
P. Masci, R. Monahan, V. Prevosto (Eds.): Formal
Integrated Development Environment 2018 (F-IDE 2018).
EPTCS 284, 2018, pp. 16–25, doi:10.4204/EPTCS.284.2

c© Jan Bessai and Anna Vasileva
This work is licensed under the
Creative Commons Attribution License.

User Support for the Combinator Logic Synthesizer
Framework

Jan Bessai Anna Vasileva
Technical University of Dortmund, Germany

jan.bessai@tu-dortmund.de anna.vasileva@tu-dortmund.de

Usability is crucial for the adoption of software development technologies. This is especially
true in development stages, where build processes fail, because software is not yet complete
or was incompletely modified. We present early work that aims to improve usability of the
Combinatory Logic Synthesizer (CL)S framework, especially in these stages. (CL)S is a
publicly available type-based development tool for the automatic composition of software
components from a user-specified repository. It provides an implementation of a type inhab-
itation algorithm for Combinatory Logic with intersection types, which is fully integrated
into the Scala programming language. Here, we specifically focus on building a web-based
IDE to make potentially incomplete or erroneous input specifications for and decisions of
the algorithm understandable for non-experts. A main aspect of this is providing graphical
representations illustrating the step-wise search process of the algorithm. We also provide a
detailed discussion of possible future work to further improve the understandability of these
representations.

1 Introduction
The Combinatory Logic Synthesizer (CL)S Framework provides a publicly available [8] develop-
ment tool, which is fully integrated into the Scala programming language and can automatically
compose software based on types. Type specifications for (CL)S are based on Combinatory
Logic with intersection types [15] and automatic software composition is performed by answer-
ing the type inhabitation question: Γ `? : τ . In words this question reads: given a set of typed
combinators, where each combinator represents a software component, find all applicative terms
formed from the combinators in Γ, which have type τ . Integration into Scala allows to reuse
programming skills and greatly simplifies the specification of combinators. While user-input is
easy to provide and any Scala IDE can be used to program and manipulate combinators, it can
be difficult to understand why the algorithm involved in solving the type inhabitation question
does or does not produce certain expected solutions. This is especially true, when (CL)S is used
to automatically compose non-trivial software from large component bases, which is its main
use-case [6, 7, 9, 16, 25].

According to ISO 9241-11:2018 [28], the definition of usability is "extent to which a system,
product or service can be used by specified users to achieve specified goals with effectiveness, effi-
ciency and satisfaction in a specified context of use". In our case, the system, (CL)S, is intended
to be used by normal programmers, who are not experts on type theory, and want automatic
composition to enhance their efficiency in the context of large collections of software components
without being dissatisfied by inexplicable (non-)solutions. To achieve this aim, a web-based IDE
for debugging and improving type specifications is being developed. It will especially support
programmers in development stages, where type specifications are still incomplete, causing the

http://dx.doi.org/10.4204/EPTCS.284.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


Jan Bessai and Anna Vasileva 17

algorithm to find not enough or too many solutions. An important aspect of this is to visualize
the search process performed by the inhabitation algorithm, as well as its – potentially infinite –
solutions spaces. The main contributions of this paper are: to provide an IDE-based view-point
on type inhabitation, to investigate how hypergraphs are useful in this context, and to pose a
number of interesting research questions. The paper is organized as follows: in the remainder
of this section we will discuss some related work. Section 2 includes a brief presentation of
the (CL)S framework, architecture level aspects of connecting it to an IDE, and more context
on the running example of movement combinators. In Section 3 we discuss the formalism of
tree grammars in context of type inhabitation, their relation to hypergraphs and how the IDE
presents them to users. Finally, in Section 4 we summarize and pose some interesting research
questions for future work.

1.1 Related Work

Usability is well-studied and its various aspects [34] also include the tools for implementing soft-
ware [33]. Here, we focus on the implementation phase of projects using the (CL)S framework.
A similar effort in the setting of program synthesis and verification has been undertaken within
the Leon project [10], which provides a web-based IDE [3]. Leon uses several SMT-solvers as its
back-end. It performs verification on the level of individual Scala AST nodes and synthesis is
based on invariants. In contrast, (CL)S has a single back-end algorithm that synthesizes func-
tion compositions from type specifications. The Leon IDE is text-oriented and shows results
next to individual lines of code, while graphical result representations are central to our devel-
opment. For users preferring text, we annotate each node representing a combinator with source
positions indicating its point of origin. In the area of automatic verification, the Why3 IDE [11]
is similar to Leon and also textually links the output of various SMT solvers to positions in
code. The RESOLVE programming language [29], Coq [30, 4] and the LEAN theorem prover
[20] have similar IDEs to support (semi-)manually solved proof obligations for verified programs.
Resembling our approach and unlike the aforementioned, the Globular proof assistant [5] helps
to build proofs graphically. The graphical representation in Globular is based on category the-
ory string diagrams and users manipulate graphs directly, while the hypergraphs in (CL)S are
automatically generated. Globular requires users to be experts in category theory, while (CL)S
aims to not require expertise on type-theory. IDE support is crucial in the complicated process
of program verification, and the list of such developments is too long to fully enumerate. The
above examples are selected for being web-based. In contrast to most web-based IDEs, we do
not try to relocate source-code development into the browser, but rather focus on graphically
assisting it. This means, developers can continue using the Scala IDE they are used to. From
the web-based approach we gain platform independence. At the time of writing, most native
client-side user interface libraries require platform specific code or application setup instructions.
Our development works out-of-the-box with a browser and sbt [2], which is necessary for using
(CL)S even without the IDE.

We hope that our work provides useful insights for building IDEs for other settings. It could
especially help with Petri net and hypergraph based synthesis [21]. To our knowledge, there
is no other tool to debug intersection type specifications [14], which are an important area of
research [36, 27] with multiple recent applications to synthesis [18, 12, 22] beyond Combinatory
Logic [15].



18 User Support for (CL)S

2 An Overview of (CL)S Scala Framework

The illustration above provides an overview of the data flow when using and debugging spec-
ifications in (CL)S. Programmers specify and implement combinators in Scala using any local
IDE. Their programs also include synthesis targets and put results of the algorithm to further
use, e.g. by interpreting combinator applications as function calls. The framework itself can
be used as a library from any Scala program. If the additional debugging capabilities of the
web-based IDE are desired, it is started by instantiating a controller for the Play web framework
[32]. Starting the application will instantiate a web server, which hosts a web site where users
can access debugging information, e.g. in form of hypergraph-based visualizations of the search
process. Behind the scenes, the debugger communicates with the algorithm implementation
provided by (CL)S, which has appropriate interfaces to observe its internal state.

There are four basic rules to control the process of type inhabitation [15]. The first rule (if
c : τ ∈ Γ then Γ ` c : S(τ)) allows to use any combinator c present in repository Γ with type τ and
to assume that it has type S(τ), where S is a substitution mapping type variables in τ to types
without variables. This way, e.g. the identity function can have type α→ α that can turn into
Int→ Int or String→ String, depending on the choice of substitution. In order to make type
inhabitation decidable, substitutions are drawn from a finite space (instead of guessed), which is
part of the input specification. The second rule (if Γ `M : σ→ τ and Γ `N : σ then Γ `MN : τ)
allows to apply combinators with function types to appropriately typed arguments. Moreover,
we have the intersection introduction rule (Γ `M : σ and Γ `M : τ implies Γ `M : σ∩τ) to type
the same term with two types, if both types can be derived. Lastly, the type system supports
subtyping (Γ `M : σ and σ ≤ τ implies Γ `M : τ). When answering an inhabitation question,
(CL)S will search for combinators and their arguments, such that synthesized applicative terms
are well-typed. Input specifications are the combinator repository, allowed substitutions for type
variables (if there are any), a subtype relation on type constants to define ≤, and the requested
type.

We consider labyrinths as an example and try to find all paths from an entrance to a goal.
The following labyrinth has start position (0,2) and goal position (1,0):



Jan Bessai and Anna Vasileva 19

0 1 2
0 F
1
2 •
3

Γex = {left : (Pos(1,1)→ Pos(0,1))∩Pos(2,1)→ Pos(1,1)) ∩
(Pos(1,3)→ Pos(0,3))∩ (Pos(2,3)→ Pos(1,3)),

right : (Pos(0,1)→ Pos(1,1))∩ (Pos(1,1)→ Pos(2,1)) ∩
(Pos(0,3)→ Pos(1,3))∩ (Pos(1,3)→ Pos(2,3)),

up : (Pos(0,3)→ Pos(0,2))∩ (Pos(2,3)→ Pos(2,2)) ∩
(Pos(1,1)→ Pos(1,0))∩ (Pos(0,2)→ Pos(0,1)) ∩
(Pos(2,2)→ Pos(2,1)),

down : (Pos(1,0)→ Pos(1,1))∩ (Pos(0,1)→ Pos(0,2)) ∩
(Pos(2,1)→ Pos(2,2))∩ (Pos(0,2)→ Pos(0,3)) ∩
(Pos(2,2)→ Pos(2,3)), start : Pos(0,2) }

There are multiple possible paths to reach the goal position. Repository Γex shows the labyrinth
in mathematical notation. Each entry in Γex consists of a combinator name and its type
description. The repository represents the start position and all possible one-step moves as
typed combinators. Types indicate column and row positions in the labyrinth. Combinators
for going up, down, left or right are functions from a start to a destination position. Inter-
section types allow movement combinators to have multiple types at once, e.g. combinator
up can be used to go from Pos(1,1) to Pos(1,0) and Pos(2,2) to Pos(2,1). To make the
example more readable, we avoid variables, which would have allowed for specifications like
up : Pos(α,P lusOne(β))→ Pos(α,β). We get all possible paths through the labyrinth by ask-
ing for the goal position, e.g. Γex `? : Pos(1,0). The algorithm computes all solutions in form
of tree grammars which will be shown as hypergraphs.

3 IDE for the (CL)S Framework

The (CL)S framework recursively grows the set of production rules of a tree grammar to describe
solutions. Tree grammars are well-known from literature [13, 24] and we consider the generalized
case of regular tree grammars without restrictions on the arity of terminal symbols. Formally
we have:

Definition 1 A tree grammar G is a 4-tuple (S,N,F ,R) with a start symbol S ∈ N , a set
N of nonterminals, a set F of terminal symbols, and a set R of productions rules of form
α 7→ f(β1,β2, . . .βn), where n ≥ 0, α,β1,β2, . . . ,βn ∈ N are nonterminal and f ∈ F is terminal.
For a given tree grammar G= (S,N,F ,R) and nonterminal α ∈N , Lα(G) is the least set closed
under the rule: if α 7→ f(β1,β2, . . . ,βn) ∈R and for all 1≤ k ≤ n : tk ∈ Lβk

(G) then
f(t1, t2, . . . , tn) ∈ Lα(G).

We define L(G) = LS(G) to be the language of grammar G.

Solutions in (CL)S are termsM , which are well-typed for a requested type τ relative to the type
assumptions explained above. Given Γ and τ , (CL)S constructs a tree grammar G= (τ,N,F ,R)
such that τ ∈N and for all σ ∈N we haveM ∈Lσ(G) if and only if Γ `M : σ. In other words, we
get a tree grammar where right hand sides of rules start with a combinator symbol followed by
the types of arguments required to obtain the type on the left hand side of the rule by applying
the combinator. The start symbol is the user requested target type.
Let us consider the following example labyrinth to illustrate the search process:



20 User Support for (CL)S

0 1 2 3 4
0 • F2
1 F1 F3

Γ = {up : (Pos(0,1)→ Pos(0,0))∩ (Pos(2,1)→ Pos(2,0)),
down : (Pos(0,0)→ Pos(0,1))∩ (Pos(2,0)→ Pos(2,1)),
left : Pos(3,0)→ Pos(2,0),
right : Pos(2,0)→ Pos(3,0), start : Pos(0,0) }

For goal position F1, we ask Γ ` ? : Pos(0,1) and combinator down can be used with argu-
ment Pos(0,0). The first computed tree grammar entry will be Pos(0,1) 7→ down(Pos(0,ω)∩
Pos(ω,0)). For internal implementation reasons of the search procedure, (CL)S chooses the
nonterminal for the argument of down to represent a type, which is subtype equal to Pos(0,0)
(in Combinatory Logic with intersection types we have: Pos(0,ω)∩Pos(ω,0) ≤ Pos(0,0) ≤
Pos(0,ω)∩Pos(ω,0), because type constructors like Pos are co-variant in their arguments, dis-
tribute over intersection and ω is the universal supertype of every other type). Type Pos(0,ω)∩
Pos(ω,0) will become the next target, for which two rules are computed: Pos(0,ω)∩Pos(ω,0) 7→
start(), which is obvious, and Pos(0,ω)∩Pos(ω,0) 7→ up(Pos(0,1)), which is perhaps surpris-
ing. The computed tree grammar is not only sound (its words are well-typed terms), but
also complete (all requested well typed terms are words). Hence, the cyclic second rule causes
terms like down(up(down(start))),down(up(down(up(down(start))))), . . . to be derivable. In-
habitation stops, because a rule for the argument of up can be found in the already computed
grammar (Pos(0,1) is the left hand side of the first rule) and no further recursive targets exist.
For goal position F2 the algorithm computes rules R= {Pos(2,0) 7→ up(Pos(2,ω)∩Pos(ω,1)),
Pos(2,0) 7→ left(Pos(3,ω)∩ Pos(ω,0)), Pos(2,ω)∩ Pos(ω,1) 7→ down(Pos(2,0)), Pos(3,ω)∩
Pos(ω,0) 7→ right(Pos(2,0))}. This time rules are cyclic and unproductive, no word can be
derived for the start symbol Pos(2,0). In the implementation, all unproductive rules are pruned
from the grammar and one motivation for having a debugger is to inform users about that pro-
cess. Another motivation arises when considering goal F3, for which no combinator exits. The
tree grammar will be empty and users would have to check the entire repository to find out why.

We introduce the hypergraphs [19] as a graphical representation of tree grammars.
Definition 2 A directed labeled hypergraph H over an alphabet F is a 5-tuple H = (V, E, nodE,
nodV , lab) where V is a finite set of nodes, E is a finite set of hyperedges, incidence is specified
by a function nodE : E → V ∗ and a relation nodV ⊆ V ×E, and labels are given by a function
lab: E→F .
Every edge in a hypergraph has outgoing connections described by nodE and incoming connec-
tions described by nodV . Outgoing connections are finite vectors of nodes. This is different
from normal graphs, where edges only connect two nodes. All tree grammar nonterminals are
represented by nodes (V =N). For each production α 7→ f(β1,β2, . . .βn) we add an edge e with
nodV (α) = e and (e,(β1,β2, . . .βn)) ∈ nodE where lab(e) = f .

Figures 1 and 2 provide an overview of the hypergraphs for the tree grammars for the prior
labyrinth example. The hypergraph for positionF1 =Pos(0,1) in Fig. 1 contains nodes for every
nonterminal (type) and combinator usages are modelled by edges. Outgoing edge connections
are numbered to indicated argument positions. We draw nodes and edges using boxes and
circles. The cycle between combinators up and down is immediately visible in Fig. 1. We can
escape the cycle using edge start, which has no outgoing connections and thereby models use of
a combinator not depending on additional recursively synthesized targets. The labels collected
for all ways through the hypergraph from start to Pos(0,1) are words of the grammar and valid
movement instructions through the labyrinth. For Γ `? : Pos(2,0), the IDE shows a message



Jan Bessai and Anna Vasileva 21

that there is no solution. In this case, the user can comprehend the problem by means of the
visualization provided by the debugger mode. Figure 2 shows the cyclic rule obtained in the
last step. By comparing the graphs, we see that this hypergraph is different form the first one
(Fig. 1): there is no edge without outgoing connections to break cycles. In the visualization, all
edges involved in unbreakable cycles are marked in red.

Figure 1: Pos(0,1) Figure 2: Pos(2,0)

Figure 3: Debug Overview

The web-based IDE provides four different perspectives (Fig. 3). The Result Overview
presents the solutions of the inhabitation problem in form of a hypergraph. In order to in-
form about unsuccessful inhabitation, a message is shown instead of the empty hypergraph.
The Debug Overview (Fig. 3, top right) and Reports (Fig. 3, bottom right) perspectives pro-



22 User Support for (CL)S

vide detailed graphical and textual information about the inhabitation process, which otherwise
can be unexpected and incomprehensible. Users can access their specification in the Reposi-
tory (bottom right) perspective. The Result Overview perspective also provides the possibility
to make a new request by means of the browser-based IDE. This enables fast user interactive
experiments with types different (e.g. more specific or generic) from the programmatic request
stated in Scala. For the visualization of the hypergraph construction, we use the open-source
JavaScript library Cytoscape [23], which facilitates the fast and interactive representation of
hypergraphs exchanged in a simple JSON format. User interactiveness allows to zoom into a
graph as well as to move the nodes and edges. Layout choices are supported by eight different
automatic layout algorithms [23]. We use the Bootstrap HTML components [1] to gain platform
and browser independence. In the Debugger Overview perspective, users can see the generation
of solutions in a step-wise process. Figure 3 (top right) shows a step of the construction process
of the solution for the labyrinth example Γex presented in Section 2. In the current step, we see
that there is also an unproductive cycle. Figure 4 shows a zoomed-in and manually re-layouted
part of the graph with a cycle in this step. Because of the intersection type specific rules, com-
binator up can be used with type (Pos(ω,3)∩Pos(ω,2)∩Pos(1,ω)∩Pos(0,ω)∩Pos(ω,1))→
(Pos(0,ω)∩Pos(ω,2)∩Pos(1,ω)∩Pos(ω,1)). This is surprising for non-experts. However, it
does not lead to invalid solutions, because all possible inhabitants for the argument type of
left are generated from an unproductive cycle. We include a button to toggle all unproductive
cycles providing a clean unsurprising view. There are no combinators for goal F3, therefore the
associated hypergraph is uninformative. The graph in the Debug Overview perspective contains
only type Pos(4,1) as a green node, with color green indicating yet to-do recursive targets.
Since there exists no suitable combinator in Γ, the graph for the next step is empty. Moreover,
users can find information in the Reports perspective. It includes textual information about each
uninhabited type encountered during the search process. Reasons for non-inhabitation (unpro-
ductive cycles, no usable combinators) are distinguished. The Repository perspective gives users
an overview of their repository specifications. These are not always entered manually, but can
also be programmatically constructed from a problem domain. In case of the labyrinth examples,
it is easy to write a Scala program to create Γ from a two dimensional boolean array.

Figure 4: Unproductive cycle in solution construction

4 Conclusion and Future Work

The presented IDE for (CL)S is geared toward debugging incomplete or erroneous input type
specifications. We provided an overview of the framework and IDE together with an easy to
understand application example. The example is then used to illustrate the connection between



Jan Bessai and Anna Vasileva 23

tree grammars generated by (CL)S and hypergraphs, which are used for visualization in the
debugger. We have shown how intermediate synthesis steps can be visualized and unproductive
cycles can be seen in the hypergraph. This step-wise visual construction of the hypergraphs
may help non-experts understand the decisions of the algorithm. There are numerous areas of
future work:
Evaluation While the debugger helped us to understand and debug our own examples, more
evaluation is needed to see if it really helps non-experts. A possible evaluation scenario would
include student groups and measure their effectiveness in solving a given task [35]. It would also
be important to see which further features would be needed to make (CL)S scale to development
teams. This is especially interesting, when developers try to understand type-specifications
devised by others. There is little to no work on studying this subject in the area of software
synthesis in general.
Performance While writing this paper we were able to greatly improve the performance of
(CL)S, because the hypergraphs constructed for the labyrinth example revealed the generation
of redundant recursive inhabitation targets. Due to the computational complexity of type in-
habitation in Combinatory Logic with intersection types, which is above EXPTIME [15], we
expect that there always will be scenarios where users have to wait for results. Some further
optimizations have been present in an earlier F# based version of (CL)S, and just need to be
ported. For drawing and layouting of hypergraphs, Cytoscape was fast enough for user inter-
active operation, but we expect limitations when solutions get too big. In this case, partial
collapsing of hypergraphs might help.
Input specification quality Input specifications can include badly designed combinators. In-
dications of bad design would be unusable combinators, unnecessarily generic or overly specific
types, or overly long parameter lists leading to implementation code smells. We plan to improve
our IDE to provide user feedback by statically analyzing the repository. This kind of analysis
will potentially give further insights on intersection types, relying on practical applications of
techniques such as intersection type matching or unification [17]. It might lead to a formal
understanding of what it means to be a component suitable for synthesis and reveal a potential
connection to clean code in regular programming.
Algorithmic Artifacts We have seen that the search procedure will introduce hard to under-
stand type artifacts, representing type Pos(0,0) as Pos(0,ω)∩Pos(ω,0). The cycle shown in
Fig.4 is such an artifact, because its types were created by the intersection introduction rule,
which can have surprising consequences in the case of large intersections. A detailed case-to-case
analysis of intersection types in practical experiments will be necessary to find good counter-
measures to the aforementioned problems. Most other synthesis techniques rely on some form of
intermediate representation and clearly more research is needed on how to make the connection
of these representations to the initially specified problem obvious to non-experts.
In addition to these future work topics the structure of Petri nets can be represented as directed
hypergraphs [31] and thus the iterative construction in [21] could be adapted to be shown in our
IDE. In reverse, recently developed web-based tools for debugging and benchmarking Petri nets
[26] have the potential to give useful input for our future work.

References
[1] Bootstrap. https://getbootstrap.com/, accessed: 2018-04-24

https://getbootstrap.com/


24 User Support for (CL)S

[2] Scala Build Tool (SBT). https://www.scala-sbt.org/, accessed: 2018-05-23
[3] Antognini, M., Blanc, R., Gruetter, S., Hupel, L., Kneuss, E., Koukoutos, M., Kuncak, V.,

Madhavan, R., Stucki, S., Suter, P.: Leon System for Verification, Synthesis and Repair, http:
//leon.epfl.ch/, accessed: 2018-04-27

[4] Arias, E.J.G., Pin, B., Jouvelot, P.: jsCoq: Towards Hybrid Theorem Proving Interfaces. In:
Proceedings of the 12th Workshop on User Interfaces for Theorem Provers. pp. 15–27 (2016),
https://doi.org/10.4204/EPTCS.239.2

[5] Bar, K., Kissinger, A., Vicary, J.: Globular: an online proof assistant for higher-dimensional rewrit-
ing. Logical Methods in Computer Science 14(1) (2018), https://doi.org/10.23638/LMCS-14(1:
8)2018

[6] Bessai, J., Chen, T.C., Dudenhefner, A., DÃĳdder, B., de’Liguoro, U., Rehof, J.: Mixin Composition
Synthesis based on Intersection Types. Logical Methods in Computer Science Volume 14, Issue 1
(Feb 2018). https://doi.org/10.23638/LMCS-14(1:18)2018, https://lmcs.episciences.org/4319

[7] Bessai, J., Düdder, B., Heineman, G.T., Rehof, J.: Combinatory Synthesis of Classes Using Feature
Grammars. In: Revised selected papers of the 12th International Conference on Formal Aspects of
Component Software. pp. 123–140 (2015), https://doi.org/10.1007/978-3-319-28934-2_7

[8] Bessai, J., Düdder, B., Heineman, G.T., et al.: (CL)S Framework (2018), http://www.
combinators.org, accessed: 2018-04-30

[9] Bessai, J., Dudenhefner, A., Düdder, B., Martens, M., Rehof, J.: Combinatory Process Synthesis.
In: Proceedings of the 7th International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation. pp. 266–281 (2016), https://doi.org/10.1007/978-3-319-47166-2_
19

[10] Blanc, R., Kuncak, V., Kneuss, E., Suter, P.: An overview of the leon verification system: verification
by translation to recursive functions. In: Proceedings of the 4th Workshop on Scala. pp. 1:1–1:10
(2013), http://doi.acm.org/10.1145/2489837.2489838

[11] Bobot, F., Filliâtre, J., Marché, C., Paskevich, A.: Let’s verify this with Why3. STTT 17(6), 709–727
(2015), https://doi.org/10.1007/s10009-014-0314-5

[12] Bucciarelli, A., Kesner, D., Rocca, S.R.D.: The Inhabitation Problem for Non-idempotent Inter-
section Types. In: Theoretical Computer Science. pp. 341–354 (2014), https://doi.org/10.1007/
978-3-662-44602-7_26

[13] Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tom-
masi, M.: Tree Automata Techniques and Applications. Available online: http://www.grappa.
univ-lille3.fr/tata (2007), release October, 12th 2007

[14] Coppo, M., Dezani-Ciancaglini, M.: A new type assignment for λ-terms. Arch. Math. Log. 19(1),
139–156 (1978), https://doi.org/10.1007/BF02011875

[15] Düdder, B., Martens, M., Rehof, J., Urzyczyn, P.: Bounded Combinatory Logic. In: Proceedings
of the 26th International Workshop on Computer Science Logic. pp. 243–258 (2012), https://doi.
org/10.4230/LIPIcs.CSL.2012.243

[16] Düdder, B., Rehof, J., Heineman, G.T.: Synthesizing type-safe compositions in feature oriented
software designs using staged composition. In: Proceedings of the 19th International Conference on
Software Product Lines. pp. 398–401 (2015), http://doi.acm.org/10.1145/2791060.2793677

[17] Dudenhefner, A., Martens, M., Rehof, J.: The Algebraic Intersection Type Unification Problem.
Logical Methods in Computer Science 13(3) (2017), https://doi.org/10.23638/LMCS-13(3:9)
2017

[18] Dudenhefner, A., Rehof, J.: Intersection type calculi of bounded dimension. In: Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages. pp. 653–665 (2017),
http://dl.acm.org/citation.cfm?id=3009862

https://www.scala-sbt.org/
http://leon.epfl.ch/
http://leon.epfl.ch/
https://doi.org/10.4204/EPTCS.239.2
https://doi.org/10.23638/LMCS-14(1:8)2018
https://doi.org/10.23638/LMCS-14(1:8)2018
https://lmcs.episciences.org/4319
https://doi.org/10.1007/978-3-319-28934-2_7
http://www.combinators.org
http://www.combinators.org
https://doi.org/10.1007/978-3-319-47166-2_19
https://doi.org/10.1007/978-3-319-47166-2_19
http://doi.acm.org/10.1145/2489837.2489838
https://doi.org/10.1007/s10009-014-0314-5
https://doi.org/10.1007/978-3-662-44602-7_26
https://doi.org/10.1007/978-3-662-44602-7_26
http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
https://doi.org/10.1007/BF02011875
https://doi.org/10.4230/LIPIcs.CSL.2012.243
https://doi.org/10.4230/LIPIcs.CSL.2012.243
http://doi.acm.org/10.1145/2791060.2793677
https://doi.org/10.23638/LMCS-13(3:9)2017
https://doi.org/10.23638/LMCS-13(3:9)2017
http://dl.acm.org/citation.cfm?id=3009862


Jan Bessai and Anna Vasileva 25

[19] Engelfriet, J., Heyker, L.: Context-Free Hypergraph Grammars have the Same Term-Generating
Power as Attribute Grammars. Acta Inf. 29(2), 161–210 (1992), https://doi.org/10.1007/
BF01178504

[20] Felty, A.P., Middeldorp, A. (eds.): Automated Deduction - CADE-25 - 25th International Confer-
ence on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings, Lecture Notes in
Computer Science, vol. 9195. Springer (2015), https://doi.org/10.1007/978-3-319-21401-6

[21] Feng, Y., Martins, R., Wang, Y., Dillig, I., Reps, T.W.: Component-based synthesis for complex
APIs pp. 599–612 (2017), http://dl.acm.org/citation.cfm?id=3009851

[22] Frankle, J., Osera, P., Walker, D., Zdancewic, S.: Example-Directed Synthesis: A Type-Theoretic In-
terpretation. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. pp. 802–815 (2016), http://doi.acm.org/10.1145/2837614.2837629

[23] Franz, M., Lopes, C.T., Huck, G., Dong, Y., Sümer, S.O., Bader, G.D.: Cytoscape.js: a graph
theory library for visualisation and analysis. Bioinformatics 32(2), 309–311 (2016), https://doi.
org/10.1093/bioinformatics/btv557

[24] Gécseg, F., Steinby, M.: Tree Automata. CoRR abs/1509.06233 (2015), http://arxiv.org/abs/
1509.06233

[25] Heineman, G.T., Bessai, J., Düdder, B., Rehof, J.: A Long and Winding Road Towards Mod-
ular Synthesis. In: Proceedings of the 7th International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation. pp. 303–317 (2016), https://doi.org/10.1007/
978-3-319-47166-2_21

[26] Hillah, L., Kordon, F.: Petri Nets Repository: A Tool to Benchmark and Debug Petri Net Tools.
In: Proceedings of the 38th International Conference on Application and Theory of Petri Nets and
Concurrency. pp. 125–135 (2017), https://doi.org/10.1007/978-3-319-57861-3_9

[27] Hindley, J.R.: Types with Intersection: An Introduction. Formal Aspects of Computing 4(5), 470–
486 (1992), https://doi.org/10.1007/BF01211394

[28] Ergonomics of human-system interaction – Part 11: Usability: Definitions and concepts. Standard,
International Organization for Standardization, Geneva, CH (2018)

[29] Kabbani, N.M., Welch, D., Priester, C., Schaub, S., Durkee, B., Sun, Y., Sitaraman, M.: Formal
Reasoning Using an Iterative Approach with an Integrated Web IDE. In: Proceedings of the 2nd
International Workshop on Formal Integrated Development Environment. pp. 56–71 (2015), https:
//doi.org/10.4204/EPTCS.187.5

[30] Kaliszyk, C.: Web interfaces for proof assistants. Electr. Notes Theor. Comput. Sci. 174(2), 49–61
(2007), https://doi.org/10.1016/j.entcs.2006.09.021

[31] Kreowski, H.: A Comparison Between Petri-Nets and Graph Grammars. In: Proceedings of the
International Workshop on Graphtheoretic Concepts in Computer Science. pp. 306–317 (1980),
https://doi.org/10.1007/3-540-10291-4_22

[32] Lightbend: Play framework, https://www.playframework.com

[33] Myers, B.A., Ko, A.J., LaToza, T.D., Yoon, Y.: Programmers Are Users Too: Human-Centered
Methods for Improving Programming Tools. IEEE Computer 49(7), 44–52 (2016), https://doi.
org/10.1109/MC.2016.200

[34] Nielsen, J.: Usability Engineering. Elsevier Science (1994)
[35] Vasileva, A., Schmedding, D.: How to Improve Code Quality by Measurement and Refactoring. In:

Proceedings of the 10th International Conference on the Quality of Information and Communications
Technology. pp. 131–136 (2016), http://doi.ieeecomputersociety.org/10.1109/QUATIC.2016.
034

[36] Workshop Series: Intersection Types and Related Systems, http://itrs.di.unito.it/index.
html, accessed: 2018-04-25

https://doi.org/10.1007/BF01178504
https://doi.org/10.1007/BF01178504
https://doi.org/10.1007/978-3-319-21401-6
http://dl.acm.org/citation.cfm?id=3009851
http://doi.acm.org/10.1145/2837614.2837629
https://doi.org/10.1093/bioinformatics/btv557
https://doi.org/10.1093/bioinformatics/btv557
http://arxiv.org/abs/1509.06233
http://arxiv.org/abs/1509.06233
https://doi.org/10.1007/978-3-319-47166-2_21
https://doi.org/10.1007/978-3-319-47166-2_21
https://doi.org/10.1007/978-3-319-57861-3_9
https://doi.org/10.1007/BF01211394
https://doi.org/10.4204/EPTCS.187.5
https://doi.org/10.4204/EPTCS.187.5
https://doi.org/10.1016/j.entcs.2006.09.021
https://doi.org/10.1007/3-540-10291-4_22
https://www.playframework.com
https://doi.org/10.1109/MC.2016.200
https://doi.org/10.1109/MC.2016.200
http://doi.ieeecomputersociety.org/10.1109/QUATIC.2016.034
http://doi.ieeecomputersociety.org/10.1109/QUATIC.2016.034
http://itrs.di.unito.it/index.html
http://itrs.di.unito.it/index.html

	1 Introduction
	1.1 Related Work

	2 An Overview of (CL)S Scala Framework
	3 IDE for the (CL)S Framework
	4 Conclusion and Future Work

