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We give a new general definition of arity, yielding the companion notions of signature and associated
syntax. This setting is modular in the sense requested by [12]: merging two extensions of syntax
corresponds to building an amalgamated sum. These signatures are too general in the sense that we
are not able to prove the existence of an associated syntax inthis general context. So we have to
select arities and signatures for which there exists the desired initial monad. For this, we follow a
track opened by Matthes and Uustalu [16]: we introduce a notion of strengthened arity and prove that
the corresponding signatures have initial semantics (i.e.associated syntax). Our strengthened arities
admit colimits, which allows the treatment of theλ-calculus with explicit substitution in the spirit of
[12].

1 Introduction

Many programming or logical languages allow constructionswhich bind variables and this higher-order
feature causes much trouble in the formulation, the understanding and the formalization of the theory of
these languages. For instance, there is no universally accepted discipline for such formalizations: that
is precisely why the POPLmark Challenge [4] offers benchmarks for testing old and new approaches.
Although this problem may ultimately concern typed languages and their operational semantics, it al-
ready concerns untyped languages. In this work, we extend tonew kinds of constructions our treatment
of higher-order abstract syntax [13], based on modules and linearity.

First of all, we give a new general definition of arity, yielding the companion notion of signature.
The notion is coined in such a way to induce a companion notionof representation of an arity (or of a
signature) in a monad: such a representation is a morphism among modules over the given monad, so that
an arity simply assigns two modules to each monad. There is a natural category of such representations of
a signature and whenever it exists, the initial representation deserves the name of syntax associated with
the given signature. This approach enjoys modularity in thesense introduced by [12]: in our category of
representations, merging two extensions of a syntax corresponds to building an amalgamated sum.

Our notion of arity (or signature) is too general in the sensethat we are not able to build, for each
signature, a corresponding initial representation. Following a track opened in Matthes-Uustalu [16], we
define a fairly general notion ofstrengthenedarity, yielding the corresponding notion of strengthened
signature. Our main result (Theorem7.8) says that any strengthened signature yields the desired initial
representation. As usual, this initial object is built as a minimal fixpoint.

Understanding the syntax of the lambda-calculus with explicit substitution was already done in [12],
where the arity for this construction was identified as a coend, hence a colimit, of elementary arities (see
Section8). Our main motivation for the present work (and for our next one) was to propose a general
approach to syntax (and ultimately to semantics) accounting for this example in the spirit of our previous
work [14]. This is achieved thanks to our second main result (Theorem4.3) which states the existence
of colimits in the category of (strengthened) arities.
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In this extended abstract, we do not discuss proofs. A complete version is available on-line.1

2 Related and future work

The idea that the notion of monad is suited for modeling substitution concerning syntax (and semantics)
has been retained by many recent contributions on the subject (see e.g. [5, 12, 16]) although some other
settings have been considered. For instance in [15] the authors argue in favor of a setting based on
Lawvere theories, while in [7] the authors work within a setting roughly based on operads (although they
do not write this word down). The latter approach has been broadly extended, notably by M. Fiore [8,
9, 10]. Our main specificity here is the systematic use of the observation that the natural transformations
we deal with are linear with respect to natural structures ofmodule (a form of linearity had already been
observed, in the operadic setting, see [11], Section 4).

The signatures we consider here are much more general than the signatures in [7], and cover the
signatures appearing in [16, 12]. Note however that the latter works treat also non-wellfounded syntax,
an aspect which we do not consider at all.

In our next work, we will propose a treatment of equational semantics for the present syntaxes. This
approach should also be accommodated to deal with typed languages as done for elementary signatures
in [17, 18, 2], or to model operational semantics as done for elementary signatures in [1].

3 The big category of modules

Modules over monads and the associated notion of linear natural transformation intend to capture the
notion of “algebraic structure which is well-behaved with respect to substitution”. An introduction on
this subject can be found in our papers [13, 14]. Let us recall here the very basic idea.

Let R be a monad over a base categoryC. A module overR with range in a categoryD is a functor
M : C→ D endowed with an action ofR, i.e., a natural “substitution” transformationρ : M ·R−→ M
compatible with the substitution ofR in the obvious sense. Given two modulesM,N over the same
monad and with the same range, a linear natural transformation φ : M→ N is a natural transformation
of functors which is compatible with the actions in the obvious sense. This gives a category ModD(R) of
modules with fixed baseRand rangeD.

It is useful for the present paper to consider a larger category which collects modules over different
monads. For the following definition, we fix a range categoryD.

Definition 3.1 (The big module category). We define the big module category BModD
C as follows:

• its objects are pairs (R,M) of a monadRon C and anR-moduleM with range inD.

• a morphism from (R,M) to (S,N) is a pair (f ,m) where f : R−→ S is a morphism of monads, and
m: M −→ f ∗N is a morphism ofR-modules (heref ∗N is the functorN equipped with the obvious
structure ofR-module).

4 The category of arities

In this section, we give our new notion of arity. The destiny of an arity is to have representations in
monads. A representation of an aritya in a monadR should be a morphism between two modules

1http://web.math.unifi.it/users/maggesi/strengthened/.
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dom(a,R) and codom(a,R). For instance, in the case of the aritya of a binary operation, we have
dom(a,R) := R2 and codom(a,R) := R. Hence an arity should consist of two halves, each of which
assigns to each monadR a module overR in a functorial way. However, in all our natural examples, we
have codom(a,R) = R as above. Although this will no longer be the case in the typedcase (which we do
not consider here), we choose to restrict our attention to arities of this kind, where codom(a,R) is R.

From now on we will consider only monads over the categorySet and modules with rangeSet. For
technical reasons, see Section7, we restrict our attention to the category ofω-cocontinuous endofunctors
that we will denote Endω(Set). Analogously we will write Monω (resp. BModω) for the full subcategory
of monads (resp. of modules over these monads) which areω-cocontinuous.

We recall that finite limits commute with filtered colimits inSet. It follows that Endω(Set) has finite
limits and arbitrary (small) colimits. This is the key ingredient in the proofs ofω-cocontinuity for most
of our functors.

Definition 4.1 (Arities). An arity is a right-inverse functor to the forgetful functor from thecategory
BModω to the category Monω.

Now we give our basic examples of arities:

• Every monadR is itself aR-module. The assignmentR 7→ Rgives an arity which we denote byΘ.

• The assignmentR 7→ ∗R, where∗R denotes the final module overR is an arity which we denote by∗.

• Given two aritiesa andb, the assignmentR 7→ a(R)×b(R) is an arity which we denote bya×b . In
particularΘ2 = Θ×Θ is the arity of any (first-order) binary operation and, in generalΘn is the arity
of n-ary operations.

• Given an endofunctorF of Set, we consider thederivedfunctor given byF′ : X 7→ F(X+ ∗). It can
be checked how whenF is a module so isF′. Given an aritya, the assignmentR 7→ a(R)′ is an arity
which we denotea′ and is calledderivativeof a.

• Derivation can be iterated. We denote bya(n) then-th derivative ofa. Hence, in particular, we have
a(0) = a, a(1) = a′, a(2) = a′′.

• For each sequence of non-negative integerss= (s1, . . . , sn), the assignmentR 7→ R(s1)× · · ·×R(sn) is an
arity which we denote byΘ(s). Arities of the formΘ(s) are saidalgebraic. These algebraic arities are
those which appear in [7].

• Given two aritiesa, b their compositiona ·b := R 7→ a(R) ·b(R) is an arity.

Definition 4.2. A morphism among two aritiesa1,a2 : Monω −→ BModω is a natural transformation
m: a1 −→ a2 which, post-composed with the projection BModω −→ Monω, becomes the identity. We
easily check that arities form a subcategory Ar of the category of functors from Monω to BModω.

Now we give two examples of morphisms of arities:

• The natural transformationµ : Θ ·Θ −→ Θ induced by the structural composition of monads is a
morphism of arities.

• The two natural transformationsΘ ·η andη ·Θ fromΘ toΘ ·Θ are morphisms of arities.

Theorem 4.3. The category of arities has finite limits and arbitrary (small) colimits.

5 Categories of representations

Definition 5.1 (Signatures). We define a signatureΣ = (O,α) to be a family of aritiesα : O−→ Ar. A
signature is said to be algebraic if it consists of algebraicarities.
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Definition 5.2 (Representation of an arity, of a signature). Given anω-cocontinuous monadR overSet,
we define a representation of the aritya in R to be a module morphism froma(R) to R; a representation
of a signatureΣ in Rconsists of a representation inR for each arity inΣ.

Example5.3. The usualapp : Λ2−→Λ is a representation of the arityΘ2 into the monadΛ of λ-calculus
8.

Definition 5.4. Given a signatureΣ = (O,α), we build the category MonΣ of representations ofΣ as
follows. Its objects areω-cocontinuous monads equipped with a representation ofΣ. A morphismm
from (M, r) to (N, s) is a morphism of monads fromM to N compatible with the representations in the
sense that, for eacho in O, the following diagram ofM-modules commutes:

αo(M)
ro //

ao(m)
��

M

m
��

m∗(αo(N))
m∗so

// m∗N

where the horizontal arrows come from the representations and the left vertical arrow comes from the
functoriality of arities andm: M −→m∗N is the morphism of monad seen as morphism ofM-modules.

These morphisms, together with the obvious composition, turn MonΣ into a category which comes
equipped with a forgetful functor to the category of monads.

We are primarily interested in the existence of an initial object in this category MonΣ.

Definition 5.5. A signatureΣ is said representable if the category MonΣ has an initial object, which we
denoteΣ̂.

Theorem 5.6. Algebraic signatures are representable.

For more details we refer to our paper [13] (Theorems 1 and 2). We give below a more general result
(Theorem7.8).

6 Modularity and the big category of representations

It has been stressed in [12] that the standard approach (via algebras) to higher-ordersyntax lacks modu-
larity. In the present section we show in which sense our approach via modules enjoys modularity. The
key for this modularity is what we call the big category of representations.

Suppose that we have a signatureΣ = (O,a) and two subsignaturesΣ1 andΣ2 coveringΣ in the obvi-
ous sense, and letΣ0 be the intersection ofΣ1 andΣ2. Suppose that these four signatures are representable
(for instance becauseΣ is algebraic or strengthened in the sense defined below). Modularity would mean
that the corresponding diagram of monads

Σ̂0 //

��

Σ̂1

��

Σ̂2 // Σ̂

is a pushout. The observation of [12] is that this diagram of raw monads is, in general, not a pushout.
Since we do not want to change the monads, in order to claim formodularity, we will have to consider
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a category of enhanced monads. Here by enriched monad, we mean a monad equipped with some
additional structure, namely a representation of some signature.

Our solution to this problem goes through the following “big” category of representations, which we
denote by RMon, whereRmay stand for representation or for rich:

• An object of RMon is a triple (R,Σ, r) whereR is a monad,Σ a signature, andr is a representation of
Σ in R.

• A morphism in RMon from (R1, (O1,a1), r1) to (R2, (O2,a2), r2) consists of an injective mapi :=O1−→

O2 compatible witha1 and a2 and a morphismm from (R1, r1) to (R2, i∗(r2)), wherei∗(r2) should
be understood as the restriction of the representationr2 to the subsignature (O1,a1) where we pose
i∗(r2)(o) := r2(i(o)).

• It is easily checked that the obvious composition turns RMoninto a category.

Now for each signatureΣ, we have an obvious functor from MonΣ to RMon, through which we may seeΣ̂
as an object in RMon. Furthermore, an injectioni : Σ1−→ Σ2 obviously yields a morphismi∗ := Σ̂1−→ Σ̂2

in RMon. Hence our ‘pushout’ square of signatures as described above yields a square in RMon. The
proof of the following statement is straightforward.

Modularity holds in RMon, in the sense that given a ‘pushout’square of representable signatures as
described above, the associated square in RMon is a pushout again.

As usual, we will denote by RMonω the full subcategory of RMon constituted byω-cocontinuous
functors. It is easy to check that the previous statement is equally valid in RMonω. Indeed, recall that,
by our definition, the initial representation of representable signatures lies in RMonω.

7 Strengthening signatures

Guided by the ideas of Matthes and Uustalu [16] we introduce in our framework the notion ofstrength-
ened arity. For a categoryC, let us denote by Endω∗ (C) the category ofω-cocontinuouspointed end-
ofunctors, i.e., the category of pairs (F, η) of an ω-cocontinuous endofunctorF of C and a natural
transformationη : I −→ F from the identity endofunctor toF. A morphism of pointed endofunctors
f : (F1, η1) −→ (F2, η2) is a natural transformationf : F1 −→ F2 satisfying f ◦η1 = η2.

Definition 7.1. A strengthened arityis a pair (H, θ) where H is anω-cocontinuous endofunctor of
Endω(Set) (i.e., H ∈ Endω(Endω(Set))) andθ is a natural transformationθ : H(−)· ∼−→ H(−· ∼) (where
H(−)· ∼ and H(−· ∼) have to be understood as functors from Endω(Set)×Endω∗ (Set) to Endω(Set))
satisfyingθX,(I ,1I ) = 1HX and such that the following diagram is commutative

H(X) ·Z1 ·Z2

θX,(Z1·Z2,e1·e2)
//

θX,(Z1,e1)Z2 ((PP
PP

PP
PP

PP
PP

H(X ·Z1 ·Z2)

H(X ·Z1) ·Z2

θX·Z1,(Z2,e2)

66♥♥♥♥♥♥♥♥♥♥♥♥

(1)

for every endofunctorX and pointed endofunctors (Z1,e1), (Z2,e2). We refer toθ as thestrengthon H.

Our first task is to make clear that our wording is consistent in the sense that a strengthened arityH
somehow yields a genuine aritỹH. For this task, for each monadRwe poseH̃(R) := H(R) and we exhibit
on it a structure ofR-module. We do even slightly more by upgradingH into amodule transformerin
the following sense:
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Definition 7.2. A module transformer is an endofunctor of the big module category BModω which
commutes with the structural forgetful functor BModω −→Monω.

Let (H, θ) be a strengthened arity. For everyω-cocontinuous monadRandω-cocontinuousR-module
M, we define the natural transformationρH(M) : H(M) ·R−→ H(M) as the compositionH(ρM) · θM,R.
Then (H(M),ρH(M)) is anR-module, and this construction upgradesH into a module transformer denoted
by Ĥ.

We call the restricionH̃ of the module transformer̂H to the category of monads the arity associated
to the strengthened arityH.

Our next task is to upgrade our favorite examples of arities into strengthened arities:

• The arityΘ comes from the strengthened arity (H, θ) whereH andθ are the relevant identities.

• The arity∗ comes from the strengthened arity (H, θ) whereH is the final endofunctor andθ is the
relevant identity. This is the final strengthened arity.

• The arityΘ ·Θ comes from the strengthened arity (H, θ) whereH := X 7→ X ·X andθX,Y : X ·X ·Y −→
X ·Y ·X ·Y := X · ηY ·X ·Y; here we have writtenηY for the morphism from the identity functor toY
(remember thatY is pointed).

• If an arity comes from a strengthened arity, so does its derivative (see Proposition7.4).

Then we show how our basic constructions in the category of arities carries over the category of
strengthened arities. First we describe this category. Itsobjects are strengthened arities and we take for
morphisms from (H1, θ1) to (H2, θ2) those natural transformationsm: H1 −→ H2 which are compatible
with θ1 andθ2, that is, the diagram

H1(X) ·Z
θ1 //

mXZ
��

H1(X ·Z)
mX·Z
��

H2(X) ·Z
θ2

// H2(X ·Z)

is commutative for every endofunctorX and every pointed endofunctorZ.

Theorem 7.3. The category of strengthened arities has finite limits and arbitrary colimits.

Next, we take care of the derivation. We denote byD the endofunctor ofSet given byA 7→ A+∗. For
any other pointed endofunctorX overSet we have a natural transformationwX : D ·X −→ X ·D given by

wX
A : X(A)+ ∗ −→ X(A+ ∗) wX

A := X(iA)+ηA+∗ · ∗

whereiA : A−→ A+ ∗ and∗ : ∗ −→ A+ ∗ are the inclusion maps.

Proposition 7.4. If (H, θ) is a strengthened arity, then the pair(H′, θ′), where H′ := X 7→ H(X)′ and
θ′X,Z := θX,ZD ·H(X)wZ, is a strengthened arity. We call it thederivativeof (H, θ).

Now we point out the possibility of composing strengthened arities.

Definition 7.5. If H := (H,ρ) andK := (K,σ) are two strengthened arities, their compositionH ·K is the
pair (H ·K, θ) whereθ is defined byθX,(Z,e) := H(σX,(Z,e)) ·ρK(X),(Z,e).

Proposition 7.6. This composition turns strengthened arities into a strict monoidal category.

Next, we turn to the main interest of strengthened arities (or signatures) which is that the fixed point
we are interested in inherits a structure of monad.

Lemma 7.7. Let (H, θ) be a strengthened arity. Then the fixed point T of the functor F:= I +H is ω-
cocontinuous and comes equipped with a structure ofH̃-representation which is the initial object in the
category of theH̃-representations.
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We say that a signature is strengthened if it is a family of strengthened arities. The previous lemma
leads immediately to the following result.

Theorem 7.8. Strengthened signatures are representable.

8 Examples of strengthened syntax

Lambda-calculus moduloα-equivalence One paradigmatic example of syntax with binding is theλ-
calculus. We denote byΛ(X) the set of lambda-terms up toα-equivalence with free variables ‘indexed’
by the setX. It is well-known [6, 3, 13] thatΛ has a natural structure of cocontinuous monad where the
monad composition is given by variable substitution.

It can be easily verified that applicationapp : Λ2 −→ Λ and abstractionabs : Λ′ −→ Λ areΛ-linear
natural transformations, that is,Λ is a monad endowed with a representationρ of the signatureΣ =
{app : Θ2,abs : Θ′}. The monadΛ is initial in the category MonΣ of ω-cocontinuous monads equipped
with a representation of the signatureΣ.

This is an example of algebraic signature and thus already treated by other previous works [13, 14, 7].
Here we simply remark that our new theory covers such a classical case.

Explicit composition operator We now consider our first example of non-algebraic signature. On any
monadR, we have the composition operator (also calledjoin operator)µR: R·R−→ R which has arity
Θ ·Θ. We will refer to theµR operator as theimplicit composition operator. An interesting problem is to
see if this kind of operators admits a correspondingexplicit version, i.e., if they can be implemented as a
syntactic construction. As we have seen beforeΘ ·Θ is a strengthened arity hence we can build syntaxes
with explicit composition operator of kind

join : Θ ·Θ −→ Θ.

Of course, this is only asyntacticcomposition operator, in the sense that it does not enjoy several
desirable conversion rules like associativity, two-side identity and the obvious compatibility rules with
the other syntactic constructions present in the signature. In our next work we will show how to construct
such kind ofsemanticcomposition operator.

Let us mention that given a monadR, the unitηR: I −→ R is not anR-linear morphism (in fact,I is
not even anR-module in general). For this reason we cannot treat examples of syntax with explicit unit.

Syntax and semantics with explicit substitution On any monadR, we have a series of substitution
operatorsσn : R(n) ·Rn −→ R which simultaneously replacen formal arguments in a term withn given
terms. As observed by Ghani and Uustalu [12], these substitution morphisms satisfy a series of compati-
bility relations which mean that they come from a single morphismsubst : C −→Θ whereC is identified
as the coend

C =
∫ A:Fin

Θ(A)×ΘA.

HereFin stands for a skeleton of the category of finite sets,ΘA denotes the cartesian power andΘ(A)

is defined byΘ(A)(R,X) := R(X+A). Since coends are special colimits, and strengthened arities admit
colimits, we just have to check that the bifunctorial arity (A,B) 7→Θ(A)×ΘB factors through the category
of strengthened arities. As far as objects are concerned, this follows from our results in Section7. The
verification of the compatibility of the corresponding “renaming” and “projection” morphisms with the
strengthened structures is straightforward.
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[14] André Hirschowitz & Marco Maggesi (2010):Modules over monads and initial semantics. Information and
Computation208(5), pp. 545–564, doi:10.1016/j.ic.2009.07.003. Special Issue: 14th Workshop on
Logic, Language, Information and Computation (WoLLIC 2007).

[15] Martin Hyland & John Power (2007):The category theoretic understanding of universal algebra: Lawvere
theories and monads. Electronic Notes in Theoretical Computer Science172, pp. 437–458, doi:10.1016/
j.entcs.2007.02.019.

[16] Ralph Matthes & Tarmo Uustalu (2004):Substitution in non-wellfounded syntax with variable binding.
Theor. Comput. Sci.327(1-2), pp. 155–174, doi:10.1016/j.tcs.2004.07.025.
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