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This paper describes a way to formally specify the behaviour of concurrent data structures. When
specifying concurrent data structures, the main challenge is to make specifications stable, i.e., to
ensure that they cannot be invalidated by other threads. To this end, we propose to use history-based
specifications: instead of describing method behaviour in terms of the object’s state, we specify it in
terms of the object’s state history. A history is defined as a list of state updates, which at all points
can be related to the actual object’s state.

We illustrate the approach on the BlockingQueue hierarchy from the java.util.concurrent
library. We show how the behaviour of the interface BlockingQueue is specified, leaving a few
decisions open to descendant classes. The classes implementing the interface correctly inherit the
specifications. As a specification language, we use a combination of JML and permission-based
separation logic, including abstract predicates. This results in an abstract, modular and natural way
to specify the behaviour of concurrent queues. The specifications can be used to derive high-level
properties about queues, for example to show that the order of elements is preserved. Moreover, the
approach can be easily adapted to other concurrent data structures.

1 Introduction

Writing "good’ formal specifications is an essential factor for efficient program verification. Moreover,
these specifications, written in the form of contracts of the software components, provide useful docu-
mentation with precisely defined requirements. They should be elegant, readable, independent from the
code implementation, and should fully express the required code behaviour.

However, specifying concurrent software is not straightforward. Currently, different techniques are
being developed to reason about concurrent programs and specific concurrency features [7, 9] 4]], but
specifying the functional behaviour of such a program is still a challenge. To address this challenge,
this paper introduces a history-based approach to develop behavioural specifications for concurrent data
structures. We present the idea on a collection of realistic Java classes, using a combination of JML (the
Java Modeling Language) (5] and separation logic [6, 8] as a specification language. This results in
clear, readable and abstract specifications.

The major difficulty in specifying the behaviour of concurrent code is caused by thread interference.
If threads operate on the same object, a method’s postcondition can be unstable, i.e., it can be invalidated
by other threads. The following code fragment is part of the put (E e) method from a shared Queue
data structure. The method enqueues an element to the end of the list that internally represents the queue:
public void put(E e){

lock.lock ();

enqueue(e);
lock .unlock ();
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A straightforward way to define the postcondition of this method would be to state that e is the last
element in the queue. However, after the lock release another thread may interfere, remove e, and
invalidate the postcondition before the caller continues. Therefore, this postcondition would be unstable.

Instead, we propose to maintain a history that records all elements that have been added to the queue.
In this way, we can reason about the past. For example, for the put method we can use a history to state
that: There was a moment in the past when e was added to the queue.

The main contributions of this work are formal history-based specifications for the classes from
the java.util.concurrent.BlockingQueue hierarchy. To make the specifications abstract, modu-
lar and naturally organized, we use abstract predicates, specification inheritance and JML model vari-
ables. This way we provide an efficient template for easily specifying the classes that implement the
BlockingQueue interface, even if they maintain a different order on the elements. Furthermore, we
claim that the history pattern is also useful for specifying other concurrent data structures; in particular
we have also specified the ConcurrentHashMap using the same idea. Support to reason about history-
based specifications will be integrated into the tool set that is currently being developed as part of the
VerCors project [1]] (Verification of Concurrent Data Structures).

2 Functional Behaviour Specifications

In this section we explain how we use histories to overcome the problem of unstable postconditions.
Mainly, we discuss the specifications for the BlockingQueue interface, and then we shortly describe
how these specifications are inherited by the concrete BlockingQueue instantiation classes.

History-based Specifications A history in our approach is a linked list of nodes that keep the ref-
erences of all queue elements. The history is defined as a specification ghost variable: /*@ public
ghost JMLValueSequence history = new JMLValueSequence();*/. Therefore, each queue el-
ement e has an appropriate history node e’ that holds the reference e. We say that e’ is a matching
node of e. History updates are done by adding JML set statements at the locations where the queue is
changed (i.e., an element is added or removed). Since the history should remember all 'old’ elements,
when a queue element is deleted, its matching history node is not removed, but marked with a negative
flag. We define this flag in the node class as a boolean exists variable. The nodes in the history are
represented by a model class ListElem<E>, where E is the type of the BlockingQueue items:

/%@ model class ListElem<E> implements JMLType {

@ boolean exist = true;

@ E item;

@ int orderNum = 0;

@ public int compareOrderTo(ListElem<E> 0){
@ return orderNum — o.orderNum;

@ }

@ } @x/

The Order of the Elements Our approach requires preserving the same order of the elements in the
history and the queue. Therefore, it is mandatory that each node is added to the correct position in
the history list. Nevertheless, different BlockingQueue implementations follow a different order. To
keep our approach abstract, we add a compareOrderTo (ListElem<E>) method in the ListElem class,
making the history nodes comparable to each other with respect to their own specific order. We use this
method to add a new node to the history at the proper position.
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The common order of the elements in a BlockingQueue is FIFO. Thus, we define a default im-
plementation of the compareOrderTo method with respect to FIFO. Since this order (as well as LIFO)
depends on the moment when an element is added to the history, we add the orderNum variable in the
ListElem class to represent a counter for the element insertion to the history. Hence, the ListElem is
a default history node that respects the FIFO order. The BlockingQueue implementations that follow
different ordering of the elements should extend this class and override the compareOrderTo method.
An example is the PriorityBlockingQueue where the order of the element depends on the item value.

Methods’ Contracts We define the methods’ postconditions to express the behaviour of the queue
in terms of its history. The postcondition of the add(E e) method states that the history contains the
matching node of e. We cannot express anything about the value of its exist flag because it is possible
that another thread has removed the element before the end of the method:
/%@ public behavior

@ requires e != null;

@ ensures (\exists ListElem n; history.has(n) * n.item == e); @x/
void put(E e) throws InterruptedException;

The postcondition of the take () method states that the matching node of the \result (the object re-
turned as a result of this method) exists in the history with a false value of the exist flag. It is not sure
that the same node existed before method start, but if it existed, its flag was true.
/%@ public behavior

@ requires true;

@ ensures \exists ListElem n; history.has(n) * n.item == \result * In.exist x

@ (\old(history ).contains(n) ==> \old(n). exist); @x/
E take () throws InterruptedException;

Class Invariant The crucial part of the specifications is to define a property to state that the queue
is compatible with the history. This ensures that the queue behaves correctly. Informally, we define
a compatibility property stating that: if all nodes with a false flag are removed from the history, the
remaining nodes match with the queue elements and are ordered in the same manner (see Fig. [I).

To express this property, we define a recursive  actual queue 8 D]
predicate compatible, where both parameters e T
(queue and history) are of JMLValueSequence history ’ A H"{ B T4—'| c H—’| D TH E H—’| F
type. We could also have chosen a different type
for the queue variable (for example, an array), but Figure 1: Compatibility between the history and the
we found that this was a simple and elegant way queue
to express the predicate.

With the approach presented so far, the order of the history nodes el and e2 is not precisely defined if
el.compareOrderTo(e2)=0 (in this case we call el and e2 equally ordered nodes). Note that equally
ordered nodes can exist for example in the PriorityBlockingQueue history. If the nodes A and B in
the history (Fig. |I)) were equally ordered, we cannot guarantee that A precedes or follows B. Anyhow,

the queue and the history should be compatible and therefore, they should follow the same order. The
following formal specification of the compatible predicate deals with this case:

T

/%@ pred compatible(JMLValueSequence queue, JMLValueSequence history) =
@ (queue.isEmpty() && history.isEmpty()) || //case 1
@ (!queue.isEmpty () &&
@ (\exists int idx; O<=idx<history.length;
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(((ListElem )queue. first ()).item == ((ListElem)history.itemAt(idx)).item) &&
((ListElem ) history.itemAt(idx)). exist &&
(\forall int i; O<=i<idx;
!I((ListElem ) history.itemAt(i)). exist ||
(((ListElem ) history.itemAt(i)).compareOrderTo ((ListElem )history.itemAt(idx))
== 0))
&& compatible (queue. removeltemAt(0), history.removeltemAt(idx)))) //case 2
*x/
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With this definition we even allow expressing the compatibility between queue and a history where
the order of elements is not important at all (a set data structure for example). In that case, the method
compareOrderTo should be overridden to return always 0, and the compatible predicate will express
that the queue contains the correct elements without considering their order.

Furthermore, a class invariant is specified to state that the queue is compatible with the history. To
state the invariant, we use a model variable queue to denote the current contents of the queue.

/%@ protected model instance JMLValueSequence queue;
@ invariant compatible (queue, history) @x/

Specifications for the Descendant Classes Specifying the descendant classes is simple: the follow-
ing steps are required: (7) if the order of the elements in the queue is different then FIFO, extend the
ListElem class and override the compareOrderTo(ListElem<E>) method; (if) update the history
ghost variable at the locations where the queue is changed i.e., an element is added or removed).

The complete specifications together with the Java source code are available viahttp://wuw.ewi.
utwente.nl/~zaharievam/specs_classes/.

3 Conclusions

This paper presents a history-based approach for specifying the functional behaviour of concurrent data
structures. It allows one to write stable method specifications, i.e., specifications that cannot be in-
validated by other threads. We apply this approach on the java.util.concurrent.BlockingQueue
hierarchy, but it is also suitable for specifying other data structures. Furthermore, our approach intro-
duces a new dimension: abstraction. The result is a specification framework, where specifying a new
BlockingQueue implementation requires only a small effort.

Related Work Using a history for specifying communication-based parallel programs dates back to the
70’s and 80’s. A history, also called a communication trace, is a sequence that records the communication
events sent between the processes. The history helps one to reason about the events that happened up
to a certain point in time and their order. This approach has been used to specify the interactions in
CSP [10]. Also in recent work, a similar idea has been used: Dovland et al. [2] use histories to record
the communication events between the components in a distributed environment.

The specifications we provide are closely related to the linearizability-based approach where proving
that a data structure is linearizable guarantees its correctness. In this approach the specification contains
sequential code that updates a ghost variable, which is an abstract representation of the data structure
itself. A library is linearizable with respect to a specification if it behaves as if it was sequentially
executed. Linearizability is automatically proved by searching a linearization point for each method
[L1]. Gotsman et al. [3] explain the importance of linearizability stating that: when proving properties for
a client that uses a concurrent library, this library can be soundly replaced by its abstract implementation.
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Our work is more practically oriented. We are focused on making clear and understandable spec-
ifications, written in a standard form of method contracts and class invariants. The specifications are
readable even without the code, and therefore can be used as formally written documentation.

Future Work The work described here are only the first steps in the VerCors project [1]], and there is
still much work to be done in the future. A first important step is to develop tool support, so that the
history-based specifications can be validated w.r.t. the API reference implementation.

Another point we are currently working on is providing full support for class invariants in a concur-
rent environment. These class invariants must be strong, i.e., invariants that hold in all possible states. We
allow an invariant to explicitly break under certain conditions, while guaranteeing that no other thread is
able to observe that it is broken.

It still has to be investigated how the history-based specifications can be exploited to verify client’s
code. One particular case where this will be useful is if the behaviour of the client depends on the
elements that have been in the queue at some point. For example, in a game application, the queue could
hold the & highest scores in descending order. A client can use the history-based specifications to derive
properties as: the queue holds the best scores, and it knows the correct number of total scores.

Finally, we will also investigate whether we can automatically generate updates to the history, instead
of depending on the user manually inserting these updates in the descendant classes.
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