different road users. For instance, a cyclist may move with
a slower velocity than a motorcyclist.

We do not repeat the lengthy definition of traffic snapshot elements that was introduced
for UMLSL in [29]. Instead, we only define our object and road user extensions to the traffic
snapshot TS and abbreviate other traffic snapshot elements with ?. Such other elements include,
e.g., (crossing) reservations, the urban road network N , and positions of cars (cf. Sect. 2.2).

Definition 2 (Traffic Snapshot Extensions). We extend the Definition of a traffic snapshot from
[29] and abbreviate the extension with TS = (?,ob j,aut), where ? summarises those elements of
TS which are defined in [29] and which are not altered by this definition. Given an arbitrary road
user identifier C ∈ I and a static object O ∈O the new elements in TS are defined as follows:

• obj : O→P((L∪CS)×R) such that obj(O) yields a set of 2-tuples of each a lane resp.
crossing segment s ∈ L∪CS together with a real position of O on the respective segment s
and

• aut : I→ B indicates whether an element C ∈ I is an AV or a non-autonomous road user.

Example 2 (Extended Traffic Snapshot). Let us consider the traffic situation that is visualised
in Fig. 2 and let us assume that the give way sign gw ∈O is placed close to the intersection on
lane 0 at position 98 (exemplarily assuming that lane 0 is, e.g., 100 units long and that thus
98 is indeed “close to the intersection”). We then have obj(gw) = {(0,98)}. For the stop signs,
which are placed at lanes 0 and 4 respectively, we set obj(stop) = {(0,98),(4,198)}, exemplarily
assuming that lane 4 is longer than lane 0 and that the stop sign at lane 0 is installed at the
same position as the give way sign. Note that no positions for stop signs on the neighbouring
lanes 1 and 5 are provided, as these are both lanes leaving away from the intersection. For the
pedestrian ped ∈O, we set obj(ped) = {(2,90),(3,90)} as we assume that for crossing the road,
both lane segments 2 and 3 are reserved for her as a virtual cross-walk.

For the road users, we have aut(M) = 0 for the cyclist M and aut(A) = aut(B) = aut(E) = 1
for the autonomous cars A, B and E. The reserved spaces of all road users A, B, E and M are
assigned according to the definition of a traffic snapshot TS from [29]: We have lane reservations
res(A) = {4}, res(B) = {2}, res(E) = {0}, res(M) = {5} and a crossing reservation cres(M) = {c0}
for road user M on crossing segment c0. 4

With Def. 2, we define the extended structure of one single traffic snapshot with objects and
road users at one distinct moment. As introduced before, a traffic snapshot changes, e.g. when
a car C ∈ I reserves some crossing segments or when time passes and new positions for all road
users are determined.

For static objects O ∈ O, we introduce a function place assigning a new tuple containing a
lane or crossing segments and a position to O. Reversely, a previously placed object O can be
removed from the traffic snapshot TS through a function rm. Note that we use the overriding
notation ⊕ of the specification language Z for function updates [33].

Definition 3 (Placing and removing static objects). Consider a current traffic snapshot TS =
(?,obj,aut), where ? again marks those traffic snapshot elements that were introduced in [29] and
that are not of concern for this definition. For all O ∈ O, s ∈ L∪CS and p ∈ R the following
transitions hold:

TS
place(O,s,p)−−−−−−−→TS′ ⇔ TS′ = (?,obj′,aut) ∧ obj′ = obj ⊕ {O 7→ obj(O)∪ (s, p)}}

TS
rm(O,s,p)−−−−−→TS′ ⇔ TS′ = (?,obj′,aut) ∧ obj′ = obj ⊕ {O 7→ obj(O)\{(s, p)}}
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Example 3 (Placing and removing static objects). Again consider the example from Fig. 2.
Through a function call place(stop,2,50), the visualised traffic snapshot evolves as a new instance
of the stop sign stop is placed at lane segment 2 at position 50. Note that the set union operator
ensures that existing placements of stop ∈O are not altered. Alternatively, with a function call
rm(stop,0,98), the instance of the stop sign at lane 0 at position 98 is removed, where the set
difference operator ensures that only the one instance of stop is removed from obj(stop). 4

For non-autonomous road users ru ∈ RU, we follow [9] and introduce a switching function
that can be used to switch an autonomous car C ∈ I to a non-autonomous road user and vice
versa.

Definition 4 (Switching the status of road users). Consider a current traffic snapshot TS =
(?,ob j,aut). For all C ∈ I the following transition holds.

TS
switch(C)−−−−−→TS′ ⇔ TS′ = (?,obj′,aut) ∧ aut′ = aut ⊕ {C 7→ ¬aut(C)}

Example 4 (Switching the status of road users). On calling switch(A), the status aut(A) = 1 of
the AV A i changed to aut(A) = 0. With this, A is considered a non-autonomous road user. 4

3.3 Syntax and Semantics of USL-TR

We extend the syntax and semantics of UMLSL by atoms for static objects and non-autonomous
road users. For this sets of variables CVar and OVar ranging over identifiers from the set I and
over the set of static objects O are used. Def. 1 on the syntax of UMLSL is extended as follows
for the syntax of the traffic rule logic USL-TR.

Definition 5 (Syntax of new USL-TR concepts). For an object variable o∈OVar and a car variable
c∈CVar, we extend the atomic UMLSL formulae a from Def. 1 as follows: a′ ::= a | ob(o) | ru(c),
All definitions of binary and spatial connectors, as well as first-order logic quantifiers, to build
USL-TR formulae φT remain as of Def. 1. We denote the set of all USL-TR formulae by ΦT.

Example 5 (Syntax of new USL-TR concepts). Consider car A and the stop sign that it ap-
proaches on lane 4 in the traffic situation that is depicted in Fig. 2. This situation can be
formalised by φ1 ≡ re(A)a freeaob(Stop), which informally reads as “there exists a reservation
for car A, a part of free space in front of A and after that there exists a stop sign”. The
existence of the road user M on the intersection in front of car E can be formalised with
φ2 ≡ 〈re(E)a freea (ru(M)∧ cs)〉 , which reads as “there exists a reservation for car E, a part
of free space in front of E and after that there exists a road user M that is on a crossing
segment”. 4

For the semantics of a USL-TR formula φT , a variable valuation ν : OVar→ O is used for
objects and a valuation ν : CVar→ I is used for autonomous and non-autonomous road users. For
variables c,d ∈CVar the semantic difference of the atoms re(c) for a reservation of an autonomous
car ν(c) and ru(d) for the reservation of a road user ν(d) is the autonomy flag aut(c) (resp.
aut(d)). Thus, together with the semantics of the new atoms for static objects ob(o) and road
users ru(c), we give the changed semantics of the atom re(c). Note that the autonomy flag is
the only change of re(c) compared to [29] and that we explain the mathematical concepts of the
definition in detail subsequently. We again use the Z specification language.
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Definition 6 (Semantics of new USL-TR concepts). With respect to a traffic snapshot TS, a virtual
view V = (L,X ,E) and a valuation of variables ν, with c ∈ CVar and o ∈OVar, the satisfaction of
the spatial USL-TR atoms re(c), ru(c) and ob(o) is defined as follows:

TS,V,ν |= re(c) ⇔ #L = 1 and |X |> 0 and aut(c) = true and ∀si : L(1);∃Xi ⊆ X •

si ∈ cres(ν(c))∪ res(ν(c))and (si,Xi) ∈ segV (ν(c)) and X ⊆
#L(1)⋃
i=1

Xi (2)

TS,V,ν |= ru(c) ⇔ #L = 1 and |X |> 0 and aut(c) = false and ∀si : L(1);∃Xi ⊆ X •

si ∈ cres(ν(c))∪ res(ν(c))and (si,Xi) ∈ segV (ν(c)) and X ⊆
#L(1)⋃
i=1

Xi (3)

TS,V,ν |= ob(o) ⇔ #L = 1 and #L(1) = 1 and |X |= 0 and ∃s : L(1);∃p : R•
X = [p, p] and (s, p) ∈ obj(o) (4)

To satisfy the atomic formulae re(c) and ru(c), the view V has to be occupied completely
by the respective element. This holds if V consists of only one virtual lane (#L = 1) and has
a positive extension (|X | > 0). As a quick reminder for the reader: Basically, one virtual lane
complies with one possible path through an intersection (cf. exemplary virtual lanes for the
traffic situation from Fig. 1 on p. 5). Then it is checked if for all lane or crossing segments
si ∈ CS∪L that are contained in the one virtual lane L(1), a (crossing) reservation for ν(c)
exists (si ∈ cres(ν(c))∪ res(ν(c))). With the abstract function segV (ν(c)), it is checked that the
considered extension interval Xi on segment si is visible in V and that all segments in V are
completely occupied by ν(c) (cf. last part of formulae (2) and (3)). Definition (4) restricts the
view V even further: As a static object is only a dot on a segment, the virtual lane L(1) may
only contain one single segment s ∈ CS∪L and the interval extension is limited to X = [p, p],
where p is the position value that is assigned to s in obj(o). Note that as single USL-TR atoms
are always required to completely fill a view Vi, the larger view V (E) that is considered around
one ego car E to reason about traffic rules generally consists of several smaller views Vi.

Example 6 (Evaluation of USL-TR formulae over views). We continue the previous example
5 and again consider formula φ2 ≡ re(E)a freea(ru(M)∧ cs), which is parted into three parts
using the chop operator a . As each sub-formula φ i

2 is evaluated over one sub-view Vi, the view
satisfying φ2 can be, e.g., parted into these three sub-views. 4

4 Formalisation of UK Road Junction Rules using USL-TR

With USL-TR, we propose a means to formalise spatial aspects of traffic rules, like e.g. that
a stop sign is ahead or that a safe gap is large enough for an AV. As motivated earlier, traffic
rules also contain temporal aspects, which were the focus of the previous work [4] that we
briefly outline in Sect. 2.1. Here, our means to formalise temporal aspects of traffic manoeuvres
are extended timed automata controllers that use formulae of USL-TR in guards and invariants.
With this, we follow [29], where automotive-controlling timed automata (ACTA) were introduced
as an extension of the original timed automata from [1] to specify and verify a crossing controller
for turn manoeuvres at intersections.

Our overall endeavour is to fully integrate USL-TR into the agent-based approach from [4].
For this, it is of interest to consider a combination of the agent-based UPPAAL implementation
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from [4] with the UPPAAL implementation that was done in [8,30] to verify the system properties
of the crossing controller from [29]. However, this paper focuses on the extension USL-TR. We
exemplarily show-case the usability of USL-TR by formalising the UK road junction rules 170
to 172 that were introduced in Sect. 2.1. We sketch connections between the approaches [4]
and USL-TR in the following paragraph but refer to future work for the actual integration of
USL-TR into [4] (cf. Sect.6).

Besides spatial and temporal aspects, the nature of a rule generally requests a certain be-
haviour, i.e. action. E.g., the need to stop the car on encountering a stop sign. For this, [4] uses
abstract actions like enter(AV, JC) or stop(AV,JC) (cf. Sect. 2.1). As a counterpart, ACTA
come with certain controller actions which allow to, e.g., set a turn signal at an intersection or
accelerate/decelerate an AV. In this section, we introduce USL-TR guards and invariants for the
detection part of a rule (e.g. “there is a stop sign”). In [4], abstract actions like watch(AV,JC,RU)
were used for this. This paper is about steps towards a Digital Highway Code, thus encoding
traffic rules for AVs. Nonetheless, the rules also hold for non-autonomous vehicles as they are
from the UK Highway Code.

A non-trivial problem that we face in this section, and that was also sketched in [4], is the
problem of accurately translating natural language sentences into an accurate machine-readable
and -understandable language. E.g., in the part “watch out for road users” of rule 170, it is not
specified where and when an AV should do this. As the rules are from the road junction part of
the UK Highway Code, we assume that they should hold at intersections and, if not specified
differently, do so always. The natural language translation problem is outlined in detail in [27].
One of the difficulties is the often imprecise wording and the ambiguous semantics of some
natural language phrases. For now, we explain our formalisation choices as detailed as possible.
However, automatic means to extract formal specifications of traffic rules from their natural
language counterparts are of interest for future work. E.g., in [14], the authors automatically
extract requirements specifications from semi-formal natural language requirements.

Safe gap. We start with the formalisation of a“safe gap”as this is a feature frequently required
by several of the considered UK traffic rules. Safe gaps on crossing segments are needed if an AV
wants to enter an intersection and safe gaps on lane segments are needed when the AV leaves the
intersection. For the specification of safe gaps on lane segments for overtaking manoeuvres, we
also refer to [16], where a predecessor logic of UMLSL for two-way country roads is introduced.
In our urban traffic case, safe gaps can be formalised for an ego car E by using the basic UMLSL
version from [29]. We assume that the size of a safe gap is relative to the size sizeE of the ego
car. This size is retrieved in [29] through a sensor function. A safe gap of free space for ego car
E anywhere, i.e. not necessarily on an intersection, can be formalised with the formula

sg(E) ≡ free ∧ ` >= sizeE . (5)

Consequently, a safe gap on an intersection (resp. on a lane) can be specified by adding “∧cs”
(“∧¬cs” resp.) to formula (5). However, for road junction rules, we need to specify that the
safe gap is free on the intersection in front of E and not on any arbitrary intersection. Thus,
formula (5), needs to be embedded into a formula that is specified from the perspective of and
relatively to the ego car E. This is done via the formula

sgI(E) ≡ 〈(re(E)∧¬cs)a (free∧¬cs)a (sg(E)∧ cs)〉, (6)

which is an adaptation of the crossing ahead check ca(E) from formula (1), p. 6. Formula (6)
states that the reservation of the ego car E is on a lane segment before an intersection, that
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there might be some free space between the AV and the intersection (the car will not stand
exactly in front of the intersection when it checks for a safe gap) and then there is a free safe
gap (cf. formula (5)) on the intersection.

Rule 170. As seen in Sect. 2.1, rule 170 contains the following four parts:

1. You should watch out for road users.

2. Watch out for pedestrians crossing a road junction into which you are turning. If they
have started to cross they have priority, so give way.

3. Look all around before emerging.

4. Do not cross or join a road until there is a safe gap large enough for you to do so safely.

As we do not identify any dependencies between these parts, we formalise and describe them
separately. Each part is required to hold, which could be, e.g., achieved by a conjunction or by
modelling four controllers that run in parallel and ensure that each part holds invariantly.

Part 1. The first part of rule 170 demands to “watch out for road users” (we assume “always”,
“at intersections”, cf. previous remark on p. 4). For this, we refer to a concept from [29], where
such a feature is already included in the behaviour of the crossing controller: On approaching
an intersection, ego’s controller always checks for potential collisions using the UMLSL formula

pc(c) ≡ c 6= ego∧〈cl(ego)∧ (re(c)∨ cl(c))〉. (7)

For a car c different than ego, formula (7) checks for path intersections of ego’s own claim (“path
through an intersection”) and the claims or reservations of other road users. If a potential
collision with any road user c exists, ego withdraws its claim and only enters the intersection
later if no potential collisions are detected. Note that in [29] such road users c ∈ I only include
AVs. However, as in this work non-autonomous road users are included into the set of identifiers
I (cf. Sect. 3.2, Def.2), the potential collision check also applies to non-autonomous road users.

An extension of this part of rule 170, namely rule 221, has been formulated in the UK
Highway Code and requires to “watch out for long vehicles which may be turning at a junction
ahead”, as those might need the whole intersection for their manoeuvre. Note that this extension
is already included in the above description, as a long vehicle would simply demand all crossing
segments for its path through the intersection. With this, ego would also watch out for long
vehicles with pc(c). However the urban road network N (cf. Sect. 2.2, p. 4) needs to be built
accordingly to allow for long vehicles.

Part 2. The second part of rule 170 focuses solely on pedestrians: “Watch out for pedestri-
ans crossing a road junction . . . so give way.”. To formalise this rule with USL-TR, we again
manipulate the crossing-ahead check from formula (1). Specifically, we formalise a “pedestrian
ahead” check pa(E) for the ego car E:

pa(E) ≡ 〈re(E)a (free∧ ` < dp)a ob(Ped)〉. (8)

Formula (8) holds if a pedestrian Ped ∈O is ahead of the ego car E within a given safety distance
dp. Next, the rule demands that the AV should give way to the pedestrian. Basically, “give way”
is a request that an AV should decelerate or stop to let a pedestrian cross. This is implemented
through the simplified traffic rule controller ACTA170 that we depict in Fig. 3: Consider the
transition from the initial location q0 to location q1. If the guard (8) holds, ego decelerates
using the controller action “accelerate” acc(−a) with the negation of an abstract acceleration
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q0 : ¬pa(E) q1 : pa(E)
pa(E)/ acc(− a)

¬pa(E)/ acc(a)

Figure 3: ACTA170 implementing the part of rule 170 of the UK highway code for road junctions
where an AV waits for a pedestrian to cross a road.

value a ∈R+ and changes to location q1, where pa(E) holds invariantly. If the pedestrian is not
crossing anymore and ¬pa(E) holds, the controller accelerates again with a positive acceleration
value a. We assume that a is large enough so that the car can decelerate timely and can come
to a stillstand before reaching the crossing pedestrian.

Note that we use ACTA170 as a tool to show how our formalisations can be used as guards and
invariants in a controller that is built to follow traffic rules. However, it is a very abstract model
for decelerating and accelerating an AV. So, instead of a controller action acc(a) (resp. acc(−a)),
it is more realistic that ACTA170 would rather communicate the need for an acceleration (resp.
deceleration) to a speed control unit within the AV.

Part 3. We interpret that the third part of rule 170, “Look all around before emerging”,
requires the AV to check for path intersections with other AVs, non-autonomous road users or
with pedestrians before leaving (“emerging from”) an intersection. This can be formalised by

look(E) ≡ 〈(re(E)∧ cs)a(¬cs ∧ sg(E))〉 ∧ ¬∃c : pc(c)∧¬pa(E). (9)

Basically, the three conjugated fragments of formula (9) formalise more than the informal and
imprecise phrase “Look all around before emerging” comprises:

• it is checked that car E is on an intersection (re(E)∧ cs) and that after the intersection,
there is a free safe gap for car E available for E to emerge into (¬cs ∧ sg(E), cf. formula (5)),

• it is checked that no potential collisions with other road users exist (¬∃c : pc(c)), and

• we ensure that no pedestrian is ahead (cf. formula (8)).

If formula (9) holds as a transition guard in ACTA170, ego is allowed to leave the intersection,
which again means adjusting E’s speed. We do not explicitly depict this transition in Fig. 3.

Part 4. This part demands to “not cross or join a road until there is a safe gap”. We
understand that this rule demands i. that an AV does not enter an intersection (“do not cross”)
until there is a fitting safe gap available, and ii. that an AV only then leaves an intersection
(“join a road”), if a safe gap is available on the road after an intersection. We already included
part ii. into the first fragment of our formalisation (9). For part i., we refer back to formula (6),
where we formalised a free safe gap on an intersection that lays ahead of E.

Rule 171. This rule demands that the AV “must stop behind the line at a junction with a
stop sign and a solid white line across the road”. A stop sign or a “solid white line across the
road” that is ahead can be identified with a USL-TR formula equivalent to the pedestrian ahead
check from formula (8). We rewrite the “pedestrian ahead” check pa(E) from formula (8) to a
“stop sign ahead” check sta(E) for the ego car E:

sta(E) ≡ 〈re(E)a (free∧ ` < dst)a ob(Stop)〉. (10)
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Note that we require ob(Stop) ∈O and assume that dst is a distance within which a stop sign is
considered close enough for the AV to act. Here, the action again is a deceleration of the AV so
that it comes to a timely standstill. Additionally, rule 171 demands to wait for a safe gap before
moving onto an intersection (cf. Sect. 2.1), which we discussed before in detail for rule 170.

Rule 172. Instead of a stop sign, a give way sign is in the focus of this rule: “The approach
to a junction may have a ‘Give Way’ sign or a triangle marked on the road. You must give way
to traffic on the main road when emerging from a junction with broken white lines across the
road”. The identification of a give way sign (or any other optical identification of it) is again
similar to the pedestrian ahead check (8). We name this check by “give way ahead”, gwa(E),
but do not rewrite formula (8) here for reasons of brevity.

If gwa(E) holds, the AV E must give way to the traffic on the main road. For this, we can use
a feature from [8], where fairness was introduced to the crossing controller from [29]. For this,
AVs are assigned priorities on arriving at an intersection. The longer an AV waits in front of the
intersection, the more its priority increases. For our implementation of rule 172 this means that
whenever the “give way ahead” formula gwa(E) holds for an AV E, E receives a priority penalty.
On the other hand, another AV C on the main road receives a priority bonus on approaching a
crossing where it has the right of way. With this, using the crossing controller from [8], cars on
the main road will always get the right of way.

5 Related Work

There are some approaches which aim to formalise road traffic rules. Pek et al. [24] formalise the
safety of lane change manoeuvres to avoid collisions. The authors use as reference the Vienna
Convention on traffic rules to formalise a single rule on the safe distance. They use algebraic
equation to formalise this road traffic rule. Rizaldi et al. [28] formalise and codify part of the
German Highway Code on the overtaking traffic rules in LTL (three rules are formalised). They
show how the LTL formalisation can be properly used to abstract concepts from the traffic rules
and obtain unambiguous and precise specification for the rules. In addition, they formally verify
the traffic rules using Isabelle/HOL theorem prover and also monitor an AV applying a given
traffic rule, which has been previously formalised using LTL. Bhuiyan et al. [7] assess driving
behaviour against traffic rules, specifically the overtaking rules from the Queensland Highway
Code. Two types of rules are specified: overtaking to the left and to the right. Moreover, they
intend to deal with rules exceptions and conflicts in traffic rules (this is solved by setting priorities
among the rules). Using DDL (Defeasible Deontic Logic) they assess the driving behaviour telling
if the driver has permission or it is prohibited to apply a given rule for overtaking. The results
basically show if the proposed methodology has recommended (or not) the proper behaviour
for the driver (permission or prohibition). Besides, Esterle et al. [13] present a fomalisation of
traffic rules for two-lane roads (“dual carriageways”) in LTL to specify temporal behaviour. A
set of formalised traffic rules is presented and evaluated on a public dataset.

In [10], Traffic Sequence Charts (TSCs) have been introduced as a visual language for describ-
ing first-order logic predicates for traffic situations. TSCs allow to introduce arbitrary objects
and traffic rules like, e.g., a lane-change rule are exemplarily formalised in [10]. However, TSCs
abstract from several aspects. Also, we aim at the formalisation of traffic rules at road junc-
tions, while, to our best knowledge, TSCs are limited to multi-lane highway traffic scenarios.
Nonetheless, a combination of TSCs with our approach is of interest for future work.
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The authors of [20] focus on the translation of traffic rules from the California’s DMV driver
handbook from natural language to formal language (i.e. first order logic representations) and
simulate their approach for exemplary four way and three way uncontrolled intersections using
the CARLA urban driving simulator for autonomous vehicles [12]. They show that the behaviour
of autonomous vehicles under their controller are more realistic compared to CARLA’s default
FIFO controller. However, neither of the aforementioned works formalise spatial aspects of
traffic rules and only one of them [20] formalises road junction rules.

6 Conclusion

We have presented an extension for the logic UMLSL to handle a subset of road junction rules
of the UK Highway Code. We capture not only the temporal but also spatial aspects of traffic
rules, e.g. a safe gap.

Despite having shown the formalisation of only three road junction rules, the extension of
the formalisation for the set of all 14 road junction rules of the UK Highway Code should not
pose to many difficulties. This is as the remaining rules outline similar elements such as traffic
lights, dual carriageways, other uses of safe gap situations or manoeuvres like turning at a road
junction. With static objects and road users, USL-TR already contains the necessary concepts
to abstract and formalise the aforementioned elements from the road junction rules.

Our vision is that the formalisation can provide some guidelines for the deployment of a
Digital Highway Code for AVs. Two important guidelines are i. the spatial abstraction to
represent a safe gap, which is largely used throughout the UK road junction rules (cf. p. 12);
and ii. the effortlessly switching of status (autonomous or non-autonomous) for a given road
user (cf. Def. 4), which helps to represent special emergency scenarios, where the AV control is
given back to the human driver (cf. [2]).

As future work, we see two research directions; Firstly, we will examine the need for further
extensions of USL-TR. E.g., static objects currently have a position on a segment, but no positive
extension (“size”). Such a size could be of interest to properly model pedestrian crosswalks or to
integrate hazardous situations into the USL-TR world (cf. Sect. 3.1). Also, it would be of interest
to consider an integration of a roadside into the abstract model. With this, e.g., a pedestrian
approaching a crosswalk on a sidewalk could be specified. Note that with this, we would also
be able to consider the movement of pedestrians on sidewalks and could model pedestrians as a
special type of road user instead of the static abstraction that we currently use (cf. p. 7).

Secondly, and most importantly, we shall model, implement, and verify the road junction
rules following the agent-based architecture defined by Alves et al. [4]. For that, we will need
to change the model and implementation in a way the spatial elements represented by the USL-
TR are properly described. The agent implementation will have to consider an extension in
the agent’s environment to represent the lanes and crossing segments. For this, the UPPAAL
implementation of the abstract model for UMLSL from [8,31] might be of help. Also, the status
switching function for an AV can be easily captured by changing the agent’s belief (since the
agent is implemented using a BDI language, cf. [4]). Besides, we intend to use simulation tools
like, e.g., CARLA [12] to evaluate our approach in a setting that is closer to reality.
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