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In the modalu-calculus, a formula is well-formed if each recursive valgaoccurs underneath an
even number of negations. By means of De Morgan'’s laws, ih$y ¢o transform any well-formed
formula¢ into an equivalent formula without negations — the negatiormal form of¢. Moreover,

if ¢ is of sizen, the negation normal form af is of the same siz&/(n). The full modalu-calculus
and the negation normal form fragment are thus equally espue and concise.

In this paper we extend this result to the higher-order mfixked point logic (HFL), an extension
of the modalu-calculus with higher-order recursive predicate transfens. We present a procedure
that converts a formula of sizeinto an equivalent formula without negations of sizén?) in the
worst case and’(n) when the number of variables of the formula is fixed.

1 Introduction

Negation normal forms are commonplace in many logical fdismes. To quote only two examples,
in first-order logic, negation normal form is required by &konization, a procedure that distinguishes
between existential and universal quantifiers; in the mpdedlculus, the negation normal form ensures
the existence of the fixed points. More generally, the negatiormal form helps identifying the po-
larities [15] of the subformulas of a given formula; for iaste, in the modgli-calculus, a formula in
negation normal form syntactically describes the schensapalrity game.

Converting a formula in a formula without negations — or wikgations at the atoms only — is
usually easy. By means of De Morgan’s laws, negations carpbshied to the leaves” of the formula.
For the modalu-calculus without propositional variables, this processipletely eliminates negations,
because well-formed formulas are formulas where recukgviables occur underneath an even number
of negations. Moreover, in the modatcalculus, if¢ is of sizen, the negation normal form af is of
the same sizé&'(n).

The higher-order fixed point modal logic (HFL) [20] is the hé&g-order extension of the modal
u-calculus. In HFL, formulas denote either predicates, ayhér-order) predicate transformers, each
being possibly defined recursively as (higher-order) fixedhgs. Since HFL was introduced, it was
never suggested that negation could be eliminated fromaijie.| On the contrary, Viswananthan and
Viswanathan[[20] motivated HFL with an example expressifama of rely guarantee that uses negation,
and they strove to make sure that HFL formulas are correesiiricted so that fixed points always exist.
Negation normal forms in HFL would however be interestingeyt would simplify the design of two-
player games for HFL model-checking [3], they could helprdafj a local model-checking algorithms
for HFL, they might help to define the alternation depth of & Hérmula, etc.

We show that HFL actually admits negation elimination, almalt ike for the modalu-calculus,
every HFL formula can be converted into a formula in negatiormal form. The negation elimination
procedure is more involved due to higher-orderness. As aesdt of this increased complexity, our
negation elimination procedure has a worst-case quadiatic-up in the size of the formula, whereas
for the u-calculus the negation normal form is of linear size in thigioal formula.
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Related Work Other examples of higher-order recursive objects are thkeenriorder pushdown au-
tomata[17] 4], or the higher-order recursion schemes (HJ&®32,5/18]. Whereas the decidability of
HFL model-checking against finite transition systems ibeasimple, it took more time to understand
the decidability of HORS model-checking against the ondirfarder 0) modal-calculus. This situation
actually benefited to HORS: the intense research on HORSupeaddseveral optimized algorithms and
implementations of HORS model-checking [2) 9] 19], whend&s model-checking remains a rather
theoretical and unexplored topic. HORS can be thought assiwe formulas with no boolean connec-
tives and least fixed points everywhere. On the opposite, &llelws any kinds of boolean connectives,
and in particular a form of “higher-order alternation”.

Outline  We recall the definition of HFL and all useful background ahibin Section 2. In Section 3,
we sketch the ideas driving our negation elimination an@ace the notion of monotonization, a corre-
spondence between arbitrary functions and monotone oaestht the core of our negation elimination
procedure. We formally define the negation elimination pthge in Section 4, and make some conclud-
ing remarks in Section 5.

2 The Higher-Order Modal Fixed Point Logic

We assume an infinite sétr = {X,Y,Z,...} of variables, and a finite s&= {a,b,... } of labels. For-
mulas¢, , of the Higher-Order Modal Fixed Point Logic (HFL) are defin®y the following grammar

¢ ==ToVY |- [(@¢ [X[AXT. o[ ¢[uX". ¢

where a typer is either the ground typBrop or an arrow types” — 1, and thevariance vis either+
(monotone), or- (antitone), or O (unrestricted). For instance= (Prop™ — Prop)™ — (Prop® — Prop)
is a type, andpy; = AFProp —=Prop+ }yProp0 7Prop (E —Y) v (a)(Z Vv —Y) is a formula. The sets
fv(¢) andbv(¢) of free and bound variables @f are defined as expecteéi(X) = {X}, bv(X) = 0,
fv(AX. @) = fv(uX. ¢) =fv(@) \ {X}, bv(AX. ¢) = bv(uX. ¢) =bv(¢)U{X}, etc. A formula is
closedif fv(¢) = 0. For simplicity, we restrict our attention to formul@swvithout variable masking.e.
such that for every subformubaX. ¢ (resp.uX. ¢), it holds thatX & bv(y).

Another example is the formulpp = (AFProp —Prop+ ;X Prop E X) (AYProp— —Y). This formula
can beB-reduced to the modal-calculus formulap; = uXPrer —X, which does not have a fixed point
semantics. Avoiding ill-formed HFL formulas such @és cannot just rely on counting the number of
negations betweenX and the occurence o, it should also take into account function applications and
the context of a subformula.

A type judgement is a tuple - ¢ : T, whererl is a set of assumptions of the foidY : 7. The typing
environment-I is the one in which every assumptiotY : T is replaced witl X~V : 1, where—+ = —,
——=+,and—-0= 0. Aformula¢ is well-typed and has typeif the type judgement ¢ : T is derivable
from the rules defined in Fig] 1. Intuitively, the type judgemiX;” : 11,..., X" : T - ¢ : T is derivable if
asssuming thaX; has typer;, it may be infered tha$ has typer and thatg, viewed as a function of;,
has variance;. For instancel- ¢, : 11, where¢, andt; are the formula and the type we defined above,
but ¢, cannot be typed, even with different type annotations.

Proposition 1 [20] If T+ ¢ : 7 andl ¢ : T/ are derivable, therr = 1/, and the two derivations
coincide.
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FrE¢:t rFy:r “TH¢:T I~ ¢:Prop ve {+,0}
=T :Prop rEovuy:t FrE—¢:1 I (a)¢ : Prop r,xXVitkEX:r
rXV:ok¢:t rXT:tkH¢:t rF¢:0" =1 r-yg:o
FEAXYY . ¢:0" =1 FrEuxXt ¢:t FrFoy:t
r-¢:0- >t -THY:o r-¢:0°->1t TrFy:0 -THY:o
Fr-¢y:t r-¢y:t

Figure 1: The type system of HFL.

If ¢ is a well-typed closed formula anflis a subformula ofp, we writetype(y/¢) for the type of
Y in (the type derivation ofp.

A labeled transition system (LTS) is a tupfé = (S,d) whereSis a set of states amilC Sx Z x S
is a transition relation. For every tygeand every LTS7 = (S,0), the complete Boolean ring’[7] of
interpretations of closed formulas of typés defined by induction on: .7 [Prop] = 25, and.7 [¢¥ — 1]
is the complete Boolean ring of all total functiois .7 [o] — 7 [1] that have variance, where all
Boolean operations on functions are understood pointWisge that since” [1] is a complete Boolean
ring, it is also a complete lattice, and any monotone fumcfio .7 [1] — .7 [t] admits a unique least
fixed point.

A Z-valuationp is a function that sends every variable of typ&o some element of” [1]. More
precisely, we say that is well-typed according to some typing environmé&ntwhich we writep =T,
if p(X) € 7[1] for everyX": tinT. The semantics7 [ ¢ : 7] of a derivable typing judgement is
a function that associates to evgry=I" an interpretation7 [I" - ¢ : T](p) in .7 [1]; this interpretation
is defined as expected by induction on the derivation trem [&& for details). For a well-typed closed
formula ¢ of typeProp, a LTS.7 = (S 0) and a stats € S, We writes=5 ¢ if s€ 7 ¢ : Prop].

Example 1 Let 13 = (Prop™ — Prop)™ — Prop™ — Prop and ¢3 =
(UF™. AGProp —Prop yProp (G )y (F(AYPP.G(GY)) X)) (AZP°P.(a)Z) (b)T.

Then s= ¢ iff there is n> 0 such that there is a path of the forr b starting at s. Sincéa?'b | n > 0}
is not a regular language, the property expressedbgannot be expressed in the mogatalculus.

Proposition 2 [20] Let 7 = (S 0) be a LTS and let,s' € S be two bisimilar states o . Then for any
closed formulap of typeProp, si=4 ¢ iff ' =5 ¢.

We assume the standard notationga) andvX. (.) for the conjunction, the necessity modality, and
the greatest fixed point, defined as the duals ofa) anduX. (.) respectively.

Definition 1 (Negation Normal Form) A HFL formula is in negation normal form if it is derivable fro
the grammar

@ =TILIovy[ory|(@¢[[al¢ [X[AX.¢ | @|uX".¢[vX .o

where ther are monotonetypes, i.e. types where all variances are equat-to
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Note that since all variances ate we omit them when writting formulas in negation normal form

We say that two formulag, (¢ are equivalentp = y, if for every type environmen, for every LTS
7, for all typeT, the judgemenk + ¢ : 1 is derivable ifff - ¢ : Tis, and inthat caseZ [T + ¢ : 7] =
Ty 1.

Model-Checking We briefly recall the results known about the data complefittFFL model-checking
(see also the results of Langeal on the combined complexity[1] or the descriptive comphexiid] of
HFL and extensions).

Note that if 7 = (S,0) is a finite LTS, then for all type, the Boolean ring7 [1] is a finite set, and
every element of7 [1] can be representad extension Moreover, the least fixed point of a monotone
function f : 7 1] — 7[1] can be computed by iteratinfat mostn times, wheren is the size of the
finite boolean ring7 [1].

The orderrd(1) of atyper is defined asrd(Prop) =0 andord(g¥ — 1) = max(ord(7),1+ord(0)).
We write HFL (K) to denote the set of closed HFL formulgf type Prop such that all type annotations
in ¢ are of order at mosk. For every fixedp € HFL(k), we callMC(¢) the problem of deciding, given
alLTS.7 and a stats of .7, wethers =5 ¢.

Theorem 3 [1] For every k> 1, for every¢ € HFL(k), the problemMC(¢) is in k-EXPTIME, and there
is a yi € HFL(K) such thatMC(yx) is kK-EXPTIME hard.

3 Monotonization

In order to define a negation elimination procedure, thefiiest is probably to reason like in the modal
u-calculus, and try to “push the negations to the leaves’eduld there are De Morgan laws for all logical
connectives, including abstraction and application,esinc

-(py) = (—o)y and SAXYLY) = AXTVag.

In the modalu-calculus, this idea is enough, because the “negation cwindriterion ensures that each
pushed negation eventually reaches another negation dnébihilate. This does not happen for HFL.
Consider for instance the formudg, =

(HXPropo—>Pf0P. AYPror0 1y v (X (@Y))) T.

The negation already is at the leaf, lay is not in negation normal form. By fixed point unfolding,
one can check thap, is equivalent to the infinite disjundf~q[a" L, and thus could be expressed by
uXxPrep [a]X. The generalization of this strategy for arbitrary fornsulsould be interesting, but it is
unclear to us how it would be defined.

We follow another approach: we do not try to unfold fixed pginbr to applyB-reductions during
negation elimination, but we stick to the structure of therfola. In particular, in our approach a sub-
formula denoting a functiorf is mapped to a subformula denoting a functidnn the negation normal
form. Note that even if is not monotonef’ must be monotone since it is a subformula of a formula in
negation normal form. We cafl’ amonotonizatiorof f.

Examples Before we formaly define monotonization, we illustrate mmpiples on some examples.
First, consider again the above formyla. This formula contains the functiohYProP0. (=) v
(X ((a)Y)). This function is unrestricted (neither monotone nor ant). The monotonization of this
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function will be the functiom YPrep-+ 7P ¥/ (X ((a)Y)). To obtain this function, a duplical of

Y is introduced, and is used in place-6f. Finally, the formulap, =
(uxPropﬁPropﬁProp. )\YProp’VPmP. Yv (X ((a)Y) ([a]V))) T 1

can be used as a negation normal fornggf Note that the parametdr that was passed to the recursive
function in ¢4 is duplicated inp;, with one duplicate that has been negated (tHermula).

More generally, whenever a function is of typ€ — 1, we transform it into a function of type
o — g — 1, that takes two arguments of tye (the translation obr). Later, when this function is
applied, we make sure that its argument is duplicated, ome piositively, the other negatively.

Duplicating arguments might cause an exponential blowFap.instance, for the formulgs =

(AXPrP XV (@) =X)  ((AYPePO Y Vv (b)-Y) T)
if we duplicated arguments naively, we could get the fornfifla=
(AXPoP KPP Xy @X)  ((AYPP YT YV ()Y) T L) ((AYPP.Y P Y ABY) T 1)

where the originalT formula has been duplicated. If it occurred undernaath2 applications of an
unrestricted function, we would havé @opies of T. We will come back to this problem in Sectibh 4.
Let us now observe how monotonization works for functioret tire antitone. In general, ffis
an antitone function, both the “negation at the calléi(x) = —f(x) and the “negation at the callee”
fa(x) = f(—x) are two monotone functions that faithfully represéntActually, both of them might be
needed by our negation elimination procedure.
Consider the formulgg =

()\ [ Prop™ —Prop,+ .IJXPrOp.F (_|X)) ()\YPFOP7 —|(a>Y)

In order to compute the negation normal formggf we may represemtY°P:— —(a)Y by its “negation
at the callee”, yielding the formulg;, =

(AEProp=Prop 1 xProp £ ) (AT [q]Y).
Conversely, consider the formufg =
(A FProp’—>Prop7—. uxProp. (—\F) X) ()\YProp7—. —|<a>Y).

The only difference withpg is that the negation is now in front &f instead ofX. In that case, “negation
at the callee” does not help eliminating negations. But &tieg at the caller” does, and yields the
negation normal forng,, =

()\EProp—ﬂ)rOP. “XPFOP. F X) (AYProp. <a>Y)

These examples suggest a negation elimination that precdedg possibly different strategies in
the case of an applicatiop ¢, depending on the semanticsgpfand (. In the next section, we explain
how the strategy is determined by the typepofFor now, we focus on making more formal our notion
of monotonization.
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exp(Prop) = Prop exp(F1,M2) =exp(l1),exp(l2)
exp(Tt — 0) =exp(T)" — exp(0) exp(XT:1) =X":exp(T)

exp(T —>0) =exp(T)" — exp(0) exp(X™:T) =X :exp(T)

exp(1°— 0) =exp(T)" — exp(1)" — exp(0) exp(X0: 1) =X*: exp(T),YJr :exp(T)

Figure 2: Expansion of types and typing environments togandnotonization.

Monotonization Relations We saw that our negation elimination bases on the abilityatthfully
represent a predicate transforngeby a monotone predicate transformgrin this case, we will say that
Y is amonotonizatiorof ¢. We now aim at defining formally this notion. More preciselg aim at
defining the relatior: such thatp <y holds if y is a monotonization of.

First of all, < relates a formula of type to a formula of typexp (1) as defined in Fid.|2: the number
of arguments ofp is duplicated if¢ is unrestricted, otherwise it remains the same, and of eqjrs
monotone in all of its arguments.

In Fig.[2, we also associate to every typing environnietihe typing environmenéxp (") with all
variances set ta-, obtained after renaming all variables with varianedn their bared version, and
duplicating all variables with variance 0. In the remainaez always implicitly assume that we translate
formulas and typing environments that do not initially @ntbared variables.

The relation« is then defined coinductively, in a similar way as logicahtigins for theA -calculus.
Let Rbe a binary relation among typing judgements of the forim¢ : 7. The relationR is well-typed if
TF¢:T)R(M+¢': 1) impliesI”" = exp(I') andt’ = exp (7). WhenRis well typed, we writep R- ¢’
instead of T ¢ : T)R(ITM ¢’ : 7).

Definition 2 A binary relation R among typing judgements isn@notonization relationf it is well-
typed, and for all formulag, ¢’, for all I', T such thatp Rr ; ¢’,
1. if ¢, ¢’ are closed and = Prop, then¢ = ¢’;
2.ifF =T",X":0,then(AX%". §)Rr g+ 1 (AXSPO)+ @)
3. 0f M =T X": 0, then(AX~. §) Rrr g, AXTPO g1y,
if M =T",X%: g, then(AX90. §) R go_,; (AXSP(O)+ XEPO)F g1y;
ift=0" — v, thenforally, ' such thaty R- s ¢/, (¢ Y)Rr, (¢ Y);
ift=0"— v, thenforally,y’,¢" such thaty Rr ; ¢’ and /' = —~¢", (¢ Y)Rr o, (¢" Y");
if T =0%— v, thenforally, ', ¢’ such thaty Rr s ¢ and @/ = —y", (¢ Y)Rry (¢’ @' @").

N o s

If (R)iel is a family of monotonization relation, then solif., R;; we write< for the largest mono-
tonization relation.

Example 2 Considerg = (AXPP~. =X). Thend <p,op-prop (AX"™P" X). Consider alsoy =
(AXPrPO_ X A =X). Theny < (AXProp+ X7 1) and < (AXProp+ XFPF X AX).
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tr+(‘l’1\/ll-’2) tr+(l,U1)\/tr+ yr)
r— (Vi) = tr_ () Atr—(4p)

I
X X = -

(
LII)
v

)
tri(X) = tr ()\X”r Y) = )\Xex"( ) trv(
tr_(X) = trAXT. ) = AXTP (@)
try(—@) = try(P) try(AXTO. ) = Axexp(r) eXP(T) try (W)
try (@) = (atr (P) tr+(uXT Y) = uXeXp(T).tr+(w)
tl’_(<a>LIJ) = [a]tr_(L/J) uxr w) VXeXp(T).tI’,(l,U)

r—(

try(Yn) tro(Y2) if type(Yn/¢)=0" —n

) = try(gn) tr-(¢2) if type(yn/¢) = U —>'7
try(gn) tro(@2) tr-(¢2) if type(yn/9) =

Figure 3: Type-Directed Negation Elimination

4 Negation Elimination

Our negation elimination procedure proceeds in two steps; & formulag is translated into a formula
tr. (¢) that denotes the monotonization ¢f then,tr, (¢ ) is concisely represented in order to avoid an
exponential blow-up.

The transformationtr, (.) is presented in Figurel 3. The transformation proceeds lgtsial in-
duction on the formula, and is defined as a mutual inductiah thie companion transformatian_(.).
Whenever a negation is encountered, it is eliminated andltlaétransformation is used. As a conse-
quence, wethetr_ (.) or tr_(.) should be used for a given subformula depends on the po[dbfyof
this subformula.

Lemma 4 Let ¢ be a fixed closed formula of tyfop. For every subformulap of ¢, lettr, () and
r_ () be defined as in Figurel 3, and IEt- ¢ : T be the type judgement associatedytan the type
derivation of¢. Then the following statements hold.

1. exp(l) Ftro (@) :exp(T) andexp(—I) Ftr_ () : exp(T).
2. Yarrtr () and P <rr —tr— ().

Proof: By induction ony. We only detail the point 1 in the case ¢f= yn @, with type(ys/¢) =
0~ — T. Let us assume the two statements hold garand y» by induction hypothesis. Ldt be
suchthatf ¢ : 1, THYr: 0 — 1, and-I - ¢r : 0. By induction hypothesis, the judgements
exp(l) Ftry(¢n) :exp(o~ — 1) andexp(——I) - tr_(yr) : exp(0) are derivable. Sincexp(o~ —
T) =exp(0)" — exp(1) and——I =T, the typing rule for function application in the monotonseaf
Fig.[ yieldsexp (') - tr (1) tr—(yr) : exp(T), which shows statement 1 for, (.). The case fotr_(.)
is similar. O

Corollary 5 If ¢ is a closed formula of typBrop, then¢ =tr(¢) andtr (@) is in negation normal
form.

As observed in Sectidd 3, the duplication of the argumenthencaser = 0 of the monotonization
of ¢ may cause an exponential blow-up in the size of the formulawever, this blow-up does not
happen if we allow some sharing of identical subformulas.

Let ¢ be a fixed closed formula. We say that two subformulasind y», of ¢ are identical if they
are syntactically equivalent and if moreover they have Hmestype and are in a same typing context,
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i.e. if the type derivation o goes through the judgemertst ; : 1; for syntactically equivalerit; and
Tj. For instance, in the formula

()\XProp%Prop. X) (()\ X(PropﬁProp)%(PropﬁProp)‘ X) (()\YPFOPﬁPFOP‘Y) T))

any two distinct subformulas are not identical (includihg subformulas restricted ¥). We calldag
sizeof ¢ the number of non-identical subformulasgof

Lemma 6 There is a logspace computable functigdrare(.) that associates to every closed formgla
of dag size n a closed formushare(¢) of tree sizeZ’(n- |vars(¢)|) such thatp = share(¢).

Proof. Let ¢ be fixed, and letp; ..., ¢, be an enumeration of all subformulas ¢fsuch that if¢;
is a strict subformula of;, theni < j. In particular, we must havg = ¢,. Pick some fresh vari-
ables Xy, Xy, ..., Xy € Var and letu; = type(¢;/¢). For everyi = 1,...n, let Y1,01,v1,... Yk, Ok, Vk
be a fixed enumeration of the free variables¢of their types and their variances, and lety) =
AP Y g and @(@) = ¢ Yr ... Y. Finally, letty = 0,* — ..., — vj. For every sub-
formulay of ¢, let ||| be defined by case analysis on the first logical connectivg: of

if g=¢i=nY°. ¢;, wheren € {A,u,v}, then||[| = Ai(nY?. @;(X)));

if Y= @i =¢;® P, wheres € {Vv, A, applicatior}, then||y|| = Ai (@;(X}) & @k(X));

if ¢ = ¢i = &g}, whered € {—.(a), [a]}, then||y|| = A (M@ (X))));

otherwisel| @i || = Ai(¢).

Finally, let share(¢) = let X[* = [ ¢1] in let X32 = ||¢2]| in ... let X"} = [[@n_1|| in ||@n] where
let X" = in ¢/ is a macro foAX'. ¢/) . Thenshare(¢) has the desired properties. O

Theorem 7 There is a logspace-computable functiorf(.) that associates to every closed HFL formula
¢ (without variable masking) of typerop a closed formulanf(¢) such that

1. ¢ =nnf(9),

2. nnf(¢) is in negation normal form, and

3. [nnf(¢)[ = O(|¢]-|vars(9)]),

where|/| denotes the size of the tree representatiog (ife. the number of symbols i), andvars(¢) =
fv(¢)Ubv(¢) is the set of variables that occur i.

Proof: Let nnf(¢) = share(tr,(¢)). This function is logspace computabler(.(¢) can be computed
“on-the-fly”) andnnf (@) is of sized'(|¢| - [vars(¢)|) by Figure[3 and Lemmid 6. The formula. (¢) is
in negation normal form, anchare(.) does not introduce new negations,msd(¢ ) is in negation normal
form. Looking back at Figurlgl 3, it can be checked that its dagis linear in the dag size gf, so the tree
size ofnnf(@) is linear in the tree size af. Moreover,nnf(¢) =tr.(¢) by Lemmd6, andr, (¢) = ¢
by Corollary(5. O

5 Conclusion

We have considered the higher-order modal fixed point I@f¢ (HFL) and its fragment without nega-

tions, and we have shown that both formalisms are equallyesgpe. More precisely, we have defined
a procedure for transforming any closed HFL formglalenoting a state predicate into an equivalent
formulannf(¢) without negations of siz&'(|¢| - |vars(¢)|). The procedure works in two phases: in a
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first phase, a transformation we callegbnotonizatioreliminates all negations and represents arbitrary
functions of typer — ¢ by functions of typer — 1 — o by distinguishing positive and negative usage
of the function parameter. The price to pay for this transfation is an exponential blow-up in the size
of the formula. If the formula is represented as a circuityéeer, the blow-up is only linear. The sec-
ond phase of our negation elimination procedure thus cnisismplementing the sharing of common
subformulas using higher-orderness. Thanks to this sepbasge, our procedure yields a negation-free
formulannf(¢) of sized'(size(¢) - |vars(¢)|), hence quadratic in the worst case in the size of the original
formula¢.

Typed versus Untyped Negation Elimination Our monotonization procedure fgpe-directed the
monotonization ofp Y depends on the variance @f that is statically determined by looking at the type
of ¢. One might wonder if we could give a negation eliminatiort thhauld not be type-directed. A way
to approach this question is to consider an untyped coriservextension of the logic where we do not
have to care about the existence of the fixed points — forrasteone might want to interpreteX.¢ (X)

as the inflationary “fixed point[7]. We believe that we coaldapt our monotonization procedure to this
setting, and it would indeed become a bit simpler: we couldhgs monotonize (U “pessimistically”,

as if ¢ were neither a monotone nor an antitone function. For ingtatie formulauX.(AY.Y) X would

be translated intX.(AY,Y.Y) X —=X.

In our typed setting, it is crucial to use the type-directednotonization we developed, because
monotizing pessimistically might yield ill-typed formda In an untyped setting, a pessimistic mono-
tonization is possible, but it yields less concise formulasd it looses the desirable property that

nnf(nnf(¢)) = nnf(¢).

So types, and more precisely variances, seem quite uné&eid&lowever, strictly speaking, the
monotonization we introducedvariance-directedand not really type-directed. In particular, our mono-
tonization might be extended to the untyped setting, rglyin some other static analysis than types to
determine the variances of all functional subformulas.

Sharing and Quadratic Blow-Up The idea of sharing subterms ofAaterm is reminiscent to im-
plementations ofA-terms based on hash-consing [8] 11] and to compilationg@ft calculus into
interaction nets [13, 16, 10]. We showed how sharing can peesented directly in tha-calculus,
whereas hash-consing and interaction nets are concerledepresenting sharing either in memory or
as a circuit. We compile typedl-terms into typed\ -terms; a consequence is that we do not manage to
share subterms that are syntactically identical but haheredifferent types or are typed using different
type assumptions for their free variables. This is anotlifégrdnce with hash consing and interaction
nets, where syntactic equality is enough to allow sharirigesms. It might be the case that we could
allow more sharing if we did not compile into a simply typ&etalculus but in a ML-like language with
polymorphic types.

An interesting issue is the quadratic blow-up of our implatadon of “A-circuits”. One might
wonder wether a more succinct negation elimination is essin particular a negation elimination with
linear blow-up. To answer this problem, it would help to aasthe following simpler problengiven a
A-term t with n syntactically distinct subterms, is there #feaively computabl@ -term t of size<'(n)
such that t=g,, t'? We leave that problem for future work.
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