
A. Paskevich, J. Proença (Eds.): Formal Integrated
Development Environment 2021 (F-IDE 2021)
EPTCS 338, 2021, pp. 19–30, doi:10.4204/EPTCS.338.4

© Van Beusekom, De Jonge, Hoogendijk & Nieuwenhuizen
This work is licensed under the
Creative Commons Attribution License.

Dezyne: Paving the Way to
Practical Formal Software Engineering

Rutger van Beusekom, Bert de Jonge, Paul Hoogendijk, Jan Nieuwenhuizen
Verum Software Tools B.V., The Netherlands

{rutger.van.beusekom,bert.de.jonge,paul.hoogendijk,jan.nieuwenhuizen}@verum.com

Designing software that controls industrial equipment is challenging, especially due to its inherent
concurrent nature. Testing this kind of event driven control software is difficult and, due to the large
number of possible execution scenarios only a low dynamic test coverage is achieved in practice.
This in turn is undesirable due to the high cost of software failure for this type of equipment.

In this paper we describe the Dezyne language and tooling; Dezyne is a programming language
aimed at software engineers designing large industrial control software. We discuss its underlying
two layered and compositional approach that enables reaping the benefits of Formal Methods, hereby
strongly supporting guiding principles of software engineering. The core of Dezyne uses the mCRL2
language and model-checker (Jan Friso Groote et al.) to verify the correctness and completeness of
all possible execution scenarios.

The IDE of Dezyne is based on the Language Server Protocol allowing a smooth integration
with e.g., Visual Studio Code, and Emacs, extended with several automatically generated interac-
tive graphical views. We report on the introduction of Dezyne and its predecessor at several large
high-tech equipment manufacturers resulting in a decrease of software developing time and a major
decrease of reported field defects.

1 Introduction

Designing software that controls industrial equipment is challenging. The complexity of such equipment
is ever growing and so is the demand on its software. The software must control and monitor many
processes in parallel. Designing the regular control flow of the processing steps is already complex,
but many exceptional conditions may occur which disrupt the regular control flow and must be handled
appropriately.

Testing event driven control software is difficult. Testing time on hardware is expensive so often
software simulators on various levels of (hardware) details are created to mitigate these costs. However,
the ultimate test is still the execution on the real hardware; errors found during the final testing are very
costly and time consuming to fix. Writing test cases for (parts of) the software is difficult since, as
explained earlier, many different execution scenarios have to be considered which depend on different
timing conditions. As a result, only a small percentage of the possible execution scenarios is effectively
tested in practice.

This kind of high-tech equipment is extremely expensive, for instance the Extreme Ultraviolet (EUV)
lithography machine of ASML costs around $120 million dollar. Manufacturers of such kind of equip-
ment are required to deliver a high uptime of their machines. In some cases, the manufacturers are
penalized when a machine does not reach the agreed availability. As a result, down time of these ma-
chines as the result of software failure must be avoided at all cost.

http://dx.doi.org/10.4204/EPTCS.338.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

20 Dezyne: Paving the Way to Practical Formal Software Engineering

2 Formal Methods

As stated in the previous section, designing and testing control software of industrial high-tech equipment
in a traditional fashion has serious short comings, while on the other hand the cost-of-non-quality is
extremely high.

Formal Methods have been around for many decades and have been shown to deliver reliable and safe
software. However, Formal Methods come with their own challenges when applied to industrially sized
systems and processes. The tools and their associated languages require Formal Methods specialists.
Furthermore, a translation must be made from the (informal) requirements to some description written in
a Formal Methods Language. Typically, it is challenging to validate that the intended requirements are
correctly captured or are that the requirements are appropriate in the first place.

The artifacts of the formalization process are typically used by Formal Methods toolsets in proving
the consistency of the requirements and any of the derived refinements of the specifications. However,
ultimately we need to obtain running code on the hardware for which the specified properties provably
hold.

The total state space of any industrial size machine controlling application is vast and cannot be han-
dled by any Formal Methods tool in its entirety. A practical way to handle this is to take a compositional
approach: at a certain level one should be able to abstract away from details which are not relevant for
the next level. This way the state-explosion problem can be avoided.

3 Dezyne

Verum has developed Dezyne [1]. Dezyne is a programming language aimed at software engineers
designing large industrial control software. The language is designed to have a very low barrier to entry
for regular software engineers. The Dezyne language consists of two declarative language constructs:
the so-called “guarded” statement and the “on” statement for specifying the states and trigger events
of a state machine, respectively. Furthermore, the Dezyne language has de facto standard imperative
language constructs as present in regular languages like C or Java: variable declaration, assignment,
function declaration, function call, and control flow constructs like if-then-else.

3.1 The Component Model of Dezyne

Dezyne has the notion of three models: interfaces, components, and systems.
An interface model contains the definition of a set of events. In Dezyne events are implemented

as function calls. Each event declaration has a direction, “in” or “out”, and a type signature. The type
signature of an event specifies the data parameters carried by an event, and the type of the return value of
an event. The allowed return types are: “void”, “boolean”, enumeration types, and integer-range types.
The types of the data parameters can be any arbitrary type. This is an example of event declarations of
an interface:

interface IDevice {
in void turnon();
in void turnoff();

}

An interface also has a behaviour section. The behaviour of an interface prescribes the order in which
events are expected to occur. A behaviour can specify additional state variables for keeping track of the

R. van Beusekom, B. de Jonge, P. Hoogendijk & J. Nieuwenhuizen 21

state of the interface. Using the simulator of the Dezyne tooling, the user can produce sequence diagrams
depicting allowed sequences of events for that interface.

An interface plays the role of a contract between components: it specifies how a client component
via its requires port should interact with the underlying component providing the required functionality
via its provides port. This is an example of a simple interface that consists of two events “turnon” and
“turnoff”. The behaviour of the interface specifies that the events should be used alternatingly:

interface IDevice {
in void turnon();
in void turnoff();
behaviour {
enum State {On, Off};
State s = State.Off;
[s.Off] {

on turnon: s = State.On;
on turnoff: illegal;

}
[s.On] {

on turnon: illegal;
on turnoff: s = State.Off;

}
}

}

Note that the statement “on turnoff: illegal;” defines that the event “turnoff” is not allowed in
that state.

A component model and a system model start by declaring their provides ports and requires ports. A
port is a instance of an interface.

A component model also specifies a behaviour, i.e. the actual implementation of the component.
The behaviour describes how a component implements each of the events of its provides ports hereby
possibly using some of its requires ports. A behaviour can specify additional variables to keep track of
the state of the interaction between the component and its ports. In this way the user specifies a finite
state-machine describing the implementation of the component. This is an example of a component
model:

component Fork {
provides IDevice p;
requires IDevice r0;
requires IDevice r1;
behaviour {

enum State {On, Off};
State s = State.Off;
[s.Off] {

on p.turnon(): {r0.turnon(); r1.turnon(); s = State.On;}
}
[s.On] {

on p.turnoff(): {r0.turnoff(); r1.turnoff(); s = State.Off;}
}

}
}

Next to the provides and requires ports, a system model lists component instances and the bindings
between the ports of the component instances and the external ports of the system. These bindings
determine the routing, i.e. call graph, of the events of the external ports of the systems and the component

22 Dezyne: Paving the Way to Practical Formal Software Engineering

instances. This is an example of a system model:

component System {
provides IControl cntrl;

system {
ProcessController controller;
Load loader;
Processor processor;
Unload unloader;

cntrl <=> controller.cntrl;
controller.load <=> loader.load;
controller.process <=> processor.process;
controller.unload <=> unloader.unload;

}
}

The Dezyne tools can generate a diagram from the system model as show in figure 1.

Figure 1: Dezyne system diagram

Section 6 explains in more detail how these diagrams are generated. Note that each connection in the
diagram corresponds to a binding statement <=> in the system model text.

3.2 Verifying Dezyne Models

The Dezyne language is statically checked on the use of syntax, types and an extensive list of well-
formedness properties1.

During the verification phase the Dezyne verification engine checks interface and component models.
The verification engine translates the Dezyne model to an mCRL2 description [5, 2, 1]. Next, the mCRL2
tool set is used to convert the mCRL2 description to an LTS (labeled transition system). An LTS is a
graph where nodes relate to states of the Dezyne model and each edge is labeled with an event instance.
The graph describes the total state space of the model and all possible execution scenarios that cover this
state space.

1Among others: binding pairs of provides and requires; non circular binding of ports; allowed component triggers are “in”
events of provides ports and “out” events of requires ports

R. van Beusekom, B. de Jonge, P. Hoogendijk & J. Nieuwenhuizen 23

Both an interface and a component model are verified for the absence of deadlocks and livelocks, and
whether all integer assignments are in range by inspecting the generated LTS. Additionally a component
model is verified to correctly interact with its requires ports as specified by their interfaces. For this, the
LTS is checked for the absence of the “illegal” label, where the presence would indicate that either the
component performed an action on one of its requires port which was disallowed by the corresponding
interface behaviour, or that a requires port performed an event on the component which was disallowed
by the component behaviour.

Finally, the compliance of a component with all of its provides ports is verified by means of the
ltscompare tool of mCRL2 using the Failures Refinement preorder relation known from CSP [6, 13, 8].
It is used to verify that the LTS of the component after hiding all internal, i.e. those events not observable
by the clients using the provides ports, is a refinement of the LTS of the provides ports, i.e. for component
C with provides port of type I and requires port type J it verifies that:

(C‖J)�α(I) wF I (1)

where wF denotes the Failures Refinement relation of CSP, α(I) denotes the alphabet of process I, ‖
denotes the parallel composition synchronising on the common alphabet, and � denotes the projection
operator, i.e. the complement of the hiding operator, i.e. P�A = P\A.

If an error is found a counter example is produced. This is a trace of events leading up to the state
where the inconsistency emerges.

Next in the Dezyne verification pipeline, the trace is fed to the Dezyne simulator together with the
original Dezyne models. The Dezyne simulator reconstructs the relevant state and location information
such that the user can relate the counter example back to the Dezyne model text. The Dezyne simula-
tor outputs an encoding of a sequence diagram. This encoding also allows navigating the source code
location of each event occurrence in the sequence diagram. This sequence diagram is fed to a graphi-
cal engine implemented in JavaScript using a graphics library for rendering the sequence diagram. The
Dezyne simulator also outputs all possible valid next events. In the sequence diagram these events are
shown as buttons on the corresponding life lines. Figure 2 depicts an example of a sequence diagram.

3.3 Two Level Approach

As described in the previous section, when verifying a Dezyne model a user does not need to have a
knowledge about Formal Methods or the mCRL2 language: under the hood the Dezyne models are
translated to mCRL2 models which are verified using the mCRL2 tooling and a LTS analysis tool. If
a problem is found, the counter example trace is fed to the Dezyne simulator that generates an interac-
tive sequence diagram for the user. The user can use this diagram to interactively find the root cause.
The sequence diagram shows what the component is doing from the start of the system up to the re-
ported violation. If the user has diagnosed the problem and has fixed the Dezyne models, they can rerun
the Dezyne verification engine and see whether the issue has disappeared, and if not, iterate the steps
mentioned above until the issue has been fixed. After which, possibly another issue is found by the
verification engine and the attention is shifted to resolve this issue until no more issues remain.

3.4 Generating Verified and Reliable Code

When the Dezyne models are verified and are correct, the models are used for generating production
quality machine code. Currently the Dezyne tooling has code generators for the languages C++, C#,
JavaScript and GNU Guile Scheme.

24 Dezyne: Paving the Way to Practical Formal Software Engineering

Figure 2: Generated Sequence Diagram with buttons for selecting next possible event.

The operational semantics of the Dezyne models as specified by the modeling in mCRL2 [1] and
the implementation of Dezyne simulator is designed to capture the intended execution behaviour of the
corresponding generated machine code. For Dezyne it is essential that the three embodiments of the
semantics of Dezyne are equivalent. Given that equivalence, it follows that if no problems are found
during verification, we know that all the verified properties also hold for the generated machine code.

The equivalence between the semantics used during verification and the simulation is asserted by
means of ltscompare-ing the trace equivalence of the underlying LTSses for a large set of test models.
Thus, for each model M of this test set we check:

LT SV (M) ≡T LT SS(M) (2)

where LT SV denotes the LTS produced by the mCRL2 tooling as used during verification and LT SS

denotes the LTS produced using the simulator by calculating the transitive closure of the single step
function of the simulator, and ≡T denotes the Trace Equivalence relation of CSP, i.e. L0 ≡T L1 iff
traces(L0) = traces(L1).

The equivalence of LT SV (M) with the generated code for component M is verified in the following
way. For LT SV (M) a trace graph cover is calculated, i.e. a set of traces such that all edges of LT SV (M)
occur in the trace set. Next to the generated code for component M, a simulation stub is also generated.
The generated stub processes the textual representation of a trace: for an inward going event the cor-
responding implementation of the event is called. All outward events are logged and matched with the
events of the trace being processed. For all traces of the LTS graph cover, the generated code plus stub is

R. van Beusekom, B. de Jonge, P. Hoogendijk & J. Nieuwenhuizen 25

executed. If all traces of LT SV (M) are correctly handled by the generated machine code for component
M, we conclude that

traces(LT SV (M)) ⊆ traces(CODEL(M)) (3)

where CODEL(M) denotes the generated code and stub in language L for model M, and traces on code
denotes the set of traces the execution of the code would accept as described above.

Since LT SV (M) is complete, i.e. for all stable states, all events are present, it follows that CODEL(M)
is also complete, and since the generated code is deterministic, i.e. for a given input event, only one
response is generated, we know that the generated code cannot exhibit more behaviour as tested by the
generated traces. In other words, it is that case that:

traces(LT SV (M)) ⊆ traces(CODEL(M)) ⇒ traces(LT SV (M)) = traces(CODEL(M)) (4)

Hence, we verify using ltscompare and the running of all generated traces that

LT SV (M) ≡T LT SS(M) ≡T CODEL(M) (5)

for all of the model M of the test set, for a given language L.
The above mentioned test set covers all aspects of the Dezyne language and expected feature inter-

actions. This test capability is also available for our users to allow them to verify the equivalence (5) of
their own (proprietary) set of models. As a result, the user can assure that if no problems are found during
verification, all the verified properties hold for the generated machine code for their specific models in
their environment, i.e. target compiler and platform.

4 Component Based Providing a Compositional Approach

As described above, a compositional approach to avoid the state explosion problem is highly desirable
to be able to verify large complex system designs. Dezyne is a component based method: a component
specifies its provides and requires ports where ports are instances of interfaces. A Dezyne interface
has a contract, i.e. its behaviour, specifying the contract between two components. The interfaces of
the provides ports of a component are the abstraction of said component. When designing a Dezyne
component, a user does not need to know which implementation is going to provide an interface; it is
sufficient to know the interface.

This provides a natural way of decomposing a larger system into smaller manageable parts. When
presented with the challenge to devise certain functionality, one may approach this task by distinguishing
the separate responsibilities of that functionality which be separately assigned to one or more compo-
nents. The responsibility of a single component starts with its provides ports and ends with its requires
ports. When designing a component one can, through verification, justly assume that the underlying
components implements the interfaces of its provides ports faithfully.

The approach of interfaces as an abstraction of components not only allows the engineer to divide
and conquer a problem by considering each responsibility of a component one at the time, but also
is a solution to verify complete systems compositionally. This is due to an important property of the
Failures Refinement relation of CSP, which allows verifying each individual component to be correct
and therefore knowing that the overall system is also correct. It is the case that when two components
refine their provides port interfaces then the compound of two components will also refine the top level
provides port since the Failures Refinement relation is transitive and the hiding operator is congruent.

26 Dezyne: Paving the Way to Practical Formal Software Engineering

We have, for component C with provides port of type I and requires port of type J, and component D
with provides port of type J and requires port of type K, that:

(C‖J)�α(I) wF I ∧ (D‖K)�α(J) wF J ⇒ (C‖D‖K)�α(I) wF I (6)

Hence, for Dezyne, if we have proven that all components are correct, we have proven that the
complete system is correct.

5 Guiding Principles of Software Engineering

The development of the Dezyne methodology and language design are guided by the fundamental soft-
ware engineering principles as mentioned in e.g. [4]. These engineering principles are: rigor and formal-
ity, separation of concerns, modularity, abstraction, anticipation of change, generality and incrementality.
We strive to have a methodology and language in supporting the user as much as possible in practicing
these engineering principles. Next we discuss each of the principles in more detail and how they are
reflected in Dezyne in supporting the user.

Rigor and formality

Following this principle will add precision to and increases confidence in the outcome of the creative
process of constructing software by expressing requirements and ideas succinctly using a well understood
notation which expresses intent and specifically allows communicating information.

As mentioned before, the Dezyne language has a rigorously and formally defined operational seman-
tics having three different but equivalent embodiments: the modeling in mCRL2, the Dezyne simulator,
and the behaviour of the generated machine code.

For the user defining a Dezyne interface describing the interaction between two components forces
the user to clearly specify the expected interaction for all possible scenarios thus also for exceptional
cases. The verification engine will find for a Dezyne component whether there are missing cases or
whether there are states where events are not handled as they are intended.

Separation of concerns

The principle of separation of concerns is a form of divide and conquer of the work itself as well as
dealing with the complexity of problems in general. By explicitly distinguishing one aspect from another,
we can avoid having to deal with the compounded problem.

As mentioned before Dezyne is component based and guides the user in finding a proper decomposi-
tion of the problem, i.e. describing different aspects in behaviours independently in separate interfaces,
component, and system models.

Modularity

Modularity is a structural and behavioural separation of concerns by encapsulation2, abstraction and
(de)composition.

Interfaces represent and encapsulate the entire interactional conversation between peer components.
Components encapsulate all of the coordination across its ports. Systems encapsulate component in-
stances and their inter-connections.

2Information hiding

R. van Beusekom, B. de Jonge, P. Hoogendijk & J. Nieuwenhuizen 27

Incrementality

The principle of incrementality allows for stepwise refining solutions to challenges, thereby avoiding the
problems associated with a big bang approach.

Verification and code generation can be used throughout the life cycle of every model. Also models
can be extended aspect by aspect and hereby support an agile software development approach.

Abstraction

Abstraction allows us to distinguish between key issues and side issues. The key issues must be tackled
early in the development process and will allow to postpone dealing with the details at the last responsible
moment.

Dezyne interfaces are abstractions of component interactions and hide component implementation
details and as mentioned before are key in having a compositional approach.

Generality

Awareness of generality allow us to move from a point solution to a general solution, which in turn caters
for avoiding (future) work by using the general solution.

In Dezyne interfaces represent the client’s perspective on the implementation. Taking the different
point solutions under consideration, this allows deriving a general interface by capturing the commonality
in the interaction of different clients.

Anticipation of change

Change is inevitable, therefore we must both keep track of all of the artifacts of the creative process, as
well as maintain the consistency across the refinement steps. We must also maintain their malleability.

In Dezyne the language and the verification create the freedom to evolve any aspect while main-
taining the consistency during the entire development lifecycle. If a change breaks the consistency the
verification engine will report this and the user can take appropriate action.

6 Dezyne IDE Based on LSP

The core of the Dezyne tooling consists of the verification engine, simulator and code generators which
are implemented using GNU Guile Scheme. In order to support a multitude of different IDEs we have
implemented a language server implementing the Language Server Protocol (LSP). LSP allows clients
to remain language-agnostic and share a single language-specific server implementation. Currently the
Dezyne LSP server provides code completion and code navigation. The LSP server shares the parsing
part with the core Dezyne tooling and as such only a single language front-end has to be maintained.
When the Dezyne language is extended, it becomes immediately available for all IDEs by means of the
LSP server.

Currently there are LSP client implementations of both Visual Studio Code (3) and GNU Emacs
available. Due to the nature of LSP supporting the LSP clients of other IDEs should involve little work,
if any.

LSP is text oriented and currently does not provide any graphical support. To integrate the interactive
Dezyne diagrams, there is a daemon process running on the machine of the user which among other

28 Dezyne: Paving the Way to Practical Formal Software Engineering

things implements a webserver. For all the Dezyne views a webbrowser is started that connects to this
local webserver. The editor also connects to this webserver: when the user clicks on an element in the
graphical view that contains source code location, a message is sent from the webpage to the editor
that contains a command for letting the editor jump to the corresponding location in the Dezyne model.
Note that large parts of the daemon and JavaScript as part of a webpage rendered by the webbrowser is
produced using Dezyne.

Dezyne currently has a state diagram view, a system view depicting the composition of a system
model out of its subcomponent, and as mentioned before the sequence diagram for the interaction with the
simulator. The user can either start the simulator directly, or the simulator is started when the verification
engine finds a problem and generates a counter example. The next possible events are also depicted in
the sequence diagram and if the user selects a next event, this request is send from the webpage to the
daemon, and the daemon reruns the simulator with the current trace of events extended with the requested
event.

Figure 3: Visual Studio Code with Dezyne LSP and extended with a interactive graphical view.

7 Application of Dezyne in Industry

Dezyne and its predecessor ASD have been intensively used by several Verum customers for more than
a decade. Verum customers are mainly high tech equipment manufacturers; their binding factor is that
the cost-of-non-quality is high in the market they operate. Philips Healthcare is one of the first customers
and has the longest experience in using Verum products. For there initial projects the impact of using
this kind of low-entry Formal Methods based tooling has been investigated [7, 12, 11, 10] and reported
that the use of the tool eliminated design errors earlier in the design process and resulted in reduced
development time and an ten fold reduction in reported errors.

R. van Beusekom, B. de Jonge, P. Hoogendijk & J. Nieuwenhuizen 29

ASML is one of the leading manufacturers of semiconductor chip-making equipment, and has been
using our tooling in different projects for different machines for some years now [9, 3, 14]. They also
reported a similar decrease in field defects and decrease in development time.

The most striking difference between ASD and Dezyne is that ASD has its own proprietary Mi-
crosoft Excel resembling editor and is as such not language based. This has had all kind of implications
for incorporating ASD into existing software development toolchains. For example, version manage-
ment tooling is predominantly text based. This alone was experienced as a substantial obstacle in the
acceptance of ASD. The feedback from users and the noted shortcomings have served as primary input
to design the Dezyne language and its tooling.

Dezyne is being used by other customers which names we cannot disclose, operating in the field
of semiconductor equipment industry, electronic analytical instruments, and egg grading, packing and
processing machines.

8 Conclusions and Future Directions

Dezyne and its predecessor are being used at several high-tech equipment manufacturing multinationals.
So far several millions lines of generated code are running in production around the world.

Software engineers without a formal methods background are productive and comfortable due to
the familiar concepts Dezyne is built on. Furthermore the Dezyne language is designed to promote
guiding principles of software engineering. In order to avoid the state explosion problem it is especially
important to divide and conquer complexity in manageable sub-components, by introducing internal
Dezyne interfaces that capture the responsibilities of these sub-components. The Dezyne verification
engine guides the user in achieving an intuitive understanding of the complexity of the problem at hand
and provides the user with input as to which parts of the system are candidates to be broken up.

The introduction of Dezyne and its predecessor has resulted in a decrease in software development
time, a vast reduction in integration time, and a major decrease of reported field defects. This shows
that Formal Methods can bring a lot of added value to industrial software engineers, provided that the
method hides the underlying complexities, can be used compositionally, generates production quality
and verified machine code, is properly packaged in a familiar IDEs and graphical interactive views, and
promotes the application of proper software engineering principles.

Currently, the Dezyne simulator is restricted to a single component since this is used to debug the
counter examples found by the verification engine. We are extending the simulator to bring multiple
components in scope and even complete systems. This will further support the user in validating their
systems, i.e. to check that the intended use cases and user stories are present in the behaviour of system.

We aim to extend the verification engine to prove properties on several components combined. The
challenge here is to find a proper balance between the expressiveness of the language defining these
properties and the clarity of the expressed properties such that a users can assess whether the formal
properties capture the intended informal requirements.

References

[1] Rutger van Beusekom, Jan Friso Groote, Paul F. Hoogendijk, Robert Howe, Wieger Wesselink, Rob Wieringa
& Tim A. C. Willemse (2017): Formalising the Dezyne Modelling Language in mCRL2. In Laure Petrucci,
Cristina Seceleanu & Ana Cavalcanti, editors: Critical Systems: Formal Methods and Automated Verifica-
tion - Joint 22nd International Workshop on Formal Methods for Industrial Critical Systems - and - 17th

30 Dezyne: Paving the Way to Practical Formal Software Engineering

International Workshop on Automated Verification of Critical Systems, FMICS-AVoCS 2017, Turin, Italy,
September 18-20, 2017, Proceedings, Lecture Notes in Computer Science 10471, Springer, pp. 217–233,
doi:10.1007/978-3-319-67113-0 14.

[2] Olav Bunte, Jan Friso Groote, Jeroen J. A. Keiren, Maurice Laveaux, Thomas Neele, Erik P. de Vink, Wieger
Wesselink, Anton Wijs & Tim A. C. Willemse (2019): The mCRL2 Toolset for Analysing Concurrent Systems.
In Tomáš Vojnar & Lijun Zhang, editors: Tools and Algorithms for the Construction and Analysis of Systems,
Springer International Publishing, Cham, pp. 21–39, doi:10.1007/978-3-642-34281-3 26.

[3] Gemma Church (2017): Have you ever wanted to press ‘delete’ on half a million lines of legacy
code? Available at https://medium.com/@ASMLcompany/have-you-ever-wanted-to-
press-delete-on-half-a-million-lines-of-legacy-code-96a76fdbc076.

[4] Carlo Ghezzi, Mehdi Jazayeri & Dino Mandrioli (2003): Fundamentals of Software Engineering, 2nd Edi-
tion. Pearson.

[5] J.F. Groote & M.R. Mousavi (2014): Modeling and analysis of communicating systems. MIT Press,
doi:10.7551/mitpress/9946.001.0001.

[6] C.A.R. Hoare (1985): Communicating Sequential Processes. Prentice-Hall International Series in Computer
Science, Prentice Hall. Available at http://www.usingcsp.com/cspbook.pdf.

[7] Jozef Hooman, Robert Huis in ’t Veld & Mathijs Schuts (2011): Experiences with a Compositional Model
Checker in the Healthcare Domain. In Zhiming Liu & Alan Wassyng, editors: Foundations of Health Infor-
matics Engineering and Systems - First International Symposium, FHIES 2011, Johannesburg, South Africa,
August 29-30, 2011. Revised Selected Papers, Lecture Notes in Computer Science 7151, Springer, pp. 93–
110, doi:10.1007/978-3-642-32355-3 6.

[8] Maurice Laveaux, Jan Friso Groote & Tim Willemse (2019): Correct and efficient antichain algorithms
for refinement checking. In Nobuko Yoshida & Jorge A. Pérez, editors: Formal Techniques for Distributed
Objects, Components, and Systems - 39th IFIP WG 6.1 International Conference, FORTE 2019, held as
part of the 14th International Federated Conference on Distributed Computing Techniques, DisCoTec 2019,
Proceedings, Lecture Notes in Computer Science, Springer, Germany, pp. 185–203, doi:10.1007/978-3-030-
21759-4 11.

[9] A.A.H. Osaiweran, J. Marincic & J.F. Groote (2017): Assessing the quality of tabular state machines through
metrics. In: Proceedings - 2017 IEEE International Conference on Software Quality, Reliability and Security,
QRS 2017, IEEE Press, pp. 426–433, doi:10.1109/QRS.2017.52. 2017 IEEE International Conference on
Software Quality, Reliability and Security (QRS) ; Conference date: 25-07-2017 Through 29-07-2017.

[10] A.A.H. Osaiweran, M.T.W. Schuts, J.J.M. Hooman, J.F. Groote & B.J. Rijnsoever, van (2016): Evaluating the
effect of a lightweight formal technique in industry. International Journal on Software Tools for Technology
Transfer 18(1), pp. 93–108, doi:10.1007/s10009-015-0374-1.

[11] Ammar Osaiweran, Mathijs Schuts & Jozef Hooman (2014): Experiences with incorporating formal tech-
niques into industrial practice. Empir. Softw. Eng. 19(4), pp. 1169–1194, doi:10.1007/s10664-013-9251-2.

[12] Ammar Osaiweran, Mathijs Schuts, Jozef Hooman & Jacco H. Wesselius (2013): Incorporating Formal
Techniques into Industrial Practice: an Experience Report. Electron. Notes Theor. Comput. Sci. 295, pp.
49–63, doi:10.1016/j.entcs.2013.04.005.

[13] A. W. Roscoe (1997): The Theory and Practice of Concurrency. Prentice Hall PTR, USA.
[14] R. Wester & J. Koster (2015): The Software behind Moore’s Law. IEEE Software 32(02), pp. 37–40,

doi:10.1109/MS.2015.53.

http://dx.doi.org/10.1007/978-3-319-67113-0_14
http://dx.doi.org/10.1007/978-3-642-34281-3_26
https://medium.com/@ASMLcompany/have-you-ever-wanted-to-press-delete-on-half-a-million-lines-of-legacy-code-96a76fdbc076
https://medium.com/@ASMLcompany/have-you-ever-wanted-to-press-delete-on-half-a-million-lines-of-legacy-code-96a76fdbc076
http://dx.doi.org/10.7551/mitpress/9946.001.0001
http://www.usingcsp.com/cspbook.pdf
http://dx.doi.org/10.1007/978-3-642-32355-3_6
http://dx.doi.org/10.1007/978-3-030-21759-4_11
http://dx.doi.org/10.1007/978-3-030-21759-4_11
http://dx.doi.org/10.1109/QRS.2017.52
http://dx.doi.org/10.1007/s10009-015-0374-1
http://dx.doi.org/10.1007/s10664-013-9251-2
http://dx.doi.org/10.1016/j.entcs.2013.04.005
http://dx.doi.org/10.1109/MS.2015.53

	1 Introduction
	2 Formal Methods
	3 Dezyne
	3.1 The Component Model of Dezyne
	3.2 Verifying Dezyne Models
	3.3 Two Level Approach
	3.4 Generating Verified and Reliable Code

	4 Component Based Providing a Compositional Approach
	5 Guiding Principles of Software Engineering
	6 Dezyne IDE Based on LSP
	7 Application of Dezyne in Industry
	8 Conclusions and Future Directions

