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We establish syntactic cut-elimination for the one-variable fragment of the modal mu-calculus. Our
method is based on a recent cut-elimination technique by Mints that makes use of Buchholz’Ω-rule.

1 Introduction

The propositional modalµ-calculus is a well-established modal fixed point logic thatincludes fixed
points for arbitrary positive formulae. Thus it subsumes many temporal logics (with an always operator),
epistemic logics (with a common knowledge operator), and program logics (with an iteration operator).

Making use of the finite model property, Kozen [10] introduces a sound and complete infinitary
system for the modalµ-calculus. In this system greatest fixed points are introduced by means of the
ω-rule that has a premise for each finite approximation of the greatest fixed point. Jäger et al. [8] show
by semanticmethods that the cut rule is admissible in this kind of infinitary systems. So far, however,
there is nosyntacticcut-elimination procedure available for the modalµ-calculus. It is our aim in this
paper to present an effective cut-elimination method for the one-variable fragment of theµ-calculus.

There are already a few results available on syntactic cut-elimination for modal fixed point logics.
Most of them make use of deep inference where rules may not only be applied to outermost connectives
but also deeply inside formulae. The first result of this kindhas been obtained by Pliuskevicius [12] who
presents a syntactic cut-elimination procedure for lineartime temporal logic. Brünnler and Studer [2]
employ nested sequents to develop a cut-elimination procedure for the logic of common knowledge. Hill
and Poggiolesi [7] use a similar approach to establish effective cut-elimination for propositional dynamic
logic. A generalization of this method is studied in [3] where it is also shown that it cannot be extended
to fixed points that have a✷-operator in the scope of aµ-operator. Fixed points of this kind occur, for
instance, inCTL in the form of universal path quantifiers.

Thus we need a more general approach to obtain syntactic cut-elimination for the modalµ-calculus.
A standard proof-theoretic technique to deal with inductive definitions and fixed points is Buchholz’
Ω-rule [4, 6]. Jäger and Studer [9] present a formulation of the Ω-rule for non-iterated modal fixed
point logic and they obtain cut-elimination for positive formulae of this logic. In order to overcome this
restriction to positive formulae, Mints [11] introduces anΩ-rule that has a wider set of premises, which
enables him to obtain full cut-elimination for non-iterated modal fixed point logic.

Mints’ cut-elimination algorithm makes use of, in additionto ideas from [5], a new tool presented
in [11]. It is based on the distinction, see [13], between implicit and explicit occurrences of formulae in
a derivation with cut. If an occurrence of a formula is traceable to the endsequent of the derivation, then
it is called explicit. If it is traceable to a cut-formula, then it is an implicit occurrence.

Implicit and explicit occurrences of greatest fixed points are treated differently in the translation
of the induction rule to the infinitary system. An instance ofthe induction rule that derives a sequent
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νX.A,B goes to an instance of theω-rule if νX.A is explicit. Otherwise, ifνX.A is traceable to a cut-
formula, the induction rule is translated to an instance of theΩ-rule that is preserved until the last stage
of cut-elimination. At that stage, called collapsing, theΩ-rule is eliminated completely.

In the present paper we show that this method can be extended to a µ-calculus with iterated fixed
points. Hence we obtain complete syntactic cut-elimination for the one-variable fragment of the modal
µ-calculus. Our infinitary system is completely cut-free in the sense that there are not only no cut rules
in the system but also no embedded cuts. Thus our cut-free system enjoys the subformula property. This
is in contrast to the recent cut-elimination results by Baelde [1] and by Tiu and Momigliano [14] for the
finitary systemsµMALL andLinc−, respectively, where theν-introduction rule and the co-induction rule
contain embedded cuts, which results in the loss of the subformula property.

2 Syntax and semantics

We first introduce the languageL . We start with a countable set PROP of atomic propositionspi and
their negationspi . We useP to denote an arbitrary element of PROP. Moreover, we will use a special
variableX.

Definition 1. Operator forms A,B, . . . are given by the following grammar:

A :== pi | pi | X | A∧A | A∨A | ✷A | ✸A | µX.A | νX.A.

Formulae Fare defined by:

F :== pi | pi | F ∧F | F ∨F | ✷F | ✸F | µX.A | νX.A.

The fixed point operatorsµ andν bind the variableX and, therefore, we will talk of free and bound
occurrences ofX. Hence a formula is an operator form without free occurrences of X.

The negation of an operator form is inductively defined as follows.

1. ¬pi := pi and¬pi := pi

2. ¬X := X

3. ¬(A∧B) := ¬A∨¬B and¬(A∨B) := ¬A∧¬B

4. ¬✷A :=✸¬A and¬✸A :=✷¬A

5. ¬µX.A := νX.¬A and¬νX.A := µX.¬A

Note that negation is well-defined: the negation of anX-positive operator form is againX-positive
since we have¬X := X. Thus, for example,

¬µX.✷(pi ∧X) := νX.¬✷(pi ∧X) := νX.✸¬(pi ∧X) := νX.✸(¬pi ∨¬X) := νX.✸(pi ∨X).

For an arbitrary but fixed atomic propositionpi we set⊤ := pi ∨ pi . If A is an operator form, then we
write A(B) for the result of simultaneously substitutingB for every free occurrence ofX in A. We will
also use finite iterations of operator forms, given as follows

A0(B) := B andAk+1(B) := A(Ak(B)).
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Γ,P,¬P Γ,µX.A,¬µX.A

Γ,A,B
Γ,A∨B

(∨)
Γ,A Γ,B

Γ,A∧B
(∧)

Γ,A
✸Γ,✷A,Σ

(✷)

Γ,A(µX.A)
Γ,µX.A

(clo)
¬A(B),B
¬µX.A,B

(ind)
Γ,A Γ,¬A

Γ
(cut)

Figure 1: SystemM

3 System M

SystemM derives sequents, that are finite sets of formulae. We denotesequents byΓ,Σ and use the
following notation: ifΓ := {A1, . . . ,An}, then✸Γ := {✸A1, . . . ,✸An}, SystemM consists of the axioms
and rules given in Figure 1.

4 System Mω

SystemMω is an infinitary cut-free system for the modalµ-calculus with one variable. It consists of the
axioms and rules given in Figure 2.

Γ,P,¬P

Γ,A,B
Γ,A∨B

(∨)
Γ,A Γ,B

Γ,A∧B
(∧)

Γ,A
✸Γ,✷A,Σ

(✷)

Γ,A(µX.A)
Γ,µX.A

(clo)
Γ,Ai(⊤) for all natural numbersi

Γ,νX.A
(ω)

Figure 2: SystemMω

5 System Mω ,Ω
k

In order to embedM into Mω , we need a family of intermediate systemsMω ,Ω
k that include additional

rules to derive greatest fixed points that later will be cut away.
The languageLΩ extendsL by a new connectiveν ′ to denote those greatest fixed points. Formally,

LΩ is given as follows. Operator forms ofLΩ are defined like operator forms ofL with the additional
case

1. If A is an operator form, thenν ′X.A is also an operator form.

A formula of LΩ is anLΩ operator form without free occurrence ofX. A formula is agreatest fixed
point if it has the formνX.A or ν ′X.A.
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Definition 2. The levellev(A) of an operator formA is the maximal nesting of fixed point operators in
A. Formally we set:

1. lev(P) := lev(X) := 0 for all P in PROP

2. lev(A∧B) := lev(A∨B) := max(lev(A), lev(B))

3. lev(✷A) := lev(✸A) := lev(A)

4. lev(µX.A) := lev(νX.A) := lev(ν ′X.A) := lev(A)+1

The level of a sequent is the maximum of the levels of its formulae. We say a formula (sequent) is
k-positiveif for all ν ′X.A occurring in it we havelev(ν ′X.A)< k.

When working inMω ,Ω
k , we will use the following notation: the formulaA′ is obtained fromA by

replacing all occurrences ofνX in A with ν ′X.
Let k ≥ 0. SystemMω ,Ω

k consists of the axioms and rules ofMω (formulated inLΩ) and the addi-
tional rules:cut, Ωh, andΩ̃h. Thecut rule is given as follows

Γ,A′ Γ,(¬A)′

Γ
(cut),

whereA is a formula withlev(A)≤ k. The rulesΩh andΩ̃h , where 1≤ h≤ k, are informally described
as follows:

· · ·

Mω ,Ω
k−1 0 ∆, (µX.A)′

∆, Γ · · ·
Ωh

Γ, (¬µX.A)′

and

Γ, (µX.A)′ · · ·

Mω ,Ω
k−1 0 ∆, (µX.A)′

∆, Γ · · ·
Ω̃hΓ

wherelev((¬µX.A)′) = h and∆ ranges overh-positive sequents such that there is a cut-free proof of the
sequent∆, (µX.A)′ in Mω ,Ω

k−1.

Definition 3. We useMω ,Ω
k 0 Γ to express that there is a cut-free derivation ofΓ in Mω ,Ω

k .

In a more formal notation we can state theΩh-rule as follows. If for everyh-positive sequent∆

Mω ,Ω
k−1 0 ∆, (µX.A)′ =⇒ Mω ,Ω

k ∆, Γ,

then
Mω ,Ω

k Γ, (¬µX.A)′,

and similarly forΩ̃h.
Note that SystemMω ,Ω

0 does not includeΩh- or Ω̃h-rules. Hence we immediately get the following
lemma.

Lemma 4. Let Γ be anL sequent. We have

Mω ,Ω
0 0 Γ =⇒ Mω Γ.
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6 Embedding

In this section we present a translation fromM -proofs intoMω ,Ω
k -proofs. First we establish an auxiliary

lemma.

Lemma 5. For all natural numbers h≤ k we have the following.

1. If lev(µX.A) = h, thenMω ,Ω
k 0 µX.A, ¬µX.A.

2. If lev(A) = h, thenMω ,Ω
k 0 Γ, A′ =⇒ Mω ,Ω

k 0 Γ, A.

3. If lev(µX.A) = h, thenMω ,Ω
k 0 µX.A, (¬µX.A)′.

4. If lev(A) = h, thenMω ,Ω
k 0 B,C =⇒ Mω ,Ω

k 0 (¬A)(B), A(C).

5. If lev(A) = h, thenMω ,Ω
k 0 B,C′ =⇒ Mω ,Ω

k 0 (¬A)(B), A′(C′).

Proof. The five statements are shown simultaneously by induction onh. For space considerations we
show only one particular case of the second statement, whichis shown by induction on the derivation of
Γ, A′ and a case distinction on the last rule. Assume the last rule is an instance ofΩh with main formula
A′. We haveA′ = (νX.A0)

′ with lev(A0) < h. By the premise of theΩh-rule we have for allh-positive
sequents∆

Mω ,Ω
k−1 0 ∆,(µX.¬A0)

′ =⇒ Mω ,Ω
k 0 ∆,Γ. (1)

Trivially we have
Mω ,Ω

k 0 ⊤,Γ. (2)

We also have
Mω ,Ω

k−1 0 ⊤,(µX.¬A0)
′

from which we get by the induction hypothesis for the fifth claim of this lemma

Mω ,Ω
k−1 0 A0(⊤),(¬A0)

′((µX.¬A0)
′).

An application ofclo yields
Mω ,Ω

k−1 0 A0(⊤),(µX.¬A0)
′
.

By (1) we get
Mω ,Ω

k 0 A0(⊤),Γ. (3)

Note that (2) and (3) are the first two premises of an instance of ω . By further iterating this we obtain
for all i

Mω ,Ω
k 0 Ai

0(⊤),Γ.

Hence an application ofω yields
Mω ,Ω

k 0 νX.A0,Γ.

We will need a certain form of the induction rule inMω ,Ω
k , which we are going to derive next. We

write Σ[(µX.A)′ := B] for the result of simultaneously replacing in every formulain Σ every occurrence
of (µX.A)′ with B.
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Lemma 6. Let A be an operator form withlev(νX.A)≤ k. Let∆,Σ1,Σ2 be h-positive sequents and let B
be a formula withlev(B)≤ k. Assume that

Mω ,Ω
k (¬A(B))′, B and Mω ,Ω

k (¬A(B))′, B′
.

Then we have, if
Mω ,Ω

k−1 0 ∆, Σ1, Σ2

then
Mω ,Ω

k ∆, Σ1[(µX.A)′ := B], Σ2[(µX.A)′ := B′].

Lemma 7. Let A be an operator form withlev(νX.A) ≤ k. Further let B be an arbitrary formula with
lev(B)≤ k. Assume that

Mω ,Ω
k (¬A(B))′, B and Mω ,Ω

k (¬A(B))′, B′
.

Then we have
Mω ,Ω

k (¬µX.A)′, B and Mω ,Ω
k (¬µX.A)′, B′

.

Proof. Let h = lev(νX.A). In view of our assumptions and the previous lemma we know that for all
h-positive sequents∆

Mω ,Ω
k−1 0 ∆, (µX.A)′ =⇒ Mω ,Ω

k ∆, B.

Hence by an application of theΩh-rule we concludeMω ,Ω
k (¬µX.A)′, B. Similarly, we can derive

Mω ,Ω
k (¬µX.A)′, B′.

Theorem 8. Let Γ be a sequent ofL . AssumeM Γ and assume further for any sequent∆ occurring

in that proof we havelev(∆)≤ k. Then we haveMω ,Ω
k Γ.

Proof. An operationσ on sequents is called ’-operation ifσ(Γ,A1, . . . ,An) = Γ,A′
1, . . . ,A

′
n. The result of

applyingσ to a sequentΓ is denotedΓσ .
To establish the theorem, we show by induction on the depth oftheM -proof that for all ’-operations

σ , we haveMω ,Ω
k Γσ . We distinguish the following cases for the last rule.

1. Γ is an axiom different fromΓ0,µX.A,¬µX.A. ThenΓσ is an axiom ofMω ,Ω
k , too.

2. Γ is Γ0,µX.A,¬µX.A. ThenΓσ follows either by the first or the third claim of Lemma 5 depending
on whether¬µX.A is replaced byσ or not.

3. The last rule is an instance of∧, ∨, ✷ or clo. We can apply the same rule inMω ,Ω
k .

4. The last rule is a cut
Γ,A Γ,¬A

Γ
.

We extend the current ’-operationσ to a ’-operationτ such that(Γ,A)τ = Γσ ,A′ and(Γ,¬A)τ =
Γσ ,(¬A)′ By the induction hypothesis for the ’-operationτ we obtainMω ,Ω

k Γσ ,A′ as well as

Mω ,Ω
k Γσ ,(¬A)′. With an instance of cut we getMω ,Ω

k Γσ .

5. The last rule is an instance of the induction rule. Then theendsequent has the form¬µX.A, B
which isνX.¬A, B. There are two possible cases.

(a) The principal occurrence ofνX.¬A is not changed byσ . By the induction hypothesis we can
derive(¬A(B))′, Bσ and(¬A(B))′, B′. We obtain our claim by the following proof.
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· · ·

I.H.
(¬A(B))′, Bσ

I.H.
(¬A(B))′, B′

⊤,B′

L. 5
(¬A)(⊤),(A(B))′

cut
(¬A)(⊤),B′

...

(¬A)i(⊤),B′

L. 5
(¬A)i+1(⊤),(A(B))′

cut

(¬A)i+1(⊤),Bσ · · ·
ω

νX.¬A, Bσ

(b) The principal occurrence ofνX.¬A is changed byσ . Let τ1,τ2 be ’-operations such that

(¬A(B),B)τ1 = (¬A(B))′,B

and
(¬A(B),B)τ2 = (¬A(B))′,B′

.

By the induction hypothesis forτ1 andτ2 we obtain

Mω ,Ω
k (¬A(B))′, B and Mω ,Ω

k (¬A(B))′, B′
.

We apply Lemma 7 and concludeMω ,Ω
k (¬µX.A)′, Bσ .

7 Cut elimination

We eliminate instances ofcut in the standard way, see for instance [5, 11], by pushing themup the
derivation. When an instance ofcut with cut formulae(µX.A)′ and(¬µX.A)′ meets the instance ofΩh

that introduces(¬µX.A)′, this pair of inferences is replaced byΩ̃h.

Lemma 9 (Cut-elimination). If Mω ,Ω
k Γ, thenMω ,Ω

k 0 Γ.

The cut-elimination process terminates in a formally cut-free derivation that may contain instances
of Ω̃h-rules. Now we show that these instances ofΩ̃h also can be eliminated.

Lemma 10(Collapsing). Let Γ be an(h+1)-positive sequent. IfMω ,Ω
k 0 Γ, thenMω ,Ω

h 0 Γ.

Proof. By transfinite induction on the derivation inMω ,Ω
k . The only interesting case is when the last rule

is an instance of̃Ωl for h< l ≤ k as follows

Γ, (µX.A)′ · · ·

Mω ,Ω
l−1 0 ∆, (µX.A)′

∆, Γ · · ·
Ω̃lΓ

Note thatΓ,(µX.A)′ is l -positive. Thus by the induction hypothesis we get

Mω ,Ω
l−1 0 Γ, (µX.A)′. (4)
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Moreover, also by the induction hypothesis we get for all(h+1)-positive∆

Mω ,Ω
l−1 0 ∆, (µX.A)′ =⇒ Mω ,Ω

h 0 ∆, Γ. (5)

Now we plug (4) in (5) and obtainMω ,Ω
h 0 Γ as required.

We now have all ingredients ready for our main result.

Corollary 11. Let Γ be anL -sequent. We have

M Γ =⇒ Mω Γ.

Proof. AssumeM Γ. By Theorem 8 we getMω ,Ω
k Γ for somek. By cut-elimination we obtain

Mω ,Ω
k 0 Γ. Then collapsing yieldsMω ,Ω

0 0 Γ which finally gives usMω Γ by Lemma 4.
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