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We establish syntactic cut-elimination for the one-vadedbagment of the modal mu-calculus. Our
method is based on a recent cut-elimination technique byaMiirat makes use of Buchho2-rule.

1 Introduction

The propositional modali-calculus is a well-established modal fixed point logic tmiudes fixed
points for arbitrary positive formulae. Thus it subsumesyniamporal logics (with an always operator),
epistemic logics (with a common knowledge operator), amgj@m logics (with an iteration operator).

Making use of the finite model property, Kozen [10] introdsiGe sound and complete infinitary
system for the modgli-calculus. In this system greatest fixed points are intreduzy means of the
w-rule that has a premise for each finite approximation of teatgst fixed point. Jager et all [8] show
by semanticmethods that the cut rule is admissible in this kind of infinitsystems. So far, however,
there is nosyntacticcut-elimination procedure available for the mogatalculus. It is our aim in this
paper to present an effective cut-elimination method ferdhe-variable fragment of the-calculus.

There are already a few results available on syntactic louireation for modal fixed point logics.
Most of them make use of deep inference where rules may ngt@ndpplied to outermost connectives
but also deeply inside formulae. The first result of this Kirad been obtained by Pliuskevicius|[12] who
presents a syntactic cut-elimination procedure for liteae temporal logic. Brinnler and Studer [2]
employ nested sequents to develop a cut-elimination proeddr the logic of common knowledge. Hill
and Poggiolesi[7] use a similar approach to establish &ffecut-elimination for propositional dynamic
logic. A generalization of this method is studied|in [3] whétris also shown that it cannot be extended
to fixed points that have @-operator in the scope of @-operator. Fixed points of this kind occur, for
instance, inCTL in the form of universal path quantifiers.

Thus we need a more general approach to obtain syntactelioutiation for the modali-calculus.

A standard proof-theoretic technique to deal with indwetilefinitions and fixed points is Buchholz’
Q-rule [4,(6]. Jager and Studer|[9] present a formulationhaf @-rule for non-iterated modal fixed
point logic and they obtain cut-elimination for positivariwulae of this logic. In order to overcome this
restriction to positive formulae, Mints [11] introduces @rrule that has a wider set of premises, which
enables him to obtain full cut-elimination for non-iterdteodal fixed point logic.

Mints’ cut-elimination algorithm makes use of, in additimmideas from[[5], a new tool presented
in [11]. Itis based on the distinction, see [13], betweenliaitpand explicit occurrences of formulae in
a derivation with cut. If an occurrence of a formula is trdiledao the endsequent of the derivation, then
it is called explicit. If it is traceable to a cut-formulagit is an implicit occurrence.

Implicit and explicit occurrences of greatest fixed points eated differently in the translation
of the induction rule to the infinitary system. An instancetlod induction rule that derives a sequent
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vX.A,B goes to an instance of the-rule if vX.Ais explicit. Otherwise, ifvX.A is traceable to a cut-
formula, the induction rule is translated to an instancehef2-rule that is preserved until the last stage
of cut-elimination. At that stage, called collapsing, eule is eliminated completely.

In the present paper we show that this method can be extendegd-talculus with iterated fixed
points. Hence we obtain complete syntactic cut-elimimafar the one-variable fragment of the modal
p-calculus. Our infinitary system is completely cut-freehie sense that there are not only no cut rules
in the system but also no embedded cuts. Thus our cut-fréensyenjoys the subformula property. This
is in contrast to the recent cut-elimination results by Bagll] and by Tiu and Momigliana [14] for the
finitary systemg/MALL andLinc™, respectively, where the-introduction rule and the co-induction rule
contain embedded cuts, which results in the loss of the suiofia property.

2 Syntax and semantics

We first introduce the languag®’. We start with a countable sekRBP of atomic propositiong; and
their negationg;. We useP to denote an arbitrary element oRBr. Moreover, we will use a special
variableX.

Definition 1. Operator forms AB, ... are given by the following grammar:
A==0p D | X|AANA|AVA|DOA| CA| uX.A| vX.A
Formulae Fare defined by:
Fi==p |P|FAF|FVF|OF | OF | uX.A| vX.A.

The fixed point operatorg andv bind the variableX and, therefore, we will talk of free and bound
occurrences oK. Hence a formula is an operator form without free occurrerofex.
The negation of an operator form is inductively defined aova.

1. —p:=p and—p = p
2. X=X
3. =(AAB):=-Av-Band—(AVvB):=-AA-B
4. -OA:=O-Aand—-CA = 0O-A
5. muX.A:=vX.—Aand—-vX.A:= uX.-A
Note that negation is well-defined: the negation obapositive operator form is aga-positive
since we have-X := X. Thus, for example,

—uX.O(pi AX) :=vX.~O(p AX) := vX.Oa(piAX) := vX.O(=p V=X) i= vX.O (P Vv X).

For an arbitrary but fixed atomic propositipgnwe setT := p; V;. If Ais an operator form, then we
write A(B) for the result of simultaneously substitutiByfor every free occurrence of in A. We will
also use finite iterations of operator forms, given as fadow

A%(B) := B andA"1(B) := A(AX(B)).
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Figure 1. Systenm
3 SystemM

SystemM derives sequents, that are finite sets of formulae. We dessmfeents by ,2~ and use the
following notation: ifl" := {Ay,...,An}, thenOl 1= {OAg,...,CA,}, SystemM consists of the axioms
and rules given in Figuré 1.

4 System MP

SystemM @ is an infinitary cut-free system for the modalcalculus with one variable. It consists of the
axioms and rules given in Figulré 2.

r.P-pP

NAB A B A

) ) Y Y ) D
r,AVB V) r,AAB () OF,0A % (0)
L A(UX.A) (clo) r,Al(T) for all natural numberis(w)

M uX.A r,vX.A

Figure 2: SystenM ®
,Q
5 System M

In order to embedV into M®, we need a family of intermediate systeh/lﬁ”Q that include additional
rules to derive greatest fixed points that later will be cuaaw

The language?, extendsZ by a new connective’ to denote those greatest fixed points. Formally,
%o I1s given as follows. Operator forms o, are defined like operator forms ¢f with the additional
case

1. If Ais an operator form, thew X.A is also an operator form.

A formula of %, is an %, operator form without free occurrence ¥f A formula is agreatest fixed
pointif it has the formvX.Aor v'X.A.
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Definition 2. The levellev(A) of an operator fornmA is the maximal nesting of fixed point operators in
A. Formally we set:

1. lev(P) :=lev(X) := 0 for all P in PROP

2. lev(AAB) :=lev(AVB) := maxlev(A),lev(B))

3. lev(OA) :=lev(CA) :=lev(A)

4. lev(uX.A) :=lev(VX.A) :=lev(V'X.A) :i=lev(A) + 1

The level of a sequent is the maximum of the levels of its fdamuWe say a formula (sequent) is
k-positiveif for all v'X.A occurring in it we havéev(v'X.A) < k.

When working inM ‘k*”Q, we will use the following notation: the formuld is obtained fromA by
replacing all occurrences oX in A with v'X.

Letk > 0. SystemM ‘kt’"Q consists of the axioms and rulesdf* (formulated in.%g) and the addi-
tional rules:cut, Qn, andQp. Thecut rule is given as follows

rA I, (—A)
r

(CUt)7

whereA is a formula withlev(A) < k. The rulesQy, andf)h , Where 1< h <k, are informally described
as follows:

Qn

and

I, (UX.A) o AT

wherelev((—uX.A)") = h andA ranges oveh-positive sequents such that there is a cut-free proof of the
sequenty, (UX.A) in M~

Definition 3. We useM ﬁ"’Q lg I to express that there is a cut-free derivatiof af M f(*”Q.

In a more formal notation we can state @g-rule as follows. If for evenh-positive sequenh
MPD s A, (UXA) = MPPEAT,

then
ML T, (uX.A),

and similarly forQp.
Note that Systenvi 8”9 does not includ€,- or Qn-rules. Hence we immediately get the following
lemma.

Lemma 4. Letl be an.Z sequent. We have

MEP G T = M@LT.



G. Mints & T. Studer 51

6 Embedding

In this section we present a translation frivinproofs intoM ‘k*”Q—proofs. First we establish an auxiliary
lemma.

Lemma 5. For all natural numbers K k we have the following.

1. If lev(uX.A) = h, thenM 2 - uX.A, ~uX.A.

2. Iflev(A) =h, thenMPP s T A = MP2L T, A

3. Iflev(uX.A) = h, thenM 2 - uX A, (XA

4. If lev(A) = h, thenMP® 5 B,C = MP%5 (-A)(B), ACC).

5. If lev(A) = h, thenM*? 15 B,C' = M>?l5 (-A)(B), A(C).
Proof. The five statements are shown simultaneously by inductioh. dfor space considerations we
show only one particular case of the second statement, vidhgltown by induction on the derivation of
I, A’ and a case distinction on the last rule. Assume the lastswda instance aR, with main formula
A. We haveA' = (vX.Ap)" with lev(Ag) < h. By the premise of th€p-rule we have for alh-positive

sequent®\
MPS s A, (uX.—A)) = MP2 AT, 1)

Trivially we have
M@ T,T. )

We also have
MPS s T, (UX.~Ag)
from which we get by the induction hypothesis for the fifthilaf this lemma
M s Ao(T), (—A0) (UX.~Ao)).
An application ofclo yields
M2 b Ao(T), (X =A0)'.
By (1) we get
M g Ao(T). T (3)

Note that[[2) and {3) are the first two premises of an instafiae. By further iterating this we obtain
for all i

7Q i
M b A(T),T.
Hence an application ab yields
M>C L VXA, T
O
We will need a certain form of the induction rule Mf(*m, which we are going to derive next. We

write Z[(uX.A)" := B] for the result of simultaneously replacing in every formi& every occurrence
of (uX.A)" with B.
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Lemma 6. Let A be an operator form witlev(VX.A) < k. LetA, %5, %, be h-positive sequents and let B
be a formula withev(B) < k. Assume that

ML (-A(B)), B and ML (-A(B)), B

Then we have, if
My A, 21, 2

then
MPP LA, 51[(UX.A) = B], Sp[(UX.A) = B].

Lemma 7. Let A be an operator form witlkev(vX.A) < k. Further let B be an arbitrary formula with
lev(B) < k. Assume that

MP2L (-A(B)),B and MP?L (-AB)),B.

Then we have
MP2 L (-uxX.AY,B and ML (-uX.A),B.

Proof. Let h = lev(vX.A). In view of our assumptions and the previous lemma we know ftiraall
h-positive sequentA
Q Q
M A, (XA = MJYERA B

Hence by an application of th@,-rule we concludeM ‘k*”Q F (-muX.A)',B. Similarly, we can derive
MP2 L (uX.AY, B. ]

Theorem 8. Letl" be a sequent off. AssumeéM | I and assume further for any sequénbccurring
in that proof we havéev(A) < k. Then we havil ﬁ"’Q -T.

Proof. An operationo on sequents is called -operationaf{l", Ay, ...,An) =T, A},...,A,. The result of
applyingo to a sequenk is denoted °.

To establish the theorem, we show by induction on the depthed¥ -proof that for all "-operations
o, we haveM ‘k*’"Q F Y. We distinguish the following cases for the last rule.

1. I is an axiom different froni o, uX.A,—uX.A. Thenl? is an axiom ofM ‘k*”Q, too.

2. TisTo, uX.A,—~uX.A. Thenl ? follows either by the first or the third claim of Lemrka 5 depiegd
on whether~uX.Alis replaced by or not.

3. The last rule is an instance of Vv, O or clo. We can apply the same rule Ii!h‘k*”Q.

4. The last rule is a cut
rA r-A

r
We extend the current ’-operatian to a "-operationt such that",A)" =% A’ and(I,-A)" =
9, (-A)" By the induction hypothesis for the ’-operatianwe obtainME”Q F M9, A as well as
M>® L 19, (-A). With an instance of cut we g&d > |- 7.

5. The last rule is an instance of the induction rule. Theneihd@sequent has the formuX.A, B
which isvX.—-A, B. There are two possible cases.

(a) The principal occurrence oX.—Ais not changed bg. By the induction hypothesis we can
derive(—A(B))’, B¢ and(—A(B))’, B'. We obtain our claim by the following proof.
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T,B8
——|H. L.5
(-A(B))’, B’ (=A)(T), (A(B)) ut
(=A)(T),B
-A)(T),B'
—— |.H. (_ 1)( ) L.B
(-A(B))’, B? (=A)FH(T), (AB))’ wut
(=A)FH(T),BY
vX.—A, B? @

(b) The principal occurrence ofX.—Ais changed by. Let 11, T be '-operations such that
(—A(B),B)™ = (-A(B))’,B

and
(-A(B),B)? = (-A(B))",B'.

By the induction hypothesis far and 1, we obtain
M@ (-AB)). B and M?|- (-A(B)),B"

We apply Lemmal7 and conclucli:ﬂa‘k*”Q ~ (—uX.A), BC. O

7 Cut elimination

We eliminate instances afut in the standard way, see for instancé([5, 11], by pushing tbhprthe
derivation. When an instance afit with cut formulae(uX.A)" and (- X.A)” meets the instance 6l
that introduceg—pX.A)', this pair of inferences is replaced by.

Lemma 9 (Cut-elimination) If M ‘k*”Q - T, thenM ﬁ"’Q 5 T

The cut-elimination process terminates in a formally caefderivation that may contain instances
of Qp-rules. Now we show that these instance€gfalso can be eliminated.

Lemma 10(Collapsing) LetT” be an(h-+ 1)-positive sequent. I 5 T, thenM — 5T

Proof. By transfinite induction on the derivation M‘k*’"Q. The only interesting case is when the last rule
is an instance of); for h < | <k as follows

I, (UX.A)Y AT

Note thatl", (uX.A)" is |-positive. Thus by the induction hypothesis we get

M{T ks T, (UX-AY'. (@)
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Moreover, also by the induction hypothesis we get fo(la#- 1)-positive A
MP s A, (UXA) = MPPI5A,T. (5)

Now we plug [@) in[(5) and obtai > ;- I as required. O

We now have all ingredients ready for our main result.
Corollary 11. Letl be an.Z-sequent. We have

MET = M@T.

Proof. AssumeM | I'. By TheorenT B we gem ‘k"’Q F I for somek. By cut-elimination we obtain
M€ |5 . Then collapsing yields 3 k5 I which finally gives usM @ - I by Lemmd2. O
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