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We propose a conceptual integration of deductive program verification into existing user interfaces
for software debugging. This integration is well-represented in the “Debug Adapter Protocol”, a
widely-used and generic technology to integrate debugging of programs into development environ-
ments. Commands like step-forward and step-in are backed by steps of a symbolic structural op-
erational semantics, and the different paths through a program are readily represented by multiple
running threads of the debug target inside the user interface. Thus, existing IDEs can be leveraged
for deductive verification debugging with relatively little effort. We have implemented this scheme
for SecC, an auto-active program verifier for C, and discuss its integration into Visual Studio Code.

1 Introduction

Deductive verification of programs with respect to strong requirements relies on human proof engineering
effort. The user has to provide the primary correctness specifications (e.g. procedure contracts), as
well as auxiliary annotations (e.g. loop invariants), key lemmas, and other proof hints. This is much
facilitated by modern Integrated Development Environments (IDEs) for formal methods tools and by
advances in verification technology. Over the recent years, the term “push-button” has been coined,
suggesting perhaps that proof automation is nowadays good enough to not burden the user with internal
details. However, proofs for code that is already correctly annotated are fundamentally different from
the typical trial an error to find these. The ability to dig into the causes of a verification failure is not just
nice-to-have—it is crucial have access to as much information as possible.

Related Work: To that end, state-of-the-art IDEs for formal development offer different features:
Dafny [13], for example, highlights those annotations which cannot be proven, and the Boogie Verifi-
cation Debugger [12] gives structured access to concrete counterexamples. In VeriFast [11], one can
inspect the symbolic state and a tree representation of the paths explored. Why3 [4] shows the generated
verification conditions in a nice and structured way and offers interactive as well as automatic proof steps.
In contrast, general purpose interactive theorem provers like Isabelle/PIDE [19], KIV [6], Rodin [18],
and PVS [14] (to name a few with a sophisticated user interface), tend to expose proof internals in detail.
The latter paper [14] nicely compares some popular formal IDEs and their features.

The approaches mentioned are rather different from the experience of traditional, concrete debugging
of programs in IDEs like Eclipse, IntelliJ, or Visual Studio Code, where the main features are breakpoints,
single stepping, and inspection of data at runtime. Recently, loose coupling between IDEs and language-
specific toolchains has become popular, based on the Language Server Protocol (LSP)1 and the Debug
Adapter Protocol (DAP).2 LSP is used in several of the above mentioned formal IDEs. For VDM a
debugger for concrete model executions has been developed [17] using the DAP. The KeY Symbolic
Execution Debugger [9] is a feature-rich tool for Java verification built on the Eclipse platform.

1https://microsoft.github.io/language-server-protocol
2https://microsoft.github.io/debug-adapter-protocol

http://dx.doi.org/10.4204/EPTCS.338.11
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://microsoft.github.io/language-server-protocol
https://microsoft.github.io/debug-adapter-protocol
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Figure 1: Schematics of the Debug View inside an IDE.

Contribution: In this paper, we propose and describe an integration of deductive program verifica-
tion into general purpose IDEs on top of the DAP, which can be used to interactively navigate to specific
parts of a proof. The first contribution is an abstract characterization of how that integration works con-
ceptually (Sec. 2). As the second contribution, we briefly describe an ongoing implementation effort of
this scheme for SecC, an autoactive verifier for correctness and security of C programs (Sec. 3) inside
Visual Studio Code. Our conclusion is that implementing debugging for an existing verification tool that
is based on symbolic execution is relatively easy and straight-forward when using the DAP.

2 Conceptual Model of a Debug Server

In this section we develop a conceptual model of a debug server. The server exposes certain operations to
the IDE and maintains the state of running processes that are being debugged (the debug targets). Fig. 1
depicts the integration between the IDE (as the client, on the left) and a debug server (on the right) in
terms of the graphical front-end of the IDE and the messages exchanged between the two components.
Typically, the debugging perspective of an IDE shows the program’s source code and the breakpoints
within. Moreover, there is a view that shows a current state of the program, in terms of runtime values of
variables (top-left), possibly organized according to the structure of lexical scopes.

In Fig. 1 we anticipate a debug target that is executed symbolically, such that the program variables x
and y are assigned symbolic expression over logical variables. The example program, a function abs to
compute the absolute value of parameter x, has been halted at a breakpoint in line 6, consequentially,
variable y is set to −x0 wrt. logical variable x0 capturing the initial value of x. The synthetic variable
path shows the current path condition, a formula that captures the constraints for reaching the respective
code location, here the negated test of the conditional. Below, the two possible branches through function
abs are represented as execution thread with identifiers 00 and 01, that are subsumed by a parent thread 0.
The views in the window on the left are populated from data that is requested by the IDE from the server.

The simple, semi-formal model below omits inessential details of realistic languages (e.g., memory,
see [2, 5, 8, 11] here for details). The key point is that the ideas presented here translate to any formal
system that can be described by a symbolic structural operational semantics [15].
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Representation of States and Execution Steps. The state associated with a debug target primarily
consists of a configuration c, that describes the progress of the execution. Configurations bundle up
programs p, defined over the set of program variables X , with symbolic assignment s : X → E from
program variables to logical expressions E and a path condition ϕ as a logical formula that describes the
branches taken so far. Here, we capture execution using three kinds of configurations:

Configurations c ::=
(
s,ϕ, p1; . . . ; pk

)
|
(
c1 ‖ · · · ‖ cn

)
|
(
ϕ ∧¬ψ, 

)
Sequential compositions execute programs p1; . . . ; pk from symbolic assignment s and path condition ϕ ,
where for k = 0 this execution branch terminates. Parallel compositions of configurations capture mul-
tiple branches that arise e.g. from conditionals. Proof obligations, marked by  , verify that condition ψ

holds for the path condition ϕ , where ϕ ∧¬ψ unsat denotes that the obligation discharges successfully.
In practice, such proof obligations would be annotated with additional contextual information.

Symbolic execution proceeds by unwinding a small-step relation c σ−→ c′ between configurations
according to a schedule σ , which reflects the user’s choice where to step next. Recursively, the first entry
in the schedule, for 1≤ i≤ n, resolves which part of a parallel configuration performs the next step:(

c1 ‖ · · ·ci · · · ‖ cn
) 〈i〉·σ−→ (

c1 ‖ · · ·c′i · · · ‖ cn
)

if ci
σ−→ c′i

In the base case, execution of sequential composition steps with the empty schedule σ = 〈〉. Nondeter-
minism is captured by producing multiple branches, for example:(

s,ϕ,assume e; . . .
) 〈〉−→

(
s,ϕ ∧ s(e), . . .

)
(
s,ϕ,assert e; . . .

) 〈〉−→
(
s,ϕ ∧ s(e), . . .

)
‖
(
ϕ ∧¬s(e), 

)
(
s,ϕ,x := e; . . .

) 〈〉−→
(
s[x 7→ s(e)],ϕ, . . .

)
(
s,ϕ, if e then p1 else p2; . . .

) 〈〉−→
(
s,ϕ ∧ s(e), p1; . . .

)
‖
(
s,ϕ ∧¬s(e), p2; . . .

)
where s(e) denotes evaluation of program expression e in symbolic state s. Of course, configurations
with an unsatisfiable path condition or empty sequential compositions can be soundly dropped from
their surrounding parallel context (which our implementation does eagerly), e.g., the proof obligation
from an assert when s(e) follows from ϕ , or either of the branches of an if in case it is unreachable.
Loops can be unwound interactively (not discussed here) or summarized by invariants I as shown(

s,ϕ,while e do p; . . .
) 〈〉−→

(
s,ϕ ∧¬s(I); 

)
‖
(
ŝ,ϕ ∧ ŝ(e)∧ ŝ(I), p;assert I

)
‖
(
ŝ,ϕ ∧¬ŝ(e)∧ ŝ(I); . . .

)
where the latter produces three successor configurations, 1) to prove invariant I initially, 2) to preserve I
over an arbitrary iteration, where ŝ = s[x1 7→ x′1, . . . ,xn 7→ x′n] introduces fresh logical variables x′1, . . . ,x

′
n

for the program variables modified in loop body p, and 3) to continue with the code after the loop.

Initialization. The initial symbolic configurations for an entire translation unit is exemplified below.
A C file has a list of global variables gi that are to be initialized in sequence, which we represent as
a program g such that g ≡ {g1 := e1; . . . ;gn := en}. A top-level procedure declaration of the form
f (y1, . . . ,ym) {q}, with precondition/postcondition pair P,Q, parameters y j, and implementation q can
be mapped onto a configuration c f =

(
s, true,assume P;q;assert Q

)
where s f = [gi 7→ xi,y j 7→ y j, . . .]

initializes all these variables in the respective scopes to fresh logical ones. The verification of the main

procedure may additionally assume that the globals were just initialized, which can be represented as
cmain =

(
smain, true,g;q

)
where the body q of main is prefixed by the sequence g of global initializers.
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Dispatching Requests in the Debug Server. We outline how to realize the operations that implement
the main requests issued by the IDE in reference to a top-level configuration C. In addition, we track a
set B of breakpoints, which are program locations, and we denote the location of a program by loc(p). In
the following, we denote by σ(C) =

(
s,ϕ, . . .

)
the sub-configuration triggered by σ , which is necessarily

a sequential one in our simple model.

• The request Launch(file) for program stored in file produces the initial configuration as a big paral-
lel composition C :=

(
c f1 ‖ · · · ‖ c fn ‖ cmain

)
where the respective sub-configurations are constructed

wrt. the procedure declarations and globals as outlined above.

• The request GetThreads returns the currently running “threads”, which are those parts of parallel
compositions that can be stepped. This information can be represented in terms of possible sched-
ules for the next step, i.e., the set GetThreads returns {σ | ∃ c′. C σ−→ c′}. As suggested in Fig. 1,
the hierarchical structure of these identifiers can be exploited for more complex operations, such
as stepping all branches that share a common prefix schedule.

• The request GetVariables(σ) returns the variable assignment s stored in the sequential config-
uration σ(C) as remarked above. In our implementation for SecC, we use this request to add
synthetic variables, such as path 7→ ϕ where ϕ is the path constraint of configuration σ(C) for that
thread, and we additionally include a representation of the symbolic heap and information about
the attacker level for security proofs.

• The request SetBreakpoints(b) simply sets B := b to the set of specified breakpoints. The protocol
knows not only source breakpoints but also function breakpoints (triggered by calls), and exception
breakpoints (when an exception is thrown), which we have not used so far.

• The requests Next(σ) and StepIn(σ) execute a single transition of a given thread σ according to
the rules for C σ−→ c′, where c′ is taken as the next state, C := c′. The difference between these two
commands in a concrete execution is that the first proceeds over function calls in one atomic step,
whereas the second jumps into functions. This behavior can be mirrored in a modular deductive
verifier, where Next dispatches such a call using a given function contract, whereas StepIn inlines
the call and disregards such contracts, similarly for proving loops with invariants or unfolding a
finite number of iterations Our implementation supports Next only so far, but e.g. KIV and KeY
support both interactions in their respective GUIs.

• The request Continue(σ) executes multiple transition of a given thread σ until the corresponding
configuration σ(C) =

(
s,ϕ, p; . . .

)
with loc(p) ∈ B, i.e., the program execution has reached a

breakpoint, or until σ(C) =
(
s,ϕ

)
is final with no residual program.

• The request StepBack(σ) undoes the latest corresponding transition (or sequence of transitions)
of a particular sub-configuration. This can be realized by keeping a history c0,c1, . . . of previous
top-level configurations, which in practice is facilitated by the fact that often tools are implemented
in functional languages and do not use destructive modification of states.

• The request Evaluate(σ ,e) is issued to inspect the value of arbitrary expressions e within a state.
The response consists of evaluation s(e) wrt. the logical variables from σ(C) =

(
s,ϕ, . . .

)
. Since

the format of the result is just a string, further information can be computed with the help of a
solver and included in the response, such as whether ϕ =⇒ s(e) holds when e is boolean, or
concrete values for e and its free variables if ϕ ∧ s(e) sat.
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Figure 2: Debugging an insecure concurrent program in VSCode with SecC.

3 Debug Server Implementation for SecC

SecC3 is an autoactive verifier programs for functional correctness and security of C programs. It is built
around Security Concurrent Separation Logic (SecCSL) [5], which can express value-dependent security
properties of concurrent heap-manipulating programs. The tool is currently used to verify a variety of
small case studies. Internally, SecC is based on a symbolic execution engine for Separation Logic [2],
which is similar to that of VeriFast (the latter is described nicely in [11]). Thus, SecC lends itself to the
approach outlined in Sec. 2.

SecC is implemented in the Scala programming language,4 which runs on the Java Virtual Machine
so that we can rely on the mature library lsp4j,5 which fully abstracts the DAP (and also the Language
Server Protocol, LSP) in Java. Creating a debug server with lsp4j simply amounts to implementing a
particular Java interface whose operations correspond to DAP requests, all protocol data structures are
available as Java classes, too. Within the client, here Visual Studio Code, some additional effort has to
be spent to register the respective language extension, and to provide the necessary hooks that spin up
the debug server with an appropriate configuration.

The integration was developed as a VS Code extension in a Master thesis project by the second
author over the course of roughly six months, resulting in about 1000 LoC of Scala for the server and
400 LoC of TypeScript for the extension, albeit getting a working initial version for a toy language was
a matter of a few days. In addition to debugging, the VS Code extension provides syntax highlighting,
verify-on-save, a debug console that lets one inspect the current state and evaluate expressions, and a

3https://covern.org/secc
4https://bitbucket.org/covern/secc/
5https://github.com/eclipse/lsp4j

https://covern.org/secc
https://bitbucket.org/covern/secc/
https://github.com/eclipse/lsp4j
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graphical view of the symbolic execution tree. Note that these extended features cannot be realized via
the DAP alone but require LSP functionality as well as the extension facilities inside VS Code. The
extension is currently available in binary form (file secc-0.2.0.vsix on Bitbucket) and will be released
as open source soon.

A screenshot of the debugging perspective is shown in Fig. 2, for an example from [5, Sec. 2] that has
a defect. The symbolic store s appears under “Vars” and the synthetic variables, including ϕ as “Path”
under “State” on the left; in addition there is a list of symbolic heap chunks describing the memory.
Stepping line 14 with the controls shown at the top-right subsequently leads to a verification failure. In-
formally, the code writes a secret value to a public memory location OUTPUT_REG. This can be recognized
from the data shown as follows: Value d7 stored in rec->data (item 1 under Heap) is classified infor-
mation (item 3: d7 :: high under “Path”), whereas the memory location OUTPUT_REG is public (item 2:
OUTPUT_REG2 7→ [low] . . . under “Heap”).

While we have not done a systematic evaluation or larger case study in this new SecC IDE yet,
the integration was useful for the second challenge of the VerifyThis 2021 competition [7]. During the
competition, it was helpful to investigate the symbolic states while developing the correctness proof inter-
actively, for example to determine some subtle arithmetic constraints, or to debug the unfolding/folding
of memory predicates.

4 Discussion & Conclusion

We have shown a concept to embed symbolic execution engines into existing IDEs for interactive debug-
ging via the established Debug Adapter Protocol (Sec. 2) Our implementation for the autoactive verifier
SecC proved to be straight-forward and low effort (Sec. 3).

The approach inherits as a limitation the exponential path explosion from the nondeterministic exe-
cution when branches are not joined. This is a problem with many conditionals in sequence, but we have
not yet been impeded by this limitation. At a conceptual level, it is not entirely clear how to remedy
the approach proposed here with ideas that defer splitting up branches to the SMT solver as it is done in
Boogie [1] and generally in Horn clause verifiers [3]. Our approach can nevertheless complement such
ideas, e.g., by stepping selectively only that thread corresponding to a particular procedure or branch of
interest to investigate precisely those proof obligations that fail with the more efficient encoding of [1].

The vanilla formulation of Sec. 2 repeatedly traverses the tree of configurations down to the currently
executing leaf and rebuilds it on the way back. Zippers [10] avoid this (probably perceived) inefficiency,
and initial experiments with changing the implementation suggests that Zippers lead to quite elegant
code, too. This idea has indeed been followed before [16].

Overall, we think that the proposed approach is general and flexible enough, to be used to retrofit
existing verification tools and languages with a symbolic interactive debugger. By relying on exist-
ing infrastructure, such an undertaking is well within the reach of short-term projects. By relying on
established interaction paradigms, the approach brings software development practice and program ver-
ification a step closer together. For future work we would like to investigate how to integrate concrete
symbolic and concrete debugging techniques, and we plan to conduct a larger case study inside the SecC
IDE to evaluate the benefits of the proposed approach in practice.

Acknowledgement. We thank the reviewers for their suggestions to improve the presentation.



G. Ernst, J. Blau & T. Murray 95

References

[1] Mike Barnett & K Rustan M Leino (2005): Weakest-precondition of unstructured programs.
In: Proc. of Program Analysis for Roftware Tools and Engineering (PASTE), ACM, pp. 82–87,
doi:10.1145/1108792.1108813.

[2] Josh Berdine, Cristiano Calcagno & Peter W O’Hearn (2005): Symbolic execution with Separation
Logic. In: Proc. of Asian Symposium on Programming Languages and Systems (APLAS), LNCS
3780, Springer, pp. 52–68, doi:10.1007/11575467_5.

[3] Nikolaj Bjørner, Arie Gurfinkel, Ken McMillan & Andrey Rybalchenko (2015): Horn clause
solvers for program verification. In: Fields of Logic and Computation II, LNCS 9300, Springer,
pp. 24–51, doi:10.1007/978-3-319-23534-9_2.

[4] François Bobot, Jean-Christophe Filliâtre, Claude Marché, Guillaume Melquiond & Andrei Paske-
vich (2013): The Why3 platform. Technical Report, LRI, CNRS & Univ. Paris-Sud & INRIA
Saclay. Available at https://hal.inria.fr/hal-00822856.

[5] G. Ernst & T. Murray (2019): SecCSL: Security Concurrent Separation Logic. In: Proc. of Com-
puter Aided Verification (CAV), LNCS 11562, Springer, pp. 208–230, doi:10.1007/978-3-030-
25543-5_13.

[6] G. Ernst, J. Pfähler, G. Schellhorn, D. Haneberg & W. Reif (2015): KIV—Overview and Ver-
ifyThis competition. Software Tools for Technology Transfer (STTT) 17(6), pp. 677–694,
doi:10.1007/s10009-014-0308-3.

[7] Gidon Ernst, Marieke Huisman, Wojciech Mostowski & Mattias Ulbrich (2019): VerifyThis–
Verification competition with a human factor. In: Proc. of Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS), LNCS 11429, Springer, pp. 176–195, doi:10.1007/978-3-
030-17502-3_12.
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