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This article deals with the interrelation of deontic operators in contracts – an aspect often neglected
when considering only one of the involved parties. On top of an automata-based semantics we
formalise the onuses that obligations, permissions and prohibitions on one party impose on the other.
Such formalisation allows for a clean notion of contract strictness and a derived notion of contract
conflict that is enriched with issues arising from party interdependence.

1 Introduction

Deontic modalities such as permission and obligation have been debated exhaustively in the literature,
and various formalisms exist with different interpretations and axiomatisation of deontic notions. With
few exceptions, the modalities are usually presented in an impersonal manner, refering only to the subject
of the modality. For instance, most formalisms enable reasoning about notions such as “John is permitted
to withdraw cash” and “John is obliged to pay an annual creditcard fee”. However, in a contractual
setting, the behaviour involves interaction between the two parties the contract binds, and such statements
about the ideal behaviour have both a notion of the subject and object of the action. For instance, in a
contract between John and his bank, the clause “John is permitted to withdraw cash” is about both parties,
and can be interpreted to mean that if John attempts to withdraw cash, then the bank will not refuse or
hinder his action. Similarly, the clause “John is obliged topay an annual credit card fee” places an
obligation on John to perform an action with the bank as the object of the action, and (arguably) also
places the onus on the bank to accept the payment. Interacting parties allow for both cooperation and
interference between the parties in the actions they perform, and thus bring about an additional dimension
to contract analysis. An interesting corollary to this view, is that permission can now be seen as a first
class deontic modality. Typically seen as the dual of prohibition, violations of permissions have always
proved difficult to formalise their violation, mainly sincea branching logic analysis is required (if party
p were to performa then they would not be stopped from doing so). In an interacting two party system
context, permission now takes a first class role, obliging the object of the modality to allow the subject
to perform the action if they so desire.

Although the work on deontic logic for interacting parties is not abundant, computer scientists have
studied for various decades concurrent and synchronous composition, notions which embody precisely
interaction from an action-based perspective. In [11] we have presented work-in-progress on how syn-
chrony can be applied in a contractual setting, using a formal automaton-based model of interacting
two-party systems in which the parties synchronise over a set of actions. In this paper we extend the
work presented there to deal with (i) absence of actions; (ii) mutually exclusive actions; (iii) conflicts.

The rest of the paper is organised as follows. The next section formalises our notions of automata,
deontic operators, contracts and contracts’ strength, which allows us to show, in Section 3 that some
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contracts cannot be satisfied at the same time and thus lead toa conflict. Finally, in Section 4 we discuss
related work, and conclude in Section 5.

2 Regulated Two-Party Systems

2.1 An Automata-Based View

To enable direct reasoning about contracts, one requires a model in which the two parties somehow
interact to agree on which actions to perform. We use the notion of synchronous composition [1] to
model such behaviour. Furthermore, to be able to deal with concurrent obligations (for instance, one
party being obliged to perform one action and the other beingobliged to perform another), we adopt
multi-action labels on transitions, since if we do not, it would be impossible not to violate a contract in
which both parties have different obligations at the same time.

Definition 1 A multi-action automaton S is a tuple〈Σ, Q, q0, →〉, whereΣ is the alphabet of actions, Q
is the set of states, q0∈ Q is the initial state and→⊆ Q×2Σ ×Q is the transition relation. We will write

q
A
−→ q′ for (q,A,q′) ∈→, next(q) to be the set of target state and action set pairs of transitions outgoing

from q (defined to be{(A,q′) | q
A
−→ q′}) and acts(q) to be the set of all action sets on the outgoing

transitions from q (defined to be{A | ∃q′ · q
A
−→ q′}). We say that an automaton is total, if for every q∈ Q

and A⊆ Σ, there is a q′ ∈ Q such that q
A
−→ q′.

The synchronous composition of two automata Si = 〈Qi , q0i , →i〉 for i ∈ {1,2} (both with alphabet
Σ) synchronising over alphabet G, written S1‖GS2, and is defined to be〈Q1×Q2, (q01,q02),→〉, where
→ is the classical synchronous composition relation defined below:

q1
A
−→1 q′1

(q1,q2)
A
−→ (q′1,q2)

A∩G= /0
q2

A
−→2 q′2

(q1,q2)
A
−→ (q1,q

′
2)

A∩G= /0

q1
A
−→1 q′1, q2

B
−→2 q′2

(q1,q2)
A∪B
−−→ (q′1,q

′
2)

A∩G= B∩G 6= /0

We can now define contracts to be automata with each state tagged with the contract which will be in
force at that point. The contracts will be able to refer to both presence and absence of an action. Given
an alphabet of actionsΣ, we write Σ! to refer to the alphabet extended with actions preceded with an

exclamation mark ! to denote their absence:Σ!
d f
= Σ∪{!a | a∈ Σ}. We use variablesx andy to range over

Σ!. If x is already an inverted actionx=!a, then expression !x is interpreted to bea.
Contract clauses are either (i) obligation clauses of the form Op(a) or Op(!a), which say that partyp

is obliged to perform or not perform actiona respectively; or (ii) permission clauses which can be either
of the form ofPp(a) or Pp(!a) (party p is permitted to perform, or not perform actiona respectively).

Definition 2 A contract clauseover alphabetΣ is structured as follows (where action x∈ Σ!, party
p∈ {1,2}):

Clause::= Op(x) | Pp(x)
A contract automatonis a total and deterministic multi-action automaton S= 〈Q, q0, →〉, together with

a total function contract∈ Q→ 2Clauseassigning a set of clauses to each state. We useC A to refer to
the class of contract automata.
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Two contract automata are said to be structurally isomorphic if they are structurally identical automata
(they have the same set of states, initial state and transition relation) but may have different contract
functions.

Structurally isomorphic contract automata allow us to reason about the weakening or strengthening of a
contract by changing the clauses in particular states but respecting the structure (and thus the temporal
behaviour) of the contract, and will be used in various theorems in the rest of the paper. We can now
define a regulated two-party system in terms of multi-actionautomata.

Definition 3 A regulated two-party systemsynchronising over the set of actions G is a tuple R= 〈S1,S2〉
A
G ,

where Si = (Σi,Qi ,q0i ,→i) is a multi-action automaton specifying the behaviour of party i, andA is a
contract automaton over alphabetΣ1∪Σ2.

The behaviour of a regulated two-party system R, written[[R]], is defined to be the automaton
(S1‖GS2)‖ΣA . To make states in such systems more readable, we will write((q1,q2),qA ) as(q1,q2)qA

.
A regulated two-party system is well-formed if S1‖GS2 never deadlocks:∀(q1,q2) · acts(q1,q2) 6= /0.

In the rest of the paper we will assume that all systems are well-formed, i.e., do not deadlock. One way
of guaranteeing this may be by having all system states provide a transition with the empty action.
Also note that the totality of the contract automaton guarantees that the system behaviour is not con-
strained, but simply acts to tag the states with the relevantcontracts at each point in time.

2.2 Contract Satisfaction

Given a two-party system(S1,S2), and a contract automatonA , we can now define whether or not either
party is violating the contract when a particular state is reached or a transition is taken. As we will see, a
dual-view of violation, identifyingbothbad states and bad transitions, is necessary in a deontic context.
We will look at the different deontic operators and define theset of violations induced for each of them.

Definition 4 Functions Op(qA ) and Fp(qA ) give the set of actions respectively obliged to be performed
and obliged not to be performed by party p. They are defined in terms of the contract clauses in the state.

Op(qA )
d f
= {a | Op(a) ∈ contract(qA )}

Fp(qA )
d f
= {a | Op(!a) ∈ contract(qA )}

Action set A is said to be viable for party p in a contract automaton state qA , written viablep(qA ,A), if
(i) all her obliged actions are included in A but; (ii) no actions which the party is obliged not to perform
are included A:

viablep(qA ,A)
d f
= Op(qA )⊆ A∧Fp(qA )∩A= /0

Since we would like to be able to place blame in the case of a violation, we parametrise contract
satisfaction and violation by party.

It is also worth noting that while obligation to perform an action, for instance, is violated in a tran-
sition which does not include the action, permission is violated by a state in which the opportunity to
perform the permitted action is not present. The satisfaction predicate will thus be overloaded to be
applicable to both states and transitions. The predicatesatAp (X) will denote that the contract automaton
A , reaching stateX or traversing transitionX, does not constitute a violation for partyp. X ranges
over states and transitions in the composed system. WhenA is clear from the context, we simply write
satp(X). We start by defining separate satisfaction predicates for the deontic operators.
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Permission. If party p is permitted to perform shared actiona, then the other partyp must providep
with at least one viable outgoing transition which containsa but does not include any forbidden actions
(that is, it isviable for p). Permission to perform local actions cannot be violated. In the case of a single
permission, this can be expressed as follows:

(q1,q2)qA
⊢p Pp(a)

d f
= true

(q1,q2)qA
⊢p Pp(a)

d f
= a∈ G =⇒ ∃A∈ acts(qp), A′ ⊆ Gc · a∈ A ∧ viablep(qA ,A∪A′)

Similarly, if party p is permitted to not perform actiona, then the other partyp must providep with at
least one viable outgoing transition which does not includea nor any forbidden action. Permission to
perform local actions can never be violated. In the case of a single permission, this can be expressed as
follows:

(q1,q2)qA
⊢p Pp(!a)

d f
= true

(q1,q2)qA
⊢p Pp(!a)

d f
= a∈ G =⇒ ∃A∈ acts(qp), A′ ⊆ Gc · a /∈ A ∧ viablep(qA ,A∪A′)

While actual obligation violations occur when an action is not performed, violations of a permission
occur when no appropriate action is possible. For any other parameters, the permission is otherwise
satisfied.
Example: If p is permitted to withdraw money from the bank, permitted not to deposit, obliged to pay
the fee, and obliged not to steal (Pp(w), Pp(!d), Op( f ), Op(!s)), pshould provide at least one transition
that contains both aw and anf and contains neither ad nor ans.
To combine all permissions in a state, we simply take the conjunction of all conditions:

satPp((q1,q2)qA
)

d f
= ∀Pp(x) ∈ qA · (q1,q2)qA

⊢p Pp(x)

All transitions are taken as satisfying the permission satisfaction function.

Obligation. Obligation brings in constraints on both parties. Given that party p is obliged to per-
form actiona in a state means that (i) partyp must include the action in any outgoing transition in the
composed system in which it participates; and (ii) the otherparty p must provide a viable synchroni-
sation action set which, together with other asynchronous actions performed byp, allows p to perform
all its obligations, positive and negative. Obligation to not perform actiona (Op(!a)) can be similarly
expressed. We combine all positive and negative obligations in the following definition:

satOp((q1,q2)qA

A
−→ (q′1,q

′
2)q′

A
)

d f
= viablep(qA ,A)

satOp((q1,q2)qA
)

d f
= ∃A∈ acts(qp), A′ ⊆ Gc · viablep(qA ,A∪A′)

The satisfaction constraint for transitions is only applicable if A is not an action set performed asyn-
chronously byp. For other parameters,satOp(X) is true.

Example: Continuing the previous example, to satisfysatOp , all of p’s outgoing transitions must bes-free
and must have anf , while p should offer at least one transition that contains anf and not ans. That is,
if at a given statep offers only outgoing transitions labeled{ f ,s} then she is forcingp to ans in order to
have anf , and thus not satisfying its part inp’s obligations.
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General contract satisfaction. It is defined as:satp(X)
d f
= satPp(X)∧ satOp(X). Based on this, we can

now define correctness of a regulated two-party system.

Definition 5 A party p is said to be incapable of breaching a contract in a regulated two-party system
R= 〈S1,S2〉

A
G , written breachIncapablep(R), if p cannot be in violation in any of the reachable states

and transitions of R.

Note that a party being breach-incapable is stronger than just being compliant for one specific run —
breachIncapablep(R) means that there is no possible trace ofR, in which p breaches the contract.

2.3 Other Modalities

Definition 6 Permissions and obligations are duals under a notion of normopposites and action ab-
sence. We define the opposite of permission and obligation!Pp(x) and !Op(x) syntactically in the
following manner:

• Party p not being permitted to perform an action is equivalent to p being obliged not to perform

the action:!Pp(a)
d f
= Op(!a) !Pp(!a)

d f
= Op(a)

• Party p not being obliged to perform an action is equivalent to p being permitted not to perform

the action:!Op(a)
d f
= Pp(!a) !Op(!a)

d f
= Pp(a)

It should be noted that we are equating lack of permission to do a to an obligation to perform an
action set which does not includea. Although this seems to go against the intuitive idea of letting a
party do nothing as a way of not violating lack of permission,note that (i) since transitions carry sets
of actions, the empty set of actions is a way of satisfying theobligation; and (ii) well-formedness (see
Definition 3) of the parties ensures that progress is always possible thus making the formulation of lack
of permission conform to our expectations.

It is interesting to note that in a two party system there are alternative notions of opposites to per-
mission and obligation. Consider partyp not being permitted to perform actiona. Apart from the
interpretation we gave, in which the norm places the onus on party p not to performa, an alternative
view is to push the responsibility top and interpret it as:party p may not provide a viable action set
which includes a. This is distinct from !Pp(a) (and indeed from the other modalities we have). Simi-
larly, consider partyp not being obliged to perform actiona. The interpretation we adopted permits party
p to not performa, but once again, alternative definitions may be adopted. Onepossibility is to push the
responsibility top and interpret it as:party p must provide a viable transition which does not include
a. These duals, in which the outer negation of a norm also corresponds to shifting of responsibility give
an interesting alternative view of norm opposites in a two-party system. Another interesting alternative
would be to interpret these negations as modalities whose only effect is the cancelling of existing clauses.
We will not explore these alternative modalities any further in this paper, since the modalities we adopt
provide a clean notion of conflicts, as discussed in Section 3. Should they be needed for a particular
application, any of the above mentioned interpretations could be included as alternative type of negation.
One of the advantages of clear formal semantics is that thereis no need to dispute the meaning of a given
term, since different ones can be defined and the appropriateone be picked to convey specific meanings.
Prohibition can now be defined as the dual of permission:

Definition 7 Prohibition contract clausesFp(a) andFp(!a), prohibiting party p from performing and
not performing a respectively, can be expressed in terms of permission:

Fp(a)
d f
= !Pp(a) Fp(!a)

d f
= !Pp(!a)
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These definitions allow us to express prohibition in terms ofobligation not to perform an action:

Proposition 1 Prohibition to perform an action is equivalent to obligation not to perform the action:
Fp(x) = Op(!x).

2.4 Contract Strength

We can now define strictness relationships over contracts.

Definition 8 A contract automatonA ′ is said to bestricter thancontract automatonA for party p
(or A said to bemore lenientthan A ′ for party p), writtenA ⊑p A ′, if for any systems S1 and S2,
breachIncapablep(〈S1,S2〉

A ′

G ) =⇒ breachIncapablep(〈S1,S2〉
A
G ). We say that two contract automata

A andA ′ are equivalent for party p, writtenA =p A ′, if A ⊑p A ′ andA ′ ⊑p A . We define global
contract strictnessA ⊑ A ′ to hold if A ⊑p A ′ holds for all parties p, and similarly global contract
equivalenceA = A ′.

Proposition 2 The relation over contracts⊑ is a partial order.

Structurally isomorphic contract automata provide a useful proof technique:

Proposition 3 Given two structurally isomorphic contract automataA andA ′, A ⊑ A ′ if and only if,
for any state or transition X, satA ′

p (X) =⇒ satAp (X).

The full proof of the proposition can be found in [10].

Proposition 4 Contract automata are monotonic: given two structurally isomorphic contract automata
A and A ′, with contract clause functions contract and contract′ respectively, which satisfy that∀q ·
contract(q)⊆ contract′(q), it follows thatA ⊑ A ′.

Although contracts are expressed as automata, we would liketo be able to compare individual
clauses. To do this we will need to relate contract automata which are equivalent except for a partic-
ular clause replaced by another.

Definition 9 Given two contract clauses C and C′, the relation over contract automata[C → C′] ⊆
C A ×CA relates two contract automataA and A ′ if A is equivalent toA ′ except possibly for a
number of instances of clause C replaced by C′.

We extend the notion of strictness to contract clauses. We say that clause C′ is stricter than clause C
for party p, written C⊑p C′, if for any contract automataA andA ′ such that(A ,A ′) ∈ [C →C′], it
follows thatA ⊑p A ′. We similarly extend the notion of strictness for all parties⊑.

The following proposition allows us to use the proof principle given in Proposition 3 for reasoning
about clause strictness:

Proposition 5 Given clauses C and C′, any two contract automata related by[C →C′] are structurally
isomorphic.
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2.5 Strictness Theorems

The strictness relationship between clauses allows us to state the following theorems.

Theorem 1 Obligation is stricter than permission: (i)Pp(a)⊑ Op(a); and (ii) Pp(!a) ⊑ Op(!a).
Proof: We present the proof of (i) — the proof of (ii) is very similar.We need to prove that for any
contract automataA and A ′ such that(A ,A ′) ∈ [Pp(a) → Op(a)], then it follows thatA ⊑ A ′.
Using Proposition 5, we know thatA and A ′ are structurally isomorphic, allowing us to apply the
proof principle of Proposition 3.

We thus have to show that satA
′

p (X) implies satAp (X). Since the permission inA which is replaced
by an obligation, never yields violations for party p nor forany party on transitions, it suffices to prove
that this implication holds on states for partyp.
The satisfaction function forp’s obligations in states is:

∃A∈ acts(qp), A′ ⊆ Gc · viablep(qA ′ ,A∪A′)
If a ∈ G, and since a∈ Op(qA ′), we can conclude that a∈ A:

a∈ G =⇒ ∃A∈ acts(qp), A′ ⊆ Gc · a∈ A∧viablep(qA ′ ,A∪A′)
Furthermore, since qA has less obligations than qA ′ , viability for qA ′ implies viability for qA :

a∈ G =⇒ ∃A∈ acts(qp), A′ ⊆ Gc · a∈ A∧viablep(qA ,A∪A′)
Hence, the satisfaction function for the permissionPp(a) holds and thus, by Proposition 3 we can
conclude thatA ⊑ A ′.

Theorem 2 For synchronised actions, obligation for one party is stricter than permission for the other:
(i) Pp(a)⊑ Op(a); and (ii) Pp(!a)⊑ Op(!a).

It is interesting to note that if we had a weaker semantics which simply identifies a violation without
identifying the guilty party, we would be able to show equivalence betweenOp(a) andOp(a), since
a lack ofa on a transition would cause a violation of both obligations.However, since our semantics
characterise violations for the parties separately, and the partial order⊑p is parametrised by the party,
we can show that the two obligations are in fact different [11].

2.6 Mutually Exclusive Actions

Although we adopt a multi-action approach, modelling real-world scenarios means that certain actions
should never occur concurrently. For instance, one would expect that the automata never perform the
actionopenDoorandcloseDooron the same transition. This allows us to identify strictness laws which
hold only for mutually exclusive actions.

Definition 10 Given a multi-action automaton〈Σ, Q, q0, →〉, two actions a and b ({a,b} ⊆ Σ) are said
to be mutually exclusive, written a⊲⊳ b, if they can never appear in the same set of actions on transitions.
Thus, for any automaton, it should be the case that:

∀(q,A,q′) ∈→ · a∈ A =⇒ b /∈ A

In the rest of the article we will assume that mutually exclusive actions never appear in the synchroni-
sation sets. Removing this restriction, however, does not affect the results we present. The following
theorem shows how mutually exclusive actions and action absence are related together under both obli-
gation and permission:

Theorem 3 If a ⊲⊳ b then (i)Op(!a)⊑ Op(b); and (ii) Pp(!a)⊑ Pp(b).

A similar result can be shown, but referring to the other party in the contract:
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Theorem 4 If a ⊲⊳ b thenOp(!b) ⊑ Op(a).

Although one may be tempted to induce that a similar result can be shown for permission (analogous
to part (ii) of Theorem 3) —Pp(!b) ⊑ Pp(a) does not always hold. As a simple example of a system
satisfyingPp(a) but notPp(!b), consider partyp be able to perform just one transition with action set
{b}, and partyp being able to perform one of two transitions: one with actionset{a}, the other with
action set{b}. Partyp is permitted to performa but partyp is not permitted to perform !b.

3 Conflicts

Contract clauses are not always compatible with one another. Many definitions of conflict are possible —
in this article we deal only with one particular class of conflicts which focusses on conflicting norms and
mutually exclusive actions, but some interesting issues arise from party interdependence. As expected,
the obligation on a party to perform an actiona and the obligation on the same party not to perform the
same action can never be satisfied together. Another interesting example is that ofPp(!a) andOp(a).
Although one is tempted to intuitively think that having thepossibility of doing something other than
a does not conflict with the obligation of doinga, multi-action semantics in contracts are different: to
satisfy the permission partyp must providea-free action sets which allowp to satisfy her obligations,
but that requires that they containa. In this section we axiomatise the notion of conflicts in interacting
two-party systems and investigate some consequences.

Definition 11 Contract conflicts is a relation between contract clausesz ∈ Clause↔ Clause and is
defined to be the least relation satisfying the following axioms:
Axiom 1: Opposite permissions conflict:⊢ Pp(x)z !Pp(x).
Axiom 2: Obligation to perform mutually exclusive actions is a conflict: a ⊲⊳ b⊢ Op(a)z Op(b).
Axiom 3: Conflicts are closed under symmetry: CzC′ ⊢C′ zC.
Axiom 4: Conflicts are closed under increased strictness: CzC′∧C′ ⊑C′′ ⊢C zC′′.

Although conflicts are only identified for opposing permissions in the axioms, they also arise in
opposing obligations, and can be shown to follow from the axioms.

Proposition 6 Opposite obligations conflict with each other:Op(x)z !Op(x).

Proposition 7 Obligation to perform an action conflicts with both permission and obligation to not
perform it: (i) Op(x)z Pp(!x); and (ii) Op(x)zOp(!x). Obligation to perform an action also conflicts
with lack of permission to perform the action: (iii)Op(x)z !Pp(x).

Proposition 8 Given two conflicting clauses C1 zC2, making the two clauses stricter does not resolve
the conflict: if C1 ⊑C′

1 and C2 ⊑C′
2, then C′1 zC′

2.

Example: As a simple example, consider John signing a contract with his bank. The contract says that (i)
whenever he is logged into his Internet banking account, he is to be permitted to make money transfers;
and (ii) if a malicious attempt to log in to his account is identified, logging in and making transfers will
be prohibited until the situation is cleared. The two statements can be expressed in the two contract
automata shown in Fig. 1. Combining the two statements, however results in an automaton where
initially, after performing action set{login, malicious}, one ends up in a state with bothPp(transfer)
andFp(transfer), which are in conflict.
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F j (transfer) P j(transfer) P j(login) F j (login), F j(transfer)

login

logout

malicious

cleared

Figure 1: Internet banking contracts

4 Related Work

Despite the fact that contracts are, by definition, an agreement between two or more parties, most formal
studies regulate the parties independently and do not analyse how permissions, obligations or prohibitions
for one party affect the other, or do so in limited ways. Here we summarise the most related work.

[3] deals with obligation violations in contracts using thedomain specific BCL language [4], intro-
ducing contrary-to-duty clauses and directed obligations, but does not analyse the reciprocity of deon-
tic clauses in a contract. [9] aims at formalisations of contracts for e-commerce but focuses only on
analysing temporal consistency. A related line of researchwas started by [5], later followed upon by var-
ious others ([14, 2], etc.) — although not explicitly about contracts, they look at a flavour of axiomatic
deontic logic with obligations being directed from one individual towards another, termeddirected obli-
gations. Directed permissions have also been studied, but were termed to be conflicting because of lack
of a clear counterparty, following both theclaimant theoryor thebenefit theory. Once one considers
actions that are only realisable by the two parties in synchrony, as our approach does, the concept of
permission appears more clearly. Although it does not fullyconsider many aspects of permission e.g.,
Pp(!a) – it would be interesting to direct further research to look at the similarities between both ap-
proaches, including variations such as [12].

Our model does not provide explicitly for the notion ofinterferencethat has been analysed by many,
notably Hohfeld [6] and Lindahl [8], It is important to understand, however, that the difference between
vestedandnakedliberties (i.e., warranty of immunity from interference) relates to a real concern in the
context of general law but blurs in the context of a contract where one party allowing the other to perform
a shared action, but reserving itself the right to interfere, does not have practical sense. More specifically,
in our formal modelPp(a) means not only thatp may attempt to performa — it means thatp would
succeed in doinga should she try. If the notion ofattemptingto do an actiona that can be interfered by
others needs to be modeled, then another actionattempt_a should be added and the permission placed
onto the latter. Another alternative is to introduce modalities for trying, as in Santoset al. [13].

Lindahl [8] studiesliberty spacesto present the concept ofless free than, a relationship between
maximally consistent sets of deontic positions. The general idea is somewhat similar to our definition of
strictness; however, as Lindahl notes, most of the maximally consistent sets are incomparable using this
relationship, whereas our notion of strictness provides interesting theorems.

Many of the above mentioned authors, and also others, deal with some definition of conflicts but they
usually leave out the inconsistencies that arise because ofthe onuses imposed to the other party (see our
example ofPp(!a) conflicting withOp(a) in Section 3).
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5 Conclusions

In this article we extended our formalisation of contracts for interactive systems [11] to deal with ab-
sence of actions, mutually exclusive actions and conflicts.The issues raised by interaction between par-
ties, allowing for collaboration and interference, are particularly interesting in the domain of computer-
mediated contracts, in which systems typically work in synchrony and proceed only through handshaked
actions. Much work has been done in this domain of synchronous systems from a Computer Science
perspective, and we believe that our approach allows us to adopt many existing results into the field of
contracts. We are currently applying this approach to the analysis of software requirements documents
and studying the classes of rights identified in Kangeret al. [7] in an interactive setting.
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