
G. J. Pace and A. P. Ravn:
Proceedings of Sixth Workshop on Formal Languages
and Analysis of Contract-Oriented Software (FLACOS’12)
EPTCS 94, 2012, pp. 11–20, doi:10.4204/EPTCS.94.2

c© C. Colombo, A. Francalanza, and I. Grima
This work is licensed under the
Creative Commons Attribution License.

Simplifying Contract-Violating Traces

Christian Colombo Adrian Francalanza Ian Grima
Department of Computer Science, University of Malta

{christian.colombo | adrian.francalanza | igri0007}@um.edu.mt

Contract conformance is hard to determine statically, prior to the deployment of large pieces of soft-
ware. A scalable alternative is to monitor for contract violations post-deployment: once a violation
is detected, the trace characterising the offending execution is analysed to pinpoint the source of the
offence. A major drawback with this technique is that, often, contract violations take time to surface,
resulting in long traces that are hard to analyse. This paper proposes a methodology together with an
accompanying tool for simplifying traces and assisting contract-violation debugging.

1 Introduction

Ensuring that real-world complex systems observe contract specifications is a difficult business. Due
to the large number of system states that need to be analysed, exhaustive formal techniques such as
model checking are generally not feasible. Sound static analysis techniques [10] also suffer from these
scalability issues, and often end up being too coarse, ruling out valid systems. Testing — a scalable
solution in these cases — is not exhaustive, thus unsound, in the sense that passing a series of tests does
not imply that the contract will not be violated once the system is deployed.

Replay3

Simplifier

counter
simplified

−example

Event Tracer

Mocking Instructions

Contract Monitor

System Environment

System

Monitoring Simplifying

violation

Behaviour
Capture

1

Validate
Violation

Simplify2

4

Figure 1: Monitoring a contract (Right) enhanced with counterexample simplification (Left)

A possible technique for dealing with this problem is to complement contract testing with the post-
deployment contract monitoring — see Figure 1 (Right): the contract is synthesised as a monitor, in-
strumented to run in parallel with the system (executing under an arbitrary environment) so as to check
for contract violations at runtime. Once a violation is detected, the monitor produces a violation trace
describing the execution that led to the contract violation and, from this trace, the cause of the violation
can be inferred and rectified manually1. This technique works in principle, and can be used to prevent

1We are not aware of automated techniques for pinpointing the source of a contract violation from a violation-trace.

http://dx.doi.org/10.4204/EPTCS.94.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

12 Simplifying Contract-Violating Traces

repeated contract-violations — at some additional runtime cost associated with monitor verification. In
practice, however, contract violations may be detected after a long period of monitoring, yielding viola-
tion traces that are too complex to feasibly analyse manually.

Pinpointing the source of the problem from a violation trace can be facilitated if the trace is simplified;
this typically involves generating a trace describing a shorter contract-violating execution, perhaps using
simpler data values while abstracting away certain events. This debugging aide has proved very effective
in both counterexample minimisations in model checking [8, 11] and test shrinking [1, 2, 14].

However, trace simplification in a post-deployment setting poses challenges. In the absence of a
system model — as is often the case for real-world systems with a large number of execution states —
trace simplification typically relies on system replaying: this involves re-running the offending system
with simplified parameters and reduced stimuli, in the hope of obtaining a simpler execution trace that
still produces the same contract violation. But post-deployment trace simplification based on replaying
is complicated by aspects relating to system capture and replay [2, 9, 12, 13]:

1. In order to replay a system for trace-simplification analysis, one needs to infer the environment
stimuli and parameters inducing the contract violation.

2. The system being monitored, together with the environment it executes in, may be non-determi-
nistic, exhibiting different behaviour under identical parameters and stimuli.

3. System replay, which may need to be carried out iteratively, may produce undesirable side-effects
such as writing to a database or printing on I/O terminals.

4. System replay may require interactions with either the environment — which cannot be controlled
— or with systems that cannot be reset (in order to recreate the same starting point).

5. Certain computation may be too expensive and time consuming for system replay to be a viable
method of finding a simpler violation trace.

In this paper we discuss a methodology for simplifying violation traces of large systems in a post-
deployment setting; a novel aspect of our methodology is the use of the contract information assisting
the trace simplification process. We also present a prototype implementation of a trace-simplification
tool for violating executions of Erlang programs, based on this methodology.

The rest of the paper is structured as follows: Section 2 describes our proposed methodology. Sec-
tion 3 discusses an instantiation of this methodology through a tool implementation whereas Section 4
describes a case study using this tool. Section 5 discusses related work and Section 6 concludes.

2 A Methodology for Contract-Violating Trace Simplification

Contracts play a central role in our methodology. Related techniques for post-deployment debugging fun-
damentally rely on terminating program executions (successful and not.) Contracts enables us to extend
debugging to non-terminating system executions that violate a contract within a finite execution prefix;
they also allowing for better separation of concerns between error definitions and system executions.

The methodology requires the contract to be translated into an automata representation, where tran-
sition labels correspond to actions recorded in the trace and bad states denote contract violations.2 Con-
tracts represented as automata simplify monitor synthesis, facilitate the definition of trace simplification
(see Section 2.2) and provide a lingua franca for various logics specifying contracts.

2Work such as [7] show how contract languages such as CL can be automatically translated to automata representations.

C. Colombo, A. Francalanza, and I. Grima 13

System Actions

Environment mocker

Option A − All environment mocked

Tracer output

Environment mocker

Actual environment

Option B − Only stimuli are mocked

Environment Interaction

External Stimulus

Legend

Figure 2: Mocking the environment for replaying counterexamples

As a starting point, our methodology assumes the existence of two items: a violation trace and
the corresponding automata-based contract that it violates. Using the mechanism depicted in Figure 1
(Left), the methodology uses the violated contract to guide the search for a simpler violation-trace, which
constitutes the main output of the mechanism. For this search, the methodology by-passes any analysis
on the system source code since this analysis would not scale well for systems of considerable size.
Moreover, the absence of a system model forces the methodology to work with partial information,
which limits its ability to give stronger guarantees for its output; e.g., it is not able to efficiently state
whether the simplified trace is minimal or not, as in the case of counterexample minimisation in Model
Checking [8, 11]. This imprecision stems from the fact that the methodology has to use simulated reruns
of the system itself as an approximating predicate for determining whether a simpler violating trace can
be reached: these simulations may either not correspond to actual system executions (see Section 2.1) or
be fairly hard to verify because of system non-determinism (see Section 2.2).

2.1 Capture and Replay

In order to be able to rerun the system for trace simplification purposes, the methodology needs to identify
the points of interaction it had with the environment so as to be able to replicate the same execution
through environment mocking; this process is often referred to as system capture [9]. It involves the use of
an additional subsystem during system execution, whose role is to record and identify the relevant system
interaction events so that these can be later replayed (addressing complication no. 1 of Section 1). As
shown in Figure 2, the methodology classifies events recorded under three categories: External Stimuli:
These are computation steps instigated by the environment on the system, that cause the system to react
in certain ways. They can range from method calls, to message sends, to spawning of sub-components
in the system; Environment Interactions: These are computation steps involving interactions between
the system and the environment, that are initiated by the system. These include synchronous interactions
such as method calls (on the environment) and returns, as well as asynchronous interactions such as
communication sessions and instructions sent to the environment; System Actions: These are system
computation steps that do not involve the environment.

In a limited number of cases (e.g., when the environment is resettable, deterministic and not affected
by side effects) it suffices to mock only the environment stimuli, allowing the environment interactions to
still occur with the actual environment; see Figure 2, Option B. However, environments rarely have these
prerequisite characteristics, and the only other alternative is to mock both the environment stimuli and
interactions; see Figure 2, Option A. This option carries disadvantages of its own, in that the replay may
be unfaithful to the original violation execution because the environment may be stateful: in such cases,

14 Simplifying Contract-Violating Traces

Monitor output (if the simplified counterexample is valid)

Simplifying the counterexample

Output of the counterexample simplifier

Input to the counterexample simplifier

Legend

External stimulus

Contract violation

A violating system run

Tracer output

System/Environment actions
Monitor output

Validating the simplified counterexample

Tracer output for simplified counterexample

Figure 3: Correct shrinking in terms of generated traces

the actual environment would have yielded a different system interaction with a simplified trace than
the mock extracted from the original violation trace. Notwithstanding this limitation, our methodology
favours Option A, because it offers better guarantees wrt. confining the side-effects of a simulated system
rerun, i.e., the third complication in the list regarding post-deployment trace simplification of Section 1.

2.2 Trace Simplification

Trace simplification assumes the following interpretation for the simpler-than trace relation, relying only
on the structure of the trace and the contract automata: a violation trace is considered to be simpler than
another violation trace whenever: (1) The violation is caused by reaching the same bad state in the con-
tract automaton.3 (1) It requires less external stimuli, or the same stimuli but with simpler parameters.4

The underlying assumption justifying the utility of such a definition for our methodology is that
traces reaching the same bad state typically relate to the same system error source. From an operational
perspective, this definition also enjoys pleasing properties such as transitivity, which adhere to intuitive
notions of simplification and facilitates iterative-refinement search techniques. Moreover, the definition
integrates well with the methodology mechanism of using the captured system itself as a lightweight
simpler-than predicate: if the captured system is replayed using a subsequence of the external stimuli
of the original violation trace, and it still violates the contract by reaching the same bad state, then
the trace generated is considered simpler. Figure 3 depicts this process, where the top part represents
the original trace and monitor output, the middle part represents the extraction of the stimuli and the
subsequent stimuli simplification (according to some criteria) while the bottom part shows the outcome
of the simplification process of Figure 1 produced from a simplified list of stimuli.

There are other possible definitions for this relation, such as requiring that the trace is shorter in length
or else that the simpler trace reaches any bad state in the contract automata. Despite their respective
advantages, these alternatives proved not to be as effective for our methodology. Using the length of the
trace as a measure is not compatible with iterative-refinement searching because it yields intermediate
results that vary substantially between one another; this happens because we do not have total control

3A contract automaton may have more than one bad state, each describing different ways how a contract may be violated.
4This assumes some form of ordering over the data domains used.

C. Colombo, A. Francalanza, and I. Grima 15

over the system execution, even under capture, and decreasing stimuli may actually result in longer
traces. On the other hand, using any bad state as a related notion of violation yielded traces that tended
to describe violations caused by different sources in the system; our methodology aims to simplify the
debugging for violations caused by the same source.

The methodology uses delta-debugging techniques [15] to iteratively refine its search towards an
improved solution: the captured system (which includes the synthesised monitor) is replayed under
minimised stimuli and parameters as in Figure 3. If the execution yields a violation and the violating
bad state is the same as that for the original violation trace, then the trace constitutes a simplification (as
defined in Section 2.2); thus the process is repeated using the minimised stimuli and parameters of the
simplified trace as the new approximates for our solution. If not, a different minimised set of stimuli and
parameters are chosen and the captured system is replayed with the new attempt. When all minimising
alternatives are exhausted without yielding a simplified trace, the current simplified approximation is
returned as the output of the minimisation process. To limit the search space of simplifying traces and
the computational complexity of checking whether a trace is minimal, our notion of a minimal trace is
based on one-minimality [15]: a trace is minimal if replaying the captured system after removing any
one of its stimuli does reproduce the bug in the original trace.

There are however complications associated with the plain vanilla adaptation of delta debugging
to our methodology. For instance, the system itself may be non-deterministic and may yield different
outcomes for the same set of stimuli and parameters — complication no. 2 in the enumerated list of
Section 1; in the absence of mechanisms forcing system replays to choose certain execution paths at non-
deterministic points of execution, this can affect the precision of delta-debugging such as one-minimality
guarantees [15]. Our methodology tries to mitigate this imprecision by performing the same replay a
number of times, using a threshold for system replays at which point the search is terminated.

There are however other problems. In particular, the system may print to I/O terminals during replay
— complication no. 3 of Section 1 while elements of the system, such as an internal database, may be
stateful and not resettable to the state that lead to the original trace violation — complication no. 4 of
Section 1. Moreover, the computational cost associated with repeating complex system computations
may make iterative replays infeasible — complication no. 5 of Section 1. The solution chosen by our
methodology to handle these problems is to shift the system-environment boundary we started off with
in Figure 1 (Right). More concretely, elements of the system which produce side-effects, or are non-
deterministic, can be identified and isolated (maintaining the violation), they can be considered to form
part of the environment. A similar procedure can be applied to non-resettable stateful system components
and computationally expensive components. This symbolic boundary shift implies that we also mock
these components with our system capture, thus providing a system-independent, standard way of making
the iterative-refinement search more precise and efficient.

3 Trace simplification for the ELARVA Monitoring Framework

We have implemented an instantiation of our methodology5 as an extension to ELARVA [5], an asyn-
chronous monitoring tool for Erlang [3] (an actor-based programming language). Given the complexity
of distributed industrial systems for which Erlang is usually used, contracts are a natural way how to spec-
ify what supplemented forms of behaviour the system parties are expected to adhere to. Concurrency and
distribution, inherent to Erlang programs, may yield different thread interleavings each time a system is

5The tool is freely available from http://www.cs.um.edu.mt/svrg/Tools/ELARVAplus. The distribution also includes
the case study given in the paper.

http://www.cs.um.edu.mt/svrg/Tools/ELARVAplus

16 Simplifying Contract-Violating Traces

executed, potentially resulting in non-deterministic behaviour. It is also common for Erlang systems to
be programmed to execute without terminating, as in the case of controllers for network switches or ele-
vator systems. These characteristics are conducive to systems with large state spaces, making exhaustive
methods of analysis infeasible. As a result, the post-deployment setup outlined in Figure 1, instrumented
through ELARVA, constitutes an attractive proposition for ensuring contract adherence.

In ELARVA, contracts are specified as DATE automata [6] where transitions are triples of the form

event \ condition \ action

with the following semantics: whenever an event occurs and, at that instant, the condition is satisfied,
the automata transitions to the new state and the action is performed. ELARVA also supports on-the-fly
replication of automata through the Foreach construct. More precisely, it specifies a type of contract
whereby, whenever an Erlang process executing a particular function is spawned, a corresponding moni-
tor executing a replica automata is launched, typically to monitor activities associated with that process.
Foreach constructs are particularly useful for keeping contract descriptions compact when monitoring
systems with numerous replicated processes; this is often the case for most Erlang systems where process
spawning is relatively cheap [3].

return\n<=0\void

n=0

borrow\n<4\n++

return\n>0\n−−

active
user

Foreach User

more

than 4 wrong

return
borrow\n>=4\void

Figure 4: Library System Foreach User contract

Figure 4 depicts an example Foreach contract specifying that every (process representing a) library
user can borrow a maximum of four books and, at the same time, cannot return a book when no books
have been borrowed. Foreach contracts are violated if any replicated automaton that is launched reaches
the corresponding bad state (represented by octagons).

In practice, ELARVA monitors Erlang programs by traversing the DATE automata in correspondence
to the events read from to the program execution trace, generated by the Erlang Virtual Machine (EVM).
Erlang traces record events such as methods calls, communication messages and process spawning:
together with the type of the event and the values associated with it, Erlang traces also record the entities
producing these events, i.e., the unique ID of the process producing that event. In an ELARVA monitoring
setup similar to that in Figure 1 (Right), the EVM, acting as the Events Tracer, communicates events to
the Contract Monitor while the system is executing and, as soon as a monitor automaton reaches a bad
state, it flags the violation together with the trace justifying the violation detected.

As in Figure 1 (Left), we extend the ELARVA system with a Simplifier component which takes the
violation trace and the contract as inputs and produces a simplified trace as output; implicitly, the Sim-
plifier also takes the system being monitored as input so as to carry out capture and replay. The default
ELARVA setting assumes that the environment consists solely of the user and, as a result, it only mocks
the user input and output interactions recorded in the trace. This system-environment boundary may
however be shifted by manually specifying the process IDs recorded in the violation trace that are to be
mocked. Boundary delineation is usually a trial-and-error process; at best it can fine tune the mecha-
nism, making the trace simplification processes more efficient and effective; at worst, no simplification

C. Colombo, A. Francalanza, and I. Grima 17

is carried out 6 and the original violation trace is returned.
The Simplifier uses an adapted version of a standard algorithm called ddmin [15]; this algorithm

attempts to incrementally discard parts of the trace stimuli until discarding any more stimuli would result
in a non-violating trace.7 However, in a trace with multiple stimuli, the range of possibilities can be
prohibitive. Our adaptation of the algorithm uses the DATE automata to guide this search for stimuli
minimisation. In particular, our heuristic is based on the assumption that a process violating a sub-
property inside a Foreach specification would still violate it if unrelated processes executing in parallel
are somehow suppressed, either through removed stimuli, or else through blocking as a result of missing
environment interactions from the mocking side. Thus, whenever the Simplifier realizes that the type
of contract violated is a Foreach specification, it applies two passes of ddmin trace reductions. In the
first pass, it attempts to identify which processes correspond to different replicated instances of the same
replicated automata and, subsequently attempts to incrementally suppress different groups of processes
until the minimum set of groups of processes is reached that can still produce the contract violation. In the
second pass, the Simplifier applies ddmin again, this time on the whole trace of the remaining processes
so as to further prune any stimuli which are superfluous for violating the contract. Thus, for the example
Foreach contract depicted in Figure 4, the Simplifier first attempts find the minimum number of users
that can contribute to a violation and it afterwards tries to find the minimum number of stimuli required
by this number of users leading to a violation; see Figure 5.

Second Pass ddmin
User 1
Trace Trace

User 2
Trace

User N
Trace

User 3

First Pass ddmin

Figure 5: Two pass ddmin minimisation for Foreach Constructs

4 Case Study

To demonstrate the effectiveness of using contract information for the violation trace simplification, we
used the library case study, mentioned briefly in Section 3, which allows users to register, browse through
the available books, borrow books, and eventually return the books. The library system should adhere to
four contracts, named as follows: (i) same book twice: no client can borrow two books with the same
name; (ii) more than four: no client can borrow more than four books; (iii) different client: no client can
borrow/return a book using the name of another client; and (iv) return wrong: no client can return a book
if currently it is not borrowing any. Encoding such contract in terms of DATEs for ELARVA monitoring
would result into automata such as Figure 4, which describes contracts (ii) and (iv) together.

To highlight our approach we focus on contract (iv) and give an example of a violation trace and
how it is simplified. Consider the scenario where, upon starting the library system, ELARVA reaches the
return wrong bad state, returning the following trace documenting the violation:
[{trace_ts,<0.35.0>,’receive’,{newClient,bob},{1339,842747,273000}},

6Recall that due to non-determinism the violation might not be reproduced during simplification.
7In this preliminary implementation, we do not attempt to simplify traces on the basis of simplified parameters. These

techniques, used already in test-minimisation tools such as [1, 14] are often data-dependent and complementary to ours.

18 Simplifying Contract-Violating Traces

Property Violated Original number DDMIN Foreach DDMIN

of Stimuli Stimuli Steps Stimuli Steps

same book 23 7 49 4 34

twice 58 4 90 4 35

more than 20 15 85 10 34

four 73 15 279 14 70

different 9 2 18 2 9

client 23 2 28 2 12

return 11 2 15 2 16

wrong 60 2 35 2 23

Table 1: Shrinking performance in different scenarios

{trace_ts,<0.35.0>,spawn,<0.38.0>,{client,newClient,[bob]},{1339,842747,273001}},
{trace_ts,<0.35.0>,link,<0.38.0>,{1339,842747,273002}},{trace_ts,<0.38.0>,register,bob,{1339,842747,273003}},
{trace_ts,<0.35.0>,send,{confirm_reg,bob},<0.38.0>,{1339,842747,273004}},
{trace_ts,<0.38.0>,’receive’,{confirm_reg,bob},{1339,842747,273005}},
{trace_ts,<0.38.0>,send,{code_call,<0.38.0>,{ensure_loaded,client}},code_server,{1339,842747,273006}},
{trace_ts,<0.38.0>,’receive’,{code_server,{module,client}},{1339,842747,273007}},
{trace_ts,<0.38.0>,send,{io_request,<0.38.0>,<0.23.0>,{put_chars,unicode,io_lib,format,[[126,110,42,
45,45,45,32,67,108,105,101,110,116,32,126,112,32,114,101,103,105,115,116,101,114,101,100,32,115,
117,99,99,101,115,115,102,117,108,108,121,32,126,110],[bob]]}},<0.23.0>,{1339,842747,273008}}, ...

Apart from stimuli from the environment, the trace also contains all the messaging between the various
system processes. For example while the first line is a receipt from the user to add a new client bob, the
second line is the spawn of the process which will handle bob’s requests. Recall that since the system’s
internal behaviour cannot be steered, our replay and minimisation mechanisms focus on the environment
stimuli. Once the trace is filtered from internal system events, the stimuli are the following:
[{library,{newClient,ian}},{library,{addBook,fable}}, {library,{addBook,story}},
{library,{addBook,wish}}, {library,{newClient,bob}}, {library,{addBook,hobby}},
{ian,{borrowBook,story}}, {ian,{borrowBook, wish}}, {bob,{borrowBook,fable}},
{ian,{returnBook,story}}, {ian,{returnBook,fable}}]

While the above list of stimuli is useful for reproducing the contract violation, it contains entries that
do not contribute towards the violation, thus complicating debugging. The ELARVA extension can apply
the simplification techniques described above and reduce the list to just two steps:

[{library,{newClient,bob}}, {bob,{returnBook,magic}}].

Note that the simplified trace obtained is in fact minimal wrt. one-minimality, i.e., removing the first
element would not have triggered the monitor to start checking [bob] while removing the second ele-
ment would not violate the contract. The simplified trace generated by the above two stimuli is what is
outputted by ELARVA, allowing the debugger to pinpoint the source of violation more easily.

To evaluate the simplification capabilities of ELARVA we carried out preliminary tests on the the li-
brary system described above. In particular, through these tests we wanted to substantiate our hypothesis
that using contract information, i.e., the foreach structure, improves the performance of the simplifying
algorithm. Thus for each contract, we identified two violating traces and each trace was first simplified
using the plain ddmin algorithm and then we simplified the trace using contract information as explained
in the previous section. The original number of stimuli, their resulting length and the number of steps
required for simplification8 are shown in Table 1. Using contract information has consistently produced
simpler traces and with the exception of one case, it has also taken fewer number of steps to reach the
simplified trace.

8Note that some steps were unsuccessful and did not contribute towards a simpler trace.

C. Colombo, A. Francalanza, and I. Grima 19

5 Related Work

Two Erlang software testing tools offering trace simplification to facilitate debugging are PropEr [14]
and QuickCheck [1]. Both tools are property-based and perform testing by randomly generating values
within the given range and running the functions being tested with the generated values. Should one
of the generated test cases fail, the simplification process mutates the failing test case and re-runs the
result in order to check if a violation occurs. A simplified test case is considered valid if it produces
an error breaking the system’s specification and it is simpler than the original failing test case. These
tools differ from the extended ELARVA because they are used pre-deployment; since they already drive
the environment, they do not need capture mechanisms. Furthermore, PropEr and QuickCheck do not
differentiate amongst violations and a successful counterexample simplification is one which generates
any violation; by contrast, our trace simplification requires violations to match wrt. the same bad states.

In principle, our capture and replay approach is similar to SCARPE [9, 13]: as we discussed in
Section 2, the tool leaves it up to the user to delineate the system of interest while capturing the interaction
of the selected subsystem with the rest of the environment. Although SCARPE is used for debugging
purposes, it does not perform any trace shrinking. The target language is also different from ours in that
they focus on Java-based systems.

The body of work on JINSI [2, 12] is perhaps the closest to ours. The tool is more mature than our
ELARVA extension and is able to use advanced replay mechanisms and techniques such as event and
dynamic slicing to considerably improve the efficiency of simplifying counterexamples. However, their
approach can only handle crashing bugs and terminating program executions resulting in “infected” pro-
gram state.9 Since our work assumes the notion of a contract, it can handle non-terminating computation
as well as a notion of violations that is far richer than crashing bugs. We also employ contract information
as a form of contract-guided event slicing, which appears to be novel.

6 Conclusion

In this paper, we have studied post-deployment debugging techniques for contract violations. Our con-
tributions are: (1) A methodology that uses contracts to simplify violation traces that are obtained post-
deployment, thus facilitating the pinpointing of the defects causing the violation. (2) A prototype tool
implementation instantiating the methodology, that simplifies Erlang violation traces using contract-
based heuristics. When compared to state-of-the-art post-deployment debugging tools such as [2, 12],
our methodology also makes fundamental use of contracts to extend debugging beyond traces relating to
crashing bugs or terminating programs.

Future Work: We plan to assess better and improve the simplification algorithms used by our proto-
type tool by exploiting more contract information such as iterating event sequences and dependencies
between the events leading up to the violation. We also plan to extend our tool with parameter shrinking
techniques used frequently in property based testing [1, 14]. Finally, we plan to integrate thread-level
scheduler tools for Erlang such as PULSE [4] which would enable the controlled replay of specific con-
currency interleavings mirroring those of the violating trace. This approach should significantly fine-tune
our capabilities of reproducing concurrency bugs.

9In [2] computation has to terminate before the state can be analysed.

20 Simplifying Contract-Violating Traces

References
[1] Thomas Arts, John Hughes, Joakim Johansson & Ulf Wiger (2006): Testing telecoms software with quviq

QuickCheck. In: ACM SIGPLAN workshop on Erlang, ACM, pp. 2–10, doi:10.1145/1159789.1159792.
[2] Martin Burger & Andreas Zeller (2011): Minimizing Reproduction of Software Failures. In: ISSTA, ACM,

pp. 221–231, doi:10.1145/2001420.2001447.
[3] Francesco Cesarini & Simon Thompson (2009): Erlang Programming. O’Reilly. Available at http://www.

oreilly.de/catalog/9780596518189/index.html.
[4] Koen Claessen, Michal Palka, Nicholas Smallbone, John Hughes, Hans Svensson, Thomas Arts & Ulf Wiger

(2009): Finding race conditions in Erlang with QuickCheck and PULSE. In: ICFP, ACM, New York, NY,
USA, pp. 149–160, doi:10.1145/1631687.1596574.

[5] Christian Colombo, Adrian Francalanza & Rudolph Gatt (2012): Elarva: A Monitoring tool for Erlang. In:
Runtime Verification, LNCS 7186, Springer, pp. 370–374, doi:10.1007/978-3-642-29860-8_29.

[6] Christian Colombo, Gordon J. Pace & Gerardo Schneider (2008): Dynamic Event-Based Runtime Monitoring
of Real-Time and Contextual Properties. In: FMICS, LNCS 5596, pp. 135–149, doi:10.1007/978-3-642-
03240-0_13.

[7] Stephen Fenech (2008): Conflict Analysis of Deontic Conflicts. Master’s thesis, Dept. of CS, University of
Malta. Available at http://www.cs.um.edu.mt/svrg/Tools/CLTool/Papers/masterThesis.pdf.

[8] Paul Gastin & Pierre Moro (2007): Minimal counterexample generation for SPIN. In: SPIN, Springer, pp.
24–38, doi:10.1007/978-3-540-73370-6_4.

[9] S. Joshi & A. Orso (2007): SCARPE: A Technique and Tool for Selective Capture and Replay of Program
Executions. In: ICSM, pp. 234 –243, doi:10.1109/ICSM.2007.4362636.

[10] Flemming Nielson, Hanne R. Nielson & Chris Hankin (2004): Principles of Program Analysis. Springer-
Verlag, NJ, USA. Available at http://www.springer.com/computer/theoretical+computer+
science/book/978-3-540-65410-0.

[11] Tobias Nopper, Christoph Scholl & Bernd Becker (2007): Computation of minimal counterexam-
ples by using black box techniques and symbolic methods. In: ICCAD, IEEE, pp. 273–280,
doi:10.1109/ICCAD.2007.4397277.

[12] Alessandro Orso, Shrinivas Joshi, Martin Burger & Andreas Zeller (2006): Isolating Relevant Component
Interactions with JINSI. In: WODA, ACM, pp. 3–10, doi:10.1145/1138912.1138915.

[13] Alessandro Orso & Bryan Kennedy (2005): Selective Capture and Replay of Program Executions. In:
WODA, pp. 29–35, doi:10.1145/1082983.1083251.

[14] Manolis Papadakis & Konstantinos Sagonas (2011): A PropEr Integration of Types and Function
Specifications with Property-Based Testing. In: SIGPLAN Erlang Workshop, ACM, pp. 39–50,
doi:10.1145/2034654.2034663.

[15] Andreas Zeller & Ralf Hildebrandt (2002): Simplifying and Isolating Failure-Inducing Input. IEEE Trans.
Softw. Eng. 28(2), pp. 183–200, doi:10.1109/32.988498.

http://dx.doi.org/10.1145/1159789.1159792
http://dx.doi.org/10.1145/2001420.2001447
http://www.oreilly.de/catalog/9780596518189/index.html
http://www.oreilly.de/catalog/9780596518189/index.html
http://dx.doi.org/10.1145/1631687.1596574
http://dx.doi.org/10.1007/978-3-642-29860-8_29
http://dx.doi.org/10.1007/978-3-642-03240-0_13
http://dx.doi.org/10.1007/978-3-642-03240-0_13
http://www.cs.um.edu.mt/svrg/Tools/CLTool/Papers/masterThesis.pdf
http://dx.doi.org/10.1007/978-3-540-73370-6_4
http://dx.doi.org/10.1109/ICSM.2007.4362636
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-65410-0
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-65410-0
http://dx.doi.org/10.1109/ICCAD.2007.4397277
http://dx.doi.org/10.1145/1138912.1138915
http://dx.doi.org/10.1145/1082983.1083251
http://dx.doi.org/10.1145/2034654.2034663
http://dx.doi.org/10.1109/32.988498

	1 Introduction
	2 A Methodology for Contract-Violating Trace Simplification
	2.1 Capture and Replay
	2.2 Trace Simplification

	3 Trace simplification for the Elarva Monitoring Framework
	4 Case Study
	5 Related Work
	6 Conclusion

