
R. Matthes, M. Mio (Eds.): Fixed Points
in Computer Science 2015 (FICS 2015)
EPTCS 191, 2015, pp. 33–47, doi:10.4204/EPTCS.191.5

c© Naohi Eguchi
This work is licensed under the
Creative Commons Attribution License.

Formalizing Termination Proofs under Polynomial
Quasi-interpretations

Naohi Eguchi∗

Department of Mathematics and Informatics
Chiba University, Japan

neguchi@g.math.s.chiba-u.ac.jp

Usual termination proofs for a functional program require to check all the possible reduction paths.
Due to an exponential gap between the height and size of such the reduction tree, no naive formal-
ization of termination proofs yields a connection to the polynomial complexity of the given program.
We solve this problem employing the notion of minimal function graph, a set of pairs of a term and its
normal form, which is defined as the least fixed point of a monotone operator. We show that termina-
tion proofs for programs reducing under lexicographic pathorders (LPOs for short) and polynomially
quasi-interpretable can be optimally performed in a weak fragment of Peano arithmetic. This yields
an alternative proof of the fact that every function computed by an LPO-terminating, polynomially
quasi-interpretable program is computable in polynomial space. The formalization is indeed optimal
since every polynomial-space computable function can be computed by such a program. The crucial
observation is that inductive definitions of minimal function graphs under LPO-terminating programs
can be approximated with transfinite induction along LPOs.

1 Introduction

1.1 Motivation

The termination of a program states that any reduction underthe program leads to a normal form. Recent
developments in termination analysis of first order functional programs, or ofterm rewrite systemsmore
specifically, have drawn interest in computational resource analysis, i.e., not just the termination but
also the estimation of time/space-resources required to execute a given program, which includes the
polynomial run-space complexity analysis. Usual termination proofs for a program require to check all
the possible reduction paths under the program. Due to an exponential gap between theheightandsize
of such the reduction tree, no naive termination proof yields a connection to the polynomial complexity
of the given program. For the sake of optimal termination proofs, it seems necessary to discuss “all the
possible reduction paths” by means of an alternative notionsmaller in size than reduction trees.

1.2 Backgrounds

Stemming from [21], there are various functional characterizations of polynomial-space computable
functions [14, 16, 17, 9], Those characterizations state that every poly-space computable function can
be defined by a finite set of equations, i.e., by a functional program. Orienting those equations suitably,
such programs reduce under a termination order, thelexicographic path orders(LPOs for short). The
well-founded-ness of LPOs yields the termination of the reducing programs.

∗The author is supported by Grants-in-Aid for JSPS Fellows (Grant No. 25·726).

http://dx.doi.org/10.4204/EPTCS.191.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

34 Formalizing Termination Proofs under Polynomial Quasi-interpretations

In the seminal work [5], it was discussed, depending on the choice of a termination order, what
mathematical axiom is necessary to formalize termination proofs by the termination order within Peano
arithmetic PA that axiomatizes ordered semi-rings with mathematical induction. In case ofmultiset path
orders (MPOs for short), termination proofs can be formalized in the fragment of PA with induction
restricted to computably enumerable sets. This yields an alternative proof of the fact that every function
computed by an MPO-terminating program is primitive recursive, cf. [10]. The formalization is optimal
since every primitive recursive function can be computed byan MPO-terminating program. In case of
LPOs, termination proofs can be formalized in the fragment with induction restricted to expressions of
the form “f is total” for some computable functionf . The formalization is optimal in the same sense as
in case of MPOs, cf. [22].

In more recent works [3, 4], MPOs and LPOs are combined withpolynomial quasi-interpretations
(PQIs for short). Unlike (strict) polynomial interpretations [2], the existence of a quasi-interpretation
does not tell us anything about termination. However, combined with these termination orders, the
PQI can be a powerful method in computational resource analysis. Indeed, those functional programs
characterizing poly-space computable functions that was motioned above admit PQIs. This means that
every poly-space computable function can be computed by an LPO-terminating program that admits a
PQI. Moreover, conversely, every function computed by sucha program is computable in polynomial
space [3, Theorem 1].

1.3 Outline

In Section 2 we fix the syntax of first order functional programs and the semantics in accordance with the
syntax. In Section 3 we present the definitions of LPOs and PQIs together with some examples, stating
an application to poly-space computable functions (Theorem 1, [3, Theorem 1]). In Section 4 we present
the framework of formalization. For an underlying formal system, a second order system U1

2 of bounded
arithmetic [6], which can be regarded as a weak fragment of PA, seems suitable since it is known that
the system U12 is complete for poly-space computable functions (Theorem 2.2).

In [5], the termination of a program reducing under an LPO<lpo is deduced by showing that, given
a termt, a tree containing all the possible reduction chains starting with t is well founded under<lpo.
The same construction of such reduction trees does not work in U1

2 essentially because the exponentiation
m 7→ 2m is not available. We lift the problem employing the notion ofminimal function graph[12, 11, 15],
a set of pairs of a term and its normal form. Given a termt, instead of constructing a reduction tree rooted
at t, we construct a (subset of a) minimal function graph that stores the pair oft and a normal form of
t. Typically, a minimal function graph is inductively defined, or in other words defined as the least fixed
point of a monotone operator. Let us recall that the set of natural numbers is the least fixed point of the
operatorm∈ Γ(X)⇐⇒ m= 0∨∃n∈ X s.t. m= n+1. As seen from this example, many instances of
inductive definitions are induced by operators of the formt ∈ Γ(X)⇐⇒∃s1, . . . ,sk ∈ X · · · . Crucially, a
minimal function graph under a program reducing under an LPO<lpo can be defined as the least fixed
point of such an operator but alsot ∈ Γ(X) ⇐⇒ ∃s1, . . . ,sk ∈ X ∧ s1, . . . ,sk <lpo t · · · holds. Thanks to
the additional conditions1, . . . ,sk <lpo t, the minimal function graphs under the program can be defined
by <lpo-transfinite induction as well as inductive definitions. In Section 5 this idea is discussed in more
details.

In the main section, Section 6, the full details about the formalization are given. Most of the effort
is devoted to deduce in U12 an appropriate form of transfinite induction along LPOs (Lemma 5). Based
on the idea above, we then construct a minimal function graphG for a given programR reducing under
an LPO<lpo by <lpo-transfinite induction (Theorem 3). SinceG stores all the pairs of a term and its

Naohi Eguchi 35

R-normal form, this means the termination of the programR.
In Section 7 it is shown that the formalization presented in Section 6 yields that every function com-

puted by an LPO-terminating program that admits a PQI is poly-space computable (Corollary 3). This
shows that the formalization is optimal since such programscan only compute poly-space computable
functions as mentioned in Section 1.2.

2 Syntax and semantics of first order functional programs

Throughout the paper, aprogramdenotes aterm rewrite system. We sometimes use unusual notations or
formulations for the sake of simplification. More precise, widely accepted formulations can be found,
e.g., in [20].

Definition 1 (Constuctor-, basic-, terms, rewrite rules, sizes of terms). Let C andD be disjoint finite
signatures, respectively ofconstructorsanddefinedsymbols, andV a countably infinite set ofvariables.
We assume thatC contains at least one constant. The setsT(C∪D,V) of terms, T(C,V) of constructor
terms,B(C∪D,V) of basicterms andR(C∪D,V) of rewrite rulesare distinguished as follows.

(Terms) t ::= x | c(t1, . . . , tl) | f (t1, . . . , tl) ∈ T(C∪D,V);
(Constructor terms) s ::= x | c(s1, . . . ,sk) ∈ T(C,V);
(Basic terms) u ::= f (s1, . . . ,sk) ∈ B(C∪D,V);
(Rewrite rules) ρ ::= u→ t ∈ R(C∪D,V),

wherex∈ V, c∈C, f ∈ D, t, t1, . . . , tl ∈ T(C∪D,V), s1, . . . ,sk ∈ T(C,V) andu∈ B(C∪D,V). For such
a classS(F,V) of terms,S(F) denotes the subset of closed terms. Thesize‖t‖ of a termt is defined as
‖x‖ = 1 for a variablex and‖ f (t1, . . . , tk)‖= 1+∑k

j=1‖t j‖.

Definition 2 (Substitutions, quasi-reducible programs, rewrite relations). A programR is a finite subset
of R(C∪D,V) consisting of rewrite rules of the forml → r such that the variables occurring inr occur in
l as well. A mappingθ : V →S(F,V) from variables to a setS(F,V) of terms is called asubstitution. For
a termt ∈ S(F,V), tθ denotes the result of replacing every variablex with θ(x). A programR is quasi-
reducibleif, for any closed basic termt ∈ B(C∪F), there exist a rulel → r ∈ R and a substitutionθ :
V → T(C) such thatt = lθ . We restrict reductions to those undercall-by-valueevaluation, orinnermost
reductions more precisely. For three termst,u,v, we write t[u/v] to denote the result of replacing an
occurrence ofv with u. It will not be indicated which occurrence ofv is replaced if no confusion likely
arises. We writet i−→R s if s= t[rθ/lθ] holds for some rulel → r ∈ R and constructor substitution
θ : V → T(C). We write i−→∗

R to denote the reflexive and transitive closure ofi−→R andt i−→!
R s if t i−→∗

R s
ands is a normal form. By definition, for any quasi-reducible programR, if t i−→!

R s andt is closed, then
s∈ T(C) holds.

A programR computesa function if any closed basic term has a unique normal form inT(C). In this
case, for everyk-ary function symbolf ∈D, a function[| f |] : T(C)k →T(C) is defined by[| f |](s1, . . . ,sk)=
s⇐⇒ f (s1, . . . ,sk)

i−→!
R s.

3 Lexicographic path orders and quasi-interpretations

Lexicographic path orders arerecursive path orderswith lexicographic status only, whose variant was
introduced in [13]. Recursive path orders with multiset status only were introduced in [8] and a modern
formulation with both multiset and lexicographic status can be found in [20, page 211]. Let<F be a

36 Formalizing Termination Proofs under Polynomial Quasi-interpretations

(strict) precedence, a well-founded partial order on a signatureF = C∪D. We always assume that every
constructor is<F-minimal. Thelexicographic path order(LPO for short)<lpo induced by<F is defined
recursively by the following three rules.

1.
s6lpo ti

s<lpo g(t1, . . . , tl)
(i ∈ {1, . . . , l})

2.
s1 <lpo g(t1, . . . , tl) · · · sk <lpo g(t1, . . . , tl)

f (s1, . . . ,sk)<lpo g(t1, . . . , tl)
(f <F g∈ D)

3.
s1 = t1 · · · si−1 = ti−1 si <lpo ti si+1 <lpo t · · · sk <lpo t

f (s1, . . . ,sk)<lpo f (t1, . . . , tk) = t
(f ∈ D)

We say that a programR reduces under<lpo if r <lpo l holds for each rulel → r ∈ R and thatR
is LPO-terminatingif there exists an LPO under whichR reduces. We writes<〈i〉

lpo t if s<lpo t results

as an instance of the aboveith case (i = 1,2,3). Corollary 1 is a consequence of the definition of LPOs,
following from <F-minimality of constructors.

Corollary 1. If s<lpo t and t∈ T(C), then s<〈1〉

lpo t and s∈ T(C).

A quasi-interpretation(| · |) for a signatureF is a mapping fromF to functions over naturals ful-
filling (i) (| f |) : Nk → N for eachk-ary function symbolf ∈ F, (ii) (| f |)(. . . ,m, . . .) ≤ (| f |)(. . . ,n, . . .)
wheneverm < n, (iii) mj ≤ (| f |)(m1, . . . ,mk) for any j ∈ {1, . . . ,k}, and (iv) 0< (| f |) if f is a con-
stant. A quasi-interpretation(| · |) for a signatureF is extended to closed termsT(F) by (| f (t1, . . . , tk)|) =
(| f |)((|t1|), . . . ,(|tk|)). Such an interpretation(| · |) is called a quasi-interpretation for a programR if (|rθ |) ≤
(|lθ |) holds for each rulel → r ∈ R and for any constructor substitutionθ : V → T(C). A programR ad-
mits a polynomial quasi-interpretation(PQI for short) if there exists a quasi-interpretation(| · |) for R such
that(| f |) is polynomially bounded for eachf ∈ F. A PQI (| · |) is calledkind0 (oradditive[4]) if, for each
constructorc∈ C, (|c|)(m1, . . . ,mk) = d+∑k

j=1mj holds for some constantd > 0. An LPO-terminating

programR is called anLPOPoly(0)-program ifR admits a kind 0 PQI.

Theorem 1([3]). Every function computed by an LPOPoly(0)-program is computable in polynomial space.

Conversely, every polynomial-space computable function can be computed by an LPOPoly(0)-program
[3, Theorem 1]. In [4] various examples of programs admitting (kind 0) PQIs are illustrated, including
LPOPoly(0)-programsRlcs andRQBF below.

Example1. The length of thelongest common subsequencesof two strings can be computed by a program
Rlcs [4, Example 6], which consists of the following rewrite rules defined over a signatureF = C∪D
whereC = {0,s,ε ,a,b} andD = {max, lcs}.

max(x,0) → x max(s(x),s(y)) → s(max(x,y))
max(0,y) → y
lcs(x,ε) → 0 lcs(i(x), i(y)) → s(lcs(x,y)) (i ∈ {a,b})
lcs(ε ,y) → 0 lcs(i(x), j(y)) → max(lcs(x, j(y)), lcs(i(x),y)) (i 6= j ∈ {a,b})

Natural numbers are built of0 ands and strings ofa andb asa(u) = au for a stringu ∈ {a,b}∗. The
symbolε denotes the empty string. Define a precedence<F on F by max <F lcs. Assuming that every
constructor is<F-minimal, the programRlcs reduces under the LPO<lpo induced by<F. For instance,
the orientationmax(lcs(x,b(y)), lcs(a(x),y))<lpo lcs(a(x),b(y)) can be deduced as follows. The orienta-
tion y<〈1〉

lpo b(y) yieldslcs(a(x),y)<〈3〉

lpo lcs(a(x),b(y)) while x<〈1〉

lpo a(x) andb(y)<〈1〉

lpo lcs(a(x),b(y)) yield

Naohi Eguchi 37

lcs(x,b(y))<〈3〉

lpo lcs(a(x),b(y)). These together withmax<F lcs yieldmax(lcs(x,b(y)), lcs(a(x),y))<〈2〉

lpo

lcs(a(x),b(y)). It can be seen that the programRlcs admits the kind 0 PQI(| · |) defined by

(|0|) = (|ε |) = 1,

(|s|)(x) = (|a|)(x) = (|b|)(x) = 1+x,

(|max|)(x,y) = (|lcs|)(x,y) = max(x,y).

This is exemplified as(|max(lcs(x,b(y)), lcs(a(x),y))|) = max
(

max(x,1+y),max(1+x,y)
)

≤ max(1+
x,1+y) = (|lcs(a(x),b(y))|). Thus Theorem 1 implies that the function[|lcs|] can be computed in polyno-
mial space.

Example2. The Quantified Boolean Formula(QBF) problem can be solved by a programRQBF [4,
Example 36], which consists of the following rewrite rules defined over a signatureF = C∪D where
C = {0,s,nil,cons,⊤,⊥,var,¬,∨,∃} andD = {=,not,or, in,verify,qbf}.

not(⊤) → ⊥ not(⊥) → ⊤
or(⊤,x) → ⊤ or(⊥,x) → x

0= 0 → ⊤ s(x) = 0 → ⊥
0= s(x) → ⊥ s(x) = s(y) → x= y
in(x,nil) → ⊥ in(x,cons(y,ys)) → or(x= y, in(x,ys))

verify(var(x),xs) → in(x,xs)
verify(¬x,xs) → not(verify(x,xs))

verify(x∨y,xs) → or (verify(x,xs),verify(y,xs))
verify ((∃x)y,xs) → or (verify(y,cons(x,xs)),verify(y,xs))

qbf(x) → verify(x,nil)

The symbol⊤ denotes the true Boolean value while⊥ the false one. Boolean variables are encoded with
{0,s}-terms, i.e., with naturals. Formulas are built from variables operatingvar, ¬, ∨ or ∃. Without loss
of generality, we can assume that every QBF is built up in thisway. As usual, terms of the forms=(s, t),
¬(t), ∨(s, t) and∃(s, t) are respectively denoted ass= t, ¬t, s∨ t and(∃s)t. By definition, for a Boolean
formulaϕ with Boolean variablesx1, . . . ,xk, [|verify|](ϕ , [· · ·]) =⊤ holds if and only ifϕ is true with the
truth assignment thatx j =⊤ if x j appears in the list[· · ·] andx j =⊥ otherwise.

Define a precedence<F overF by not,or,= <F in <F verify <F qbf. Assuming<F-minimality of
constructor, the programRQBF reduces under the LPO<lpo induced by<F. For instance, the orienta-
tion or(verify(y,cons(x,xs)),verify(y,xs)) <lpo verify(∃(x,y),xs) can be deduced as follows. As well as
xs<〈1〉

lpo verify(∃(x,y),xs), the orientationx <〈1〉

lpo ∃(x,y) yields x <〈1〉

lpo verify(∃(x,y),xs). These together

with the assumptioncons <F verify yield cons(x,xs) <〈2〉

lpo verify(∃(x,y),xs). This together withy<〈1〉

lpo

∃(x,y) yields verify(y,cons(x,xs)) <〈3〉

lpo verify(∃(x,y),xs) as well asverify(y,xs) <〈3〉

lpo verify(∃(x,y),xs).
These orientations together with the assumptionor <F verify now allow us to deduce the desired orien-
tationor(verify(y,cons(x,xs)),verify(y,xs)) <〈2〉

lpo verify(∃(x,y),xs).
Furthermore, let us define a PQI(| · |) for the signatureF by

(|c|) = 1 if c is a constant,
(|x1, . . . ,xk|) = 1+∑k

j=1x j if c∈ C with arity> 0,
(| f |)(x1, . . . ,xk) = maxk

j=1x j if f ∈ D\{verify,qbf},

(|verify|)(x,y) = x+y,
(|qbf|)(x) = x+1.

38 Formalizing Termination Proofs under Polynomial Quasi-interpretations

Clearly the PQI(| · |) is kind 0. Then the programRQBF admits the PQI. This is exemplified by the rule
above as(|or(verify(y,cons(x,xs)),verify(y,xs))|) = max

(

y+(1+ x+ xs),y+ xs
)

= (1+ x+ y)+ xs=
(|verify(∃(x,y),xs)|). Thus Theorem 1 implies that the function[|qbf|] can be computed in polynomial
space. This is consistent with the well known fact that the QBF problem is PSPACE-complete.

4 A systemU1
2 of second order bounded arithmetic

In this section, we present the basics of second order bounded arithmetic following [1]. The original
formulation is traced back to [6]. The non-logical languageLBA of first order bounded arithmetic consists
of the constant 0, the successor S, the addition+, the multiplication·, |x| = ⌈log2(x+1)⌉, the division
by two ⌊x/2⌋, the smash #(x,y) = 2|x|·|y| and≤. It is easy to see that|m| is equal to the number of bits in
the binary representation of a naturalm. In addition to these usual symbols, we assume that the language
LBA contains max(x,y). The assumption makes no change if an underlying system is sufficiently strong.

Definition 3 (Sharply-, bounded quantifiers, bounded formulas, S1
2). Quantifiers of the form∃x(x ≤

t ∧ ·· ·) or ∀x(x≤ t → ···) for some termt are calledboundedand quantifiers of the form(Qx≤ |t|) · · ·
are calledsharplybounded.Bounded formulascontain no unbounded first order quantifiers. The classes
Σb

i (i ∈N) of bounded formulas are defined by counting the number of alternations of bounded quantifiers
starting with an existential one, but ignoring sharply bounded ones. For eachi ∈N, the first order system
Si

2 of bounded arithmetic is axiomatized with a setBASIC of open axioms defining theLBA-symbols
together with the schema(Σb

i -PIND) of bit-wise induction forΣb
i -formulas.

ϕ(0)∧∀x
(

ϕ(⌊x/2⌋)→ ϕ(x)
)

→∀xϕ(x) (ϕ ∈ Φ) (Φ-PIND)

The precise definition of the basic axiomsBASIC can be found, e.g., in [7, page 101].

Definition 4 (Second order bounded formulas, U1
2). In addition to the first order language, the language

of second order bounded arithmetic contains second order variablesX,Y,Z, . . . ranging over sets and
the membership relation∈. In contrast to the classesΣb

i , the classesΣb,1
i of second order bounded

formulas are defined by counting alternations of second order quantifiers starting with an existential
one, but ignoring first order ones. By definition,Σb,1

0 is the class of bounded formulas with no second

order quantifiers. The second order system U1
2 is axiomatized withBASIC, (Σb,1

1 -PIND) and the axiom
(Σb,1

0 -CA) of comprehension forΣb,1
0 -formulas.

∀~x ∀~X ∃Y(∀y≤ t)
(

y∈Y ↔ ϕ(y,~x,~X)
)

(ϕ ∈ Φ) (Φ-CA)

Unlike first order ones, second order quantifiers have no explicit bounding. However, due to the
presence of a bounding termt in the schema(Σb,1

0 -CA), one can only deduce the existence of a set with
a bounded domain.

Example3. The axiom(Σb,1
0 -CA) of comprehension allows us to transform given sets~X into another set

Y via Σb,1
0 -definable operations without inessential encodings. For an easy example, assume that two sets

U andV encode binary strings respectively of lengthm andn in such a way thatj ∈U ⇔ “the j th bit of
the stringU is 1” and j 6∈U ⇔ “the j th bit of the stringU is 0” for each j < m. Then theconcatenation
W =UaV, the stringU followed byV, is defined by(Σb,1

0 -CA) as follows.

(∀ j < m+n)
[

j ∈W ↔
(

(j < m∧ j ∈U)∨ (m≤ j ∧ j −m∈V)
)]

Naohi Eguchi 39

Definition 5 (Definable functions in formal systems). Let T be one of the formal systems defined above
andΦ be a class of bounded formulas. A functionf :Nk →N is Φ-definable in Tif there exists a formula
ϕ(x1, . . . ,xk,y) ∈ Φ with no other free variables such thatϕ(~x,y) expresses the relationf (~x) = y (under
the standard semantics) andT proves the sentence∀~x ∃!yϕ(~x,y).

Theorem 2([6]). 1. A function isΣb
1-definable inS1

2 if and only if it is computable in polynomial
time.

2. A function isΣb,1
1 -definable inU1

2 if and only if it is computable in polynomial space.

To readers who are not familiar with second order bounded arithmetic, it might be of interest to
outline the proof that every polynomial-space computable function can be defined in U12. The argument
is commonly known as thedivide-and-conquermethod, which was originally used to show the classical
inclusion NPSPACE⊆ PSPACE [18].

Proof of the “if” direction of Theorem 2.2 (Outline).Suppose that a functionf : Nk → N is computable
in polynomial space. This means that there exist a deterministic Turing machineM and a polynomial
p : Nk → N such that, for any inputsm1, . . . ,mk, f (m1, . . . ,mk) can be computed byM while the head
of M only visits a number of cells bounded byp(|m1|, . . . , |mk|). Then, since the number of possible
configurations underM on inputsm1, . . . ,mk is bounded by 2q(|m1|,...,|mk|) for some polynomialq, the
computation terminates in a step bounded by 2q(|~m|) as well.

Let ψM(m1, . . . ,mk,n,w0,W) denote aΣb,1
0 -formula expressing that the setW encodes the concate-

nation w1
a· · ·aw2|n| of configurations underM, wherew j is the next configuration ofw j−1, writing

w j = NextM(w j−1) (1 ≤ j ≤ 2|n|). Reasoning informally in U12, the Σb,1
1 -formula ϕ(~m,n) :≡ (∀w ≤

2p(|~m|))∃WψM(~m,n,w,W) can be deduced by(Σb,1
1 -PIND) on n. In casen= 0, W can be defined iden-

tical toNextM(w). For the induction step, given a configurationw0 ≤ 2p(|~m|), the induction hypothesis
yields a setU such thatψM(~m,⌊n/2⌋,w0,U) holds. Another instance of the induction hypothesis yields
a setV such thatψM(~m,⌊n/2⌋,w2|n|−1,V) holds. Since 2|n| = 2|n|−1 + 2|n|−1, ψM(~m,n,w0,W) holds for
the setW :=UaV.

Now instantiatingn with 2q(|~m|) yields a setW such thatψM(~m,2q(|~m|), InitM(~m),W) holds for the
initial configurationInitM(~m) on inputs~m. The setW yields the final configuration and thus the result
f (~m) of the computation. The uniqueness of the result can be deduced in U1

2 accordingly.

The “only if” direction of Theorem 2.2 follows from a bit moregeneral statement.

Lemma 1. If U1
2 proves∃yϕ(x1, . . . ,xk,y) for a Σb,1

1 -formulaϕ(x1, . . . ,xk,y) with no other free variables,
then there exists a function f: Nk → N such that, for any naturals~m= m1, . . . ,mk ∈ N, (i) f (~m) is
computable with the use of space bounded by a polynomial in|m1|, . . . , |mk|, and (ii) ϕ(~m, f (~m)) holds
under the standard semantics, where mdenotes the numeralSm(0) for a natural m.

It is also known that the second order system axiomatized with the schema(Σb,1
1 -IND), instead of

(Σb,1
1 -PIND), of the usual inductionϕ(0)∧∀x(ϕ(x)→ ϕ(S(x)))→∀xϕ(x) for Σb,1

1 -formulas, called V12,
captures the exponential-time computable functions of polynomial growth rate in the sense of Theorem 2.
Though there is no common notion about what is bounded arithmetic, the exponential functionm 7→ 2m

is not definable in any existing system of bounded arithmetic.

5 Minimal function graphs

Theminimal function graphsemantics was described in [12] as denotational semantics,cf. [23, Chap-
ter 9], and afterward used for termination analysis of functional programs without exponential size-

40 Formalizing Termination Proofs under Polynomial Quasi-interpretations

explosions in [11, Chapter 24.2] and [15]. In this section, we explain how minimal function graphs
work, how they are defined inductively, and how they can be defined without inductive definitions.

To see how minimal function graphs work, consider the program Rlcs in Example 1. Let us observe
that the following reduction starting with the basic termlcs(a(a(ε)),b(b(ε))) is possible.

lcs(a(a(ε)),b(b(ε)))
i−→Rlcs

max(lcs(a(ε),b(b(ε))), lcs(a(a(ε)),b(ε)))
i−→Rlcs

max(lcs(a(ε),b(b(ε))),max(lcs(a(ε),b(ε)), lcs(a(a(ε)),ε)))
i−→Rlcs

max(max(lcs(ε ,b(b(ε))), lcs(a(ε),b(ε))),max(lcs(a(ε),b(ε)), lcs(a(a(ε)),ε)))

In the reduction, the termt := lcs(a(ε),b(ε)) is duplicated, and hence costly re-computations potentially
occur. For the same reason, there can be an exponential explosion in the size of the reduction tree rooted
at lcs(a(a(ε)),b(b(ε))) that contains all the possible rewriting sequences starting with the basic term.
A minimal function graphG, or cachein other words, is defined so thatG stores pairs of a basic term
and its normal form. Thus, once the termt is normalized to0 (because the two stringsa andb have no
common subsequence), the pair〈t,0〉 is stored inG and any other reduction oft can be simulated by
replacing the occurrence oft with 0.

Given a programR, a (variant of) minimal function graphG is defined as the least fixed point of the
following operatorΓ overP(B(F)×T(C)), whereX ⊆ B(F)×T(C).

〈t,s〉 ∈ Γ(X) :⇐⇒ ∃l → r ∈ R,∃θ : V → T(C),∃〈t0,s0〉, . . . ,〈t‖r‖−1,s‖r‖−1〉 ∈ X s.t.
t = lθ & s=

(

(rθ)[s0/t0] · · ·
)

[s‖r‖−1/t‖r‖−1]

The operatorΓ is monotone, i.e.,X ⊆Y ⇒ Γ(X)⊆ Γ(Y), and hence there exists the least fixed point of
Γ. Suppose thatR is quasi-reducible. On one side, the fixed-ness ofG yields thatt i−→!

R s⇒ 〈t,s〉 ∈ G.
On the other side, since the set{〈t,s〉 | t ∈ B(F) & t i−→!

R s} is a fixed point ofΓ, the least-ness ofG yields
that 〈t,s〉 ∈ G ⇒ t i−→!

R s. Thus, to conclude that every closed basic term has an (innermost)R-normal
form, it suffices to show that, for every termt ∈ B(F), there exists a terms such that〈t,s〉 ∈ G. Now
there are two important observations.

1. It suffices to show that, for every termt ∈ B(F), there exist asubset Gt ⊆ G and a terms such
that 〈t,s〉 ∈ Gt . If t = lθ ands=

(

(rθ)[s0/t0] · · ·
)

[s‖r‖−1/t‖r‖−1] as in the definition ofΓ above
and, for eachj < ‖r‖, 〈t j ,sj〉 ∈ Gt j holds for such a setGt j ⊆ G, thenGt can be simply defined as
Gt = {〈t,s〉}∪Gt0 ∪ ·· ·∪Gt‖r‖−1

.1

2. Additionally suppose that the programR reduces under an LPO<lpo. Then it turns out that the
definition ofΓ is equivalent to a form restricted in such a way thatt j <lpo t for each j < ‖r‖.2

For these reasons, the schema(∀t ∈ B(F))
(

(∀s<lpo t)ϕ(s)→ ϕ(t)
)

→ (∀t ∈ B(F))ϕ(t) of transfinite
induction along<lpo will imply the termination of a quasi-reducible LPO-terminating programR in the
sense above.

6 Formalizing LPO-termination proofs under PQIs in U1
2

In this section, we show that, ifR is a quasi-reducible LPOPoly(0)-program, then an innermostR-normal
form of any closed basic term can be found in the system U1

2 (Theorem 3).

1To be precise, in [11, 15], theminimal function graphwas used to denote such a subsetGt for a given basict.
2Namely, every function computed by an<lpo-reducing program is defined recursively along<lpo. Therefore, as a reviewer

pointed out, in this case the minimal function graphs can be regarded as fixed-point semantics for recursive definitions of
functions, cf. [19, Chapter 10].

Naohi Eguchi 41

Given a programR over a signatureF = C∪D, we use the notationVR to denote the finite set
{x∈V | x appears in some ruleρ ∈R} of variables. Letp·q be anefficientbinary encoding forT(F,VR)-
terms. The efficiency means that:

(i) t 7→ ptq is Σb,1
0 -definable in U1

2.

(ii) There exists a polynomial (term)p(x) with a free variablex such that|ptq| ≤ p(‖t‖) (provably)
holds for anyt ∈ T(F,VR).

Without loss of generality, we can assume that:

(iii) ‖t‖ ≤ |ptq|.

(iv) |psq|< |ptq| if s is a proper subterm oft.

Such an encoding can be defined, for example, by representingterms as directed graphs not as trees.

Lemma 2. The relation<lpo is Σb,1
0 -definable inU1

2.

Proof (Sketch).It suffices to show that, given two termssandt, the relation “there exists a derivation tree
according to the rules 1–3 (on page 36) that results ins<lpo t” is Σb,1

0 -definable in U1
2. Let T denote such

a derivation tree resulting ins<lpo t. By induction according to the inductive definition of<lpo it can be
shown that the number of nodes inT is bounded by‖s‖·‖t‖. Hence, by the assumption (ii) on the encod-
ingp·q, the codepTq of T is polynomially bounded in‖s‖·‖t‖ and thus inpsq·ptq. On the other hand, by
definition, the relations0 <lpo t0 between two termss0 andt0 is reduced to a tuplesj <lpo t j (j = 1, . . . ,k)
of relations between some subtermss1, . . . ,sk of s0 and subtermst1, . . . , tk of t0. Thanks to the assumption
(iv) on the encodingp·q, |psjq|+ |pt jq|< |ps0q|+ |pt0q|, i.e., 2|psjq|+|pt j q| ≤ ⌊

(

2|ps0q|+|pt0q|
)

/2⌋, holds for
any j ∈ {1, . . . ,k}. From these observations, it can be seen that the construction of the derivation treeT
is performed in U12, and hence the relations<lpo t is Σb,1

0 -definable in U1
2.

As observed in [5], in which an optimal LPO-termination proof was described, every programR
reducing under an LPO<lpo already reduces under a finite restriction<ℓ of <lpo for someℓ ∈ N and
every quantifier of the form(Qs<ℓ t) can be regarded as a bounded one. Adopting the restriction, we
introduce an even more restrictive relation<ℓ (ℓ ∈N) motivated by the following properties of PQIs.

Proposition 1. Let (| · |) be a kind0 PQI and t∈ B(F). Then the following two properties hold.

1. (|t|)≤ p(|ptq|) holds for some polynomial p.

2. Suppose additionally that a programR admits the PQI(| · |) and that t i−→∗
R s holds. If s∈ T(C),

then‖s‖ ≤ (|t|) holds. If s= f (s1, . . . ,sk) ∈ B(F), then‖sj‖ ≤ (|t|) holds for each j∈ {1, . . . ,k}.

Proof. PROPERTY 1. Let t = g(t1, . . . , tl). Since the PQI(| · |) is kind 0, one can find a constantd
depending only on the setC of constructors and the PQI(| · |) such that(|t j |) ≤ d · ‖t j‖ holds for any
j ∈ {1, . . . , l}. This yields a polynomialp such that(|t|) ≤ p(‖t‖) and thus(|t|) ≤ p(|ptq|) holds by the
assumption (iii) on the encodingp·q.

PROPERTY 2. In cases∈ T(C), ‖s‖ ≤ (|s|) ≤ (|t|) holds. In cases= f (s1, . . . ,sk) ∈ B(F), ‖sj‖ ≤
(|sj |)≤ (|s|)≤ (|t|) holds for eachj ∈ {1, . . . ,k}.

Definition 6 (Tℓ(C), Bℓ(F), <ℓ, <lex
ℓ). Let Tℓ(C) denote a set{t ∈ T(C) | ‖t‖ ≤ ℓ} of constructor terms

andBℓ(F) a set{ f (t1, . . . , tk) ∈ B(F) | ‖t1‖, . . . ,‖tk‖ ≤ ℓ} of basic terms. Then we writes<ℓ t if s<lpo t
and additionallys∈ Tℓ(C)∪Bℓ(F) hold. We use the notations<〈i〉

ℓ t (i = 1,2,3) accordingly. Moreover,
we define alexicographic extension<lex

ℓ of <ℓ overT(C). For constructor termss1, . . . ,sk, t1, . . . , tk, we
write (s1, . . . ,sk) <

lex
ℓ (t1, . . . , tk) if there exists an indexi ∈ {1, . . . ,k} such thatsj = t j for every j < i,

si <
〈1〉

ℓ ti, andsj ∈ Tℓ(C) for every j > i.

42 Formalizing Termination Proofs under Polynomial Quasi-interpretations

Corollary 2 follows from the definitions of<ℓ and<lex
ℓ and from<F-minimality of constructors.

Corollary 2. For two basic terms f(s1, . . . ,sk), f (t1, . . . , tk) ∈ Bℓ(F), f(s1, . . . ,sk)<
〈3〉

ℓ f (t1, . . . , tk) holds
if and only if(s1, . . . ,sk)<

lex
ℓ (t1, . . . , tk) holds.

For most of interesting LPOPoly(0)-programs including Example 1 and 2, interpreting polynomials
consist of+, ·, maxkj=1 x j together with additional constants. This motivates us to formalize PQIs limiting
interpreting polynomial terms to those built up only from 0,S,+, · and max to make the formalization
easier. Then the constraints (ii) and (iii) on PQIs follow from defining axioms for these function symbols.

Let us consider a reductiont0 i−→∗
R t i−→∗

R s under a programR admitting a kind 0 PQI(| · |), where
t0, t ∈ B(F) ands∈ T(C)∪B(F). If s<lpo t for some LPO<lpo, then Proposition 1 yields a polynomial
p such thats<p(|pt0q|) t holds by Definition 6. Hence we can assume thatℓ is (the result of substituting
t0 for) a polynomialp(|x|). More precisely,ℓ can be expressed by anLBA-term built up from 0 and
|x|, |y|, |z|, . . . by S,+ and · . By assumption,ℓ does not contain # nor⌊·/2⌋. Thusℓ = ℓ(x1, . . . ,xk)
denotes a polynomial with non-negative coefficients in|x1|, . . . , |xk|. Sinceℓ contains no smash # in
particular, 2p(ℓ) can be regarded as anLBA-term for any polynomialp(x). By the assumption (ii) on
the encodingp·q, |ptq| is polynomially bounded in the size‖t‖ of t, and henceptq ≤ 2p(‖t‖) for some
polynomial p(x). Therefore any quantifier of the forms(Qs<ℓ t), (Qt ∈ Tℓ(C)) and(Qt ∈ Bℓ(F)) can
be treated as a bounded one.

We deduce the schema (TIΣb,1
1
(Bℓ(F),<ℓ)) of <ℓ-transfinite induction overBℓ(F) for Σb,1

1 -formulas

(Lemma 5). Since the relationf (s1, . . . ,sk) <
〈3〉

ℓ f (t1, . . . , tk) relies on the comparison(s1, . . . ,sk) <
lex
ℓ

(t1, . . . , tk) by Corollary 2, we previously have to deduce the schema (TIΣb,1
1
(Tℓ(C)k,<lex

ℓ)) of <lex
ℓ -

transfinite induction overk-tuples ofTℓ(C)-terms (Lemma 4). We start with deducing the instance in the
base casek= 1.

Lemma 3. The following schema of<ℓ-transfinite induction overTℓ(C) holds inU1
2, whereϕ ∈ Σb,1

1 .

(∀t ∈ Tℓ(C))
(

(∀s<ℓ t)ϕ(s)→ ϕ(t)
)

→ (∀t ∈ Tℓ(C))ϕ(t) (TIΣb,1
1
(Tℓ(C),<ℓ))

Proof. Reason in U12. Suppose(∀t ∈ Tℓ(C))
(

(∀s<ℓ t)ϕ(s) → ϕ(t)
)

and lett ∈ Tℓ(C). We show that

ϕ(t) holds by(Σb,1
1 -PIND) onptq. The caseptq= 0 trivially holds. Supposeptq> 0 for induction step.

By assumption, it suffices to show thatϕ(s) holds for anys<ℓ t. Thus lets<ℓ t. Sincet ∈ Tℓ(C), s is a
proper subterm oft by Corollary 1 and<F-minimality of constructors. Thus, the assumption (iv) on the
encodingp·q yieldspsq≤ ⌊ptq/2⌋, and henceϕ(s) holds by induction hypothesis.

Remark1. In the proof of Lemma 3, we employed a bit-wise form ofcourse of valuesinductionϕ(0)∧
∀t
(

∀s(psq ≤ ⌊ptq/2⌋ → ϕ(s)) → ϕ(t)
)

→ ∀tϕ(t) for a Σb,1
1 -formula ϕ(x), which is not an instance of

(Σb,1
1 -PIND). Formally, one should apply(Σb,1

1 -PIND) for theΣb,1
1 -formulaψ(x)≡∀t

(

ptq≤ 2|x| →ϕ(t)
)

to deduce(∀t ∈ Tℓ(C))ϕ(t). To ease presentation, we will use similar informal arguments in the sequel.

Lemma 4. The schema(TIΣb,1
1
(Tℓ(C),<ℓ)) can be extended to tuples ofTℓ(C)-terms, i.e., the following

schema holds inU1
2, whereϕ(~t)≡ ϕ(t1, . . . , tk) ∈ Σb,1

1 .

(∀~t ∈ Tℓ(C))
(

(∀~s<lex
ℓ ~t)ϕ(~s)→ ϕ(~t)

)

→ (∀~t ∈ Tℓ(C))ϕ(~t) (TIΣb,1
1
(Tℓ(C)k,<lex

ℓ))

Proof. We show that the schema (TIΣb,1
1
(Tℓ(C)k,<lex

ℓ)) holds in U1
2 by (meta) induction onk≥ 1. In case

k= 1, the schema is an instance of (TIΣb,1
1
(Tℓ(C),<ℓ)). Suppose thatk> 1 and (TIΣb,1

1
(Tℓ(C)k−1,<lex

ℓ))
holds by induction hypothesis. Assume that

(∀t1, . . . , tk ∈ Tℓ(C))
(

(∀(s1, . . . ,sk)<
lex
ℓ (t1, . . . , tk))ϕ(s1, . . . ,sk)→ ϕ(t1, . . . , tk)

)

(1)

Naohi Eguchi 43

holds for someΣb,1
1 -formula ϕ(t1, . . . , tk). Let ϕ<lex

ℓ
(t, t2, . . . , tk), ψ(t) andψ<ℓ

(t) denoteΣb,1
1 -formulas

specified as follows.

ϕ<lex
ℓ
(t, t2, . . . , tk) :≡ t2, . . . , tk ∈ Tℓ(C)∧

(

∀(s2, . . . ,sk)<
lex
ℓ (t2, . . . , tk)

)

ϕ(t,s2, . . . ,sk);

ψ(t) :≡ (∀t2, . . . , tk ∈ Tℓ(C))ϕ(t, t2, . . . , tk);
ψ<ℓ

(t) :≡ t ∈ Tℓ(C)∧ (∀s<ℓ t)ψ(s).

Note, in particular, thatψ(t) is still a Σb,1
1 -formula since every quantifier of the form(∀s∈ Tℓ(C)) can

be regarded as a bounded one under which the classΣb,1
1 is closed. One can see thatϕ<lex

ℓ
(t, t2, . . . , tk)

andψ<ℓ
(t) imply t, t2, . . . , tk ∈ Tℓ(C) and

(

∀(s,s2, . . . ,sk)<
lex
ℓ (t, t2, . . . , tk)

)

ϕ(s,s2, . . . ,sk). Hence, by the
assumption (1),ψ<ℓ

(t) implies(∀t2, . . . , tk ∈ Tℓ(C))
(

ϕ<lex
ℓ
(t, t2, . . . , tk)→ ϕ(t, t2, . . . , tk)

)

, which denotes

(∀t2, . . . , tk ∈ Tℓ(C))
(

(∀(s2, . . . ,sk)<
lex
ℓ (t2, . . . , tk))ϕ(t,s1, . . . ,sk)→ ϕ(t, t2, . . . , tk)

)

.

This together with (TIΣb,1
1
(Tℓ(C)k−1,<lex

ℓ)) yields(∀t2, . . . , tk ∈ Tℓ(C))ϕ(t, t2, . . . , tk), denotingψ(t). This

means that(∀t ∈ Tℓ(C))
(

(∀s<ℓ t)ψ(s) → ψ(t)
)

holds. Sinceψ(t) ∈ Σb,1
1 as noted above, this together

with (TIΣb,1
1
(Tℓ(C),<ℓ)) yields(∀t ∈ Tℓ(C))ψ(t) and thus(∀t1, . . . , tk ∈ Tℓ(C))ϕ(t1, . . . , tk) holds.

Lemma 5. LetF = C∪D. The<ℓ-transfinite induction overBℓ(F) holds inU1
2, whereϕ ∈ Σb,1

1 .

(∀t ∈ Bℓ(F))
(

(∀s∈ Bℓ(F))(s<ℓ t → ϕ(s))→ ϕ(t)
)

→ (∀t ∈ Bℓ(F))ϕ(t) (TIΣb,1
1
(Bℓ(F),<ℓ))

Given a precedence<F on the finite signatureF, let rk : F → N denote therank, a finite function
compatible with<F: rk(f)< rk(g)⇔ f <F g.

Proof. Reason in U12. Assume the premise of (TIΣb,1
1
(Bℓ(F),<ℓ)):

(∀t ∈ Bℓ(F))
(

(∀s∈ Bℓ(F))(s<ℓ t → ϕ(s))→ ϕ(t)
)

(2)

Let g∈ D. We show that(∀t1, . . . , tl ∈ Tℓ(C))ϕ(g(t1, . . . , tl)) holds by(Σb,1
1 -PIND) on 2rk(g), or in other

words by finitary induction onrk(g). Let t1, . . . , tl ∈ Tℓ(C) andt := g(t1, . . . , tl). By the assumption (2),
it suffices to show thatϕ(s) holds for anys∈ Bℓ(F) such thats<ℓ t. Thus, lets∈ Bℓ(F) ands<ℓ t.

CASE. s<〈1〉

ℓ t: In this cases6ℓ ti for somei ∈ {1, . . . , l}. Sinceti ∈ Tℓ(C), s∈ Tℓ(C) as well by
Corollary 1, and hence this case is excluded.

CASE. s:= f (s1, . . . ,sk)<
〈2〉

ℓ t: In this case,f <F g and hencerk(f)< rk(g). This allows us to reason
as 2rk(g) ≤ 2rk(f)−1 = ⌊2rk(f)/2⌋. Thus the induction hypothesis yieldsϕ(s).

CASE. s := g(s1, . . . ,sl)<
〈3〉

ℓ t: We show that the following condition holds.

(∀v1, . . . ,vl ∈ Tℓ(C))
(

(∀(u1, . . . ,ul)<
lex
ℓ (v1, . . . ,vl))ϕ(g(u1, . . . ,ul))→ ϕ(g(v1, . . . ,vl))

)

(3)

Let v1, . . . ,vl ∈ Tℓ(C). By Corollary 2, the premise(∀(u1, . . . ,ul) <
lex
ℓ (v1, . . . ,vl))ϕ(g(u1, . . . ,ul) of (3)

yields
(

∀s′ <〈3〉

ℓ g(v1, . . . ,vl)
)

ϕ(s′). On the other side, the previous two cases yield(∀s′ ∈ Bℓ(F))
(

s′ <〈i〉

ℓ

g(v1, . . . ,vl) → ϕ(s′)
)

(i = 1,2) and hence(∀s′ ∈ Bℓ(F))
(

s′ <ℓ g(v1, . . . ,vl)→ ϕ(s′)
)

holds. Therefore
ϕ(g(v1, . . . ,vl)) holds by the assumption (2), yielding the statement (3). Since (3) is the premise of an
instance of the schema(TIΣb,1

1
(Tℓ(C)l ,<lex

ℓ)), Lemma 4 yields(∀v1, . . . ,vl ∈ Tℓ(C))ϕ(g(v1, . . . ,vl)), and

thusϕ(g(s1, . . . ,sl)) holds in particular.

44 Formalizing Termination Proofs under Polynomial Quasi-interpretations

To derive, from (TIΣb,1
1
(Bℓ(F),<ℓ)), the existence of a minimal function graph under an LPO-terminating

program, we need the following technical lemma.

Lemma 6. (in U1
2) Let (| · |) be a kind0 PQI for a signatureF = C∪D, t ∈ B(F), s∈ T(F) and<lpo an

LPO induced by a precedence<F. If s<lpo t and(|s|) ≤ (|t|) ≤ ℓ, then, for any basic subterm t′ of s and
for any s′ ∈ T(C) such that(|s′|)≤ (|t ′|), v<ℓ t holds for any basic subterm v of s[s′/t ′].

Proof. By <F-minimality of constructors,s′ <lpo t ′ holds. Hences[s′/t ′] <lpo t from the assumption
s<lpo t. This yieldsv <lpo t by the definition of LPOs. Writev = f (v1, . . . ,vk) for some f ∈ D and
v1, . . . ,vk ∈ T(C). Let i ∈ {1, . . . ,k}. Then‖vi‖ ≤ (|vi |) ≤ (|v|) ≤ (|s[s′/t ′]|) ≤ (|t|). The last inequality
follows from the monotonicity (ii) of the PQI(| · |). This yields‖vi‖ ≤ ℓ and hencev<ℓ t.

Theorem 3. (in U1
2) Suppose thatR is a quasi-reducible LPOPoly(0)-program. Then, for any basic term

t, there exists a minimal function graph G (in the sense of Section 5) such that that〈t,s〉 ∈ G holds for
an R-normal form s of t.

Proof. Suppose thatR is a quasi-reducible LPOPoly(0)-program witnessed by an LPO<lpo and a kind
0 PQI(| · |) and that<ℓ is a finite restriction of<lpo. Let ψℓ(x,y,X) denote aΣb,1

0 -formula with no free
variables other thanx, y andX expressing thatX ⊆ Bℓ(F)×Tℓ(C) is a set of pairs of terms such that
〈x,y〉 ∈ X, and, for any〈t,s〉 ∈ X, (|s|)≤ (|t|)≤ ℓ and∃l → r ∈ R, ∃θ : VR → Tℓ(C) s.t. t = lθ and one of
the following cases holds.

1. s= rθ ∈ Tℓ(C).

2. ∃
〈

〈t j ,sj〉 ∈ X | j < ‖r‖
〉

s.t. s=
(

(rθ)[s0/t0] · · ·
)

[s‖r‖−1/t‖r‖−1], wheres′[u/v] is identical if nov
occurs ins′.

Note that, sinceVR is a finite set of variables,∃θ : VR → Tℓ(C) can be regarded as a (first order) bounded
quantifier. By Proposition 1.1, we can find a polynomial termp(x) such that(|t|)≤ p(|ptq|) holds for any
t ∈B(F). The rest of the proof is devoted to deduce(∀t ∈B(F))(∃s∈Tℓ(C))∃G ψp(|ptq|)(t,s,G) for such

a bounding polynomialp. Fix an input basic termt0 ∈ B(F) and letϕℓ(t) denote theΣb,1
1 -formula(∃s∈

Tℓ(C))∃G ψℓ(t,s,G), whereℓ= p(|pt0q|). Sincet0 ∈ Bℓ(F), it suffices to deduce(∀t ∈ Bℓ(F))ϕℓ(t). By
Lemma 5, this follows from(∀t ∈ Bℓ(F))

(

(∀s∈ Bℓ(F))(s<ℓ t → ϕℓ(s))→ ϕℓ(t)
)

, which is the premise
of an instance of (TIΣb,1

1
(Bℓ(F),<ℓ)). Thus lett ∈ Bℓ(F) and assume the condition

(∀s∈ Bℓ(F))(s<ℓ t → ϕℓ(s)). (4)

SinceR is quasi-reducible, there exist a rulel → r ∈ R and a substitutionθ : VR → Tℓ(C) such that
t = lθ . The remaining argument splits into two cases depending on the shape ofrθ .

CASE 1. rθ ∈ Tℓ(C): In this caseψℓ(t, rθ ,G) holds for the singletonG := {〈t, rθ〉}.
CASE 2. rθ 6∈ Tℓ(C): In this case there exists a basic subtermv0 of rθ . Fix a termu0 ∈ Tℓ(C) such

that(|u0|)≤ (|v0|). We show the following claim by finitary induction onm< ‖r‖.

Claim 1. There exists a sequence
〈

〈t j ,sj ,G j〉 | j ≤ m
〉

of triplets such that, for each j≤ m, (i) t j <ℓ t,
(ii) ψℓ(t j ,sj ,G j) holds, and(iii)

(

(rθ)[s0/t0] · · ·
)

[sj/t j] is not identical to
(

(rθ)[s0/t0] · · ·
)

[sj−1/t j−1] as
long as

(

(rθ)[s0/t0] · · ·
)

[sj−1/t j−1] has a basic subterm.

In the base casem= 0, let t0 be an arbitrary basic subterm ofrθ . Then, since(|rθ |) ≤ (|lθ |), t0 <ℓ t
follows from the definition of LPOs. Hence, by the assumption(4), there exist a terms0 ∈ Tℓ(C) and
a setG0 such thatψℓ(t0,s0,G0) holds. Clearly,(rθ)[s0/t0] is not identical torθ . For induction step,

Naohi Eguchi 45

suppose that there exists a sequence
〈

〈t j ,sj ,G j〉 | j ≤ m
〉

fulfilling the conditions (i)–(iii) in the claim. In
case that

(

(rθ)[s0/t0] · · ·
)

[sm/tm] has no basic subterm, let(tm+1,sm+1) = (v0,u0). Otherwise, lettm+1 be
an arbitrary basic subterm. Thentm+1 <ℓ t holds by Lemma 6. Hence, as in the base case, the assumption
(4) yields a termsm+1 ∈ Tℓ(C) and a setGm+1 such thatψℓ(tm+1,sm+1,Gm+1) holds. By the choice of
tm+1,

(

(rθ)[s0/t0] · · ·
)

[sm+1/tm+1] is not identical to
(

(rθ)[s0/t0] · · ·
)

[sm/tm].
Now let s :=

(

(rθ)[s0/t0] · · ·
)

[s‖r‖−1/t‖r‖−1] for a sequence
〈

〈t j ,sj ,G j〉 | j < ‖r‖
〉

witnessing the
claim in casem= ‖r‖ − 1. Thens∈ Tℓ(C) since |{ f ∈ D | f appears in

(

(rθ)[s0/t0] · · ·
)

[sj/t j]}| ≤
‖r‖ − (j + 1) holds for eachj < ‖r‖ by the condition (iii) in the claim. Defining a setG by G =

{〈t,s〉}∪
(

⋃

j<‖r‖G j

)

now allows us to concludeψℓ(t,s,G).

7 Application

In the last section, to convince readers that the formalization of termination proofs described in Theo-
rem 3 for LPOPoly(0)-programs is optimal, we show that the formalization yieldsan alternative proof of
Theorem 1, i.e., that LPOPoly(0)-programs can only compute polynomial-space computable functions.

The next lemma ensures that the setG constructed in Theorem 3 is indeed a minimal function graph.

Lemma 7. Suppose thatR is a quasi-reducible LPOPoly(0)-program. Letψℓ(x,y,X) denote theΣb,1
0 -

formula defined in the proof of Theorem 3. Then, for any t∈ B(F) and for any t∈ T(C), t i−→!
R s if and

only if ∃G ψp(|ptq|)(t,s,G) holds under the standard semantics.

Proof. Let R reduce under an LPO<lpo. For the “if” direction, it can be shown that(∀t ∈ B(F))(∀s∈
T(C))

(

∃G ψp(|ptq|)(t,s,G)⇒ t i−→!
R s

)

holds by (external) transfinite induction along<lpo. For the “only
if” direction, it can be shown that(∀t ∈ B(F))(∀s∈ T(C))

(

t i−→m
R s⇒ ∃G ψp(|ptq|)(t,s,G)

)

holds by
induction onm, where i−→m

R denotes them-fold iteration of i−→R.

Now Theorem 3 and Lemma 7 yield an alternative proof of (a variant of) Theorem 1.

Corollary 3. Every function computed by a quasi-reducible LPOPoly(0)-program is computable in poly-
nomial space.

Proof. By Theorem 3, U12 proves the formula

QR(R)∧LPO(R,<lpo)∧PQI(R,(| · |))→ (∀t ∈ B(F))(∃s∈ Tp(|ptq|)(C))∃G ψp(|ptq|)(t,s,G),

whereQR(R), LPO(R,<lpo) andPQI(R,(| · |)) respectively express that anyB(F)-term is reducible,R
reduces under<lpo, and(∀(l → r) ∈ R)(∀θ : VR → T(C))(|rθ |) ≤ (|lθ |). By Lemma 2,LPO(R,<lpo)

can be expressed with aΣb,1
0 -formula, but neitherQR(R) norPQI(R,(| · |)) is literally expressible with a

bounded formula. Nonetheless, the proof can be easily modified to a proof of the statement

(∀t ∈ B(F))(∃s∈ Tℓ(C))
(

QRℓ(R)∧LPO(R,<lpo)∧PQIℓ(R,(| · |))→∃G ψℓ(t,s,G)
)

,

where ℓ = p(|ptq|), andQRℓ(R) and PQIℓ(R,(| · |)) respectively express that anyBℓ(F)-term is re-
ducible, and(∀(l → r) ∈ R)(∀θ : VR → Tℓ(C))(|rθ |) ≤ (|lθ |). Both QRℓ(R) andPQIℓ(R,(| · |)) can be
regarded asΣb,1

0 -formulas, and hence the formulaϕℓ(t,s) :≡ QRℓ(R)∧LPO(R,<lpo)∧PQIℓ(R,(| · |))→

∃G ψℓ(t,s,G) lies in Σb,1
1 .

Now suppose that a function[|f|] : T(C)k → T(C) is computed by a quasi-reducible LPOPoly(0)-
programR for somek-ary function symbolf ∈ D. Then Lemma 1 yields a polynomial-space computable

46 Formalizing Termination Proofs under Polynomial Quasi-interpretations

function f :Nk →N such thatϕp(|pf(t1,...,tkq|)

(

f(t1, . . . , tk), f (pt1q, . . . ,ptkq)
)

holds for anyt1, . . . , tk ∈T(C)

under the standard semantics. Hence, by assumption,ψp(|pf(t1,...,tkq|)

(

f(t1, . . . , tk), f (pt1q, . . . ,ptkq),G
)

holds for some setG⊆ B(F)×T(C). By Lemma 7, this means the correspondence[|f|](t1, . . . , tk) = s⇔
f (pt1q, . . . ,ptkq)= psq. Therefore,p[|f|](t1, . . . , tk)q can be computed with space bounded by a polynomial
in |pt1q|, . . . , |ptkq| and thus bounded by a polynomial in‖t1‖, . . . ,‖tk‖.

8 Conclusion

This work is concerned with optimal termination proofs for functional programs in the hope of establish-
ing logical foundations of computational resource analysis. Optimal termination proofs were limited for
programs that compute functions lying in complexity classes closed under exponentiation. In this paper,
employing the notion of minimal function graph, we showed that termination proofs under LPOPoly(0)-
programs can be optimally formalized in the second order system U1

2 of bounded arithmetic that is com-
plete for polynomial-space computable functions, liftingthe limitation. The crucial idea is that inductive
definitions of minimal function graphs under LPOPoly(0)-programs can be approximated with transfinite
induction along LPOs. As a small consequence, compared to the original result, Theorem 1, when we
say “a programR computes a function”, the quasi-reducibility ofR is explicitly needed to enable the
formalization.

Finally, let us call a programR anMPOPoly(0) one if R reduces under an MPO (with product status
only) andR admits a kind 0 PQI. In [4, Theorem 42], Theorem 1 is refined so that a function can be
computed by an MPOPoly(0)-program if and only if it is computable in polynomial time. The program
Rlcs described in Example 1 is an example of MPOPoly(0)-programs, and hence the length of the longest
common subsequences is computable even in polynomial time.By Theorem 2.1, it is quite natural to
expect that minimal function graphs under MPOPoly(0)-programs can be constructed in the first order
system S12. However, we then somehow have to adopt the formulaϕℓ(t,s) ≡ QRℓ(R)∧ LPO(R,<lpo

)∧PQIℓ(R,(| · |)) → ∃G ψℓ(t,s,G) (in the proof of Corollary 3) to aΣb
1-formula, which is clearly more

involved than the present case.

References

[1] A. Beckmann & S.R. Buss (2014):Improved Witnessing and Local Improvement Principles for Second-order
Bounded Arithmetic. ACM Transactions on Computational Logic15(1), p. 2, doi:10.1145/2559950.

[2] G. Bonfante, A. Cichon, J.-Y. Marion & H. Touzet (2001):Algorithms with Polynomial Interpretation Ter-
mination Proof. Journal of Functional Programming11(1), pp. 33–53, doi:10.1017/S0956796800003877.

[3] G. Bonfante, J.-Y. Marion & J.-Y. Moyen (2001):On Lexicographic Termination Ordering with Space Bound
Certifications. In: Perspectives of System Informatics, Lecture Notes in Computer Science2244, pp. 482–
493, doi:10.1007/3-540-45575-246.

[4] G. Bonfante, J.-Y. Marion & J.-Y. Moyen (2011):Quasi-interpretations A Way to Control Resources. Theo-
retical Computer Science412(25), pp. 2776–2796, doi:10.1016/j.tcs.2011.02.007.

[5] W. Buchholz (1995):Proof-theoretic Analysis of Termination Proofs. Annals of Pure and Applied Logic
75(1–2), pp. 57–65, doi:10.1016/0168-0072(94)00056-9.

[6] S.R. Buss (1986):Bounded Arithmetic. Bibliopolis, Napoli.

[7] S.R. Buss (1998):First-Order Proof Theory of Arithmetic. In S.R. Buss, editor:Handbook of Proof Theory,
North Holland, Amsterdam, pp. 79–147, doi:10.1016/S0049-237X(98)80017-7.

http://dx.doi.org/10.1145/2559950
http://dx.doi.org/10.1017/S0956796800003877
http://dx.doi.org/10.1007/3-540-45575-2_46
http://dx.doi.org/10.1016/j.tcs.2011.02.007
http://dx.doi.org/10.1016/0168-0072(94)00056-9
http://dx.doi.org/10.1016/S0049-237X(98)80017-7

Naohi Eguchi 47

[8] N. Dershowitz (1982):Orderings for Term-Rewriting Systems. Theoretical Computer Science17, pp. 279–
301, doi:10.1016/0304-3975(82)90026-3.

[9] N. Eguchi (2010):A Term-rewriting Characterization of PSPACE. In T. Arai, C.T. Chong, R. Downey,
J. Brendle, Q. Feng, H. Kikyo & H. Ono, editors:Proceedings of the 10th Asian Logic Conference 2008,
World Scientific, pp. 93–112, doi:10.1142/97898142930200004.

[10] D. Hofbauer (1990):Termination Proofs by Multiset Path Orderings Imply Primitive Recursive Derivation
Lengths. In: Proceedings of the 2nd International Conference on Algebraic and Logic Programming, Lecture
Notes in Computer Science463, pp. 347–358, doi:10.1007/3-540-53162-950.

[11] N.D. Jones (1997):Computability and Complexity - from a Programming Perspective. Foundations of Com-
puting Series, MIT Press, doi:10.1007/978-94-010-0413-84.

[12] N.D. Jones & A. Mycroft (1986):Data Flow Analysis of Applicative Programs Using Minimal Function
Graphs. In: Proceedings of the 13th ACM Symposium on Principles of Programming Languages, pp. 296–
306, doi:10.1145/512644.512672.

[13] S. Kamin & J.-J. Lévy (1980):Two Generalizations of the Recursive Path Ordering. Unpublished manuscript,
University of Illinois.

[14] D. Leivant & J.-Y. Marion (1995):Ramified Recurrence and Computational Complexity II: Substitution and
Poly-space. Lecture Notes in Computer Science933, pp. 486–500, doi:10.1007/BFb0022277.

[15] J.-Y. Marion (2003):Analysing the Implicit Complexity of Programs. Information and Computation183(1),
pp. 2–18, doi:10.1016/S0890-5401(03)00011-7.

[16] I. Oitavem (2001):Implicit Characterizations of Pspace. In: Proof Theory in Computer Science, Lecture
Notes in Computer Science2183, Springer, pp. 170–190, doi:10.1007/3-540-45504-311.

[17] I. Oitavem (2002):A Term Rewriting Characterization of the Functions Computable in Polynomial Space.
Archive for Mathematical Logic41(1), pp. 35–47, doi:10.1007/s001530200002.

[18] W.J. Savitch (1970):Relationships Between Nondeterministic and Deterministic Tape Complexities. Journal
of Computer and System Sciences4(2), pp. 177–192, doi:10.1016/S0022-0000(70)80006-X.

[19] K. Slonneger & B.L. Kurtz (1995):Formal Syntax and Semantics of Programming Languages - A Laboratory
Based Approach. Addison-Wesley.

[20] Terese (2003):Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science55, Cambridge
University Press.

[21] D.B. Thompson (1972):Subrecursiveness: Machine-Independent Notions of Computability in Restricted
Time and Storage. Mathematical Systems Theory6(1), pp. 3–15, doi:10.1007/BF01706069.

[22] A. Weiermann (1995):Termination Proofs for Term Rewriting Systems by Lexicographic Path Orderings
Imply Multiply Recursive Derivation Lengths. Theoretical Computer Science139(1&2), pp. 355–362,
doi:10.1016/0304-3975(94)00135-6.

[23] G. Winskel (1993):The Formal Semantics of Programming Languages - An Introduction. Foundations of
Computing Series, MIT Press.

http://dx.doi.org/10.1016/0304-3975(82)90026-3
http://dx.doi.org/10.1142/9789814293020_0004
http://dx.doi.org/10.1007/3-540-53162-9_50
http://dx.doi.org/10.1007/978-94-010-0413-8_4
http://dx.doi.org/10.1145/512644.512672
http://dx.doi.org/10.1007/BFb0022277
http://dx.doi.org/10.1016/S0890-5401(03)00011-7
http://dx.doi.org/10.1007/3-540-45504-3_11
http://dx.doi.org/10.1007/s001530200002
http://dx.doi.org/10.1016/S0022-0000(70)80006-X
http://dx.doi.org/10.1007/BF01706069
http://dx.doi.org/10.1016/0304-3975(94)00135-6

	1 Introduction
	1.1 Motivation
	1.2 Backgrounds
	1.3 Outline

	2 Syntax and semantics of first order functional programs
	3 Lexicographic path orders and quasi-interpretations
	4 A system U12 of second order bounded arithmetic
	5 Minimal function graphs
	6 Formalizing LPO-termination proofs under PQIs in U12
	7 Application
	8 Conclusion

