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Motivated by the recent interest in models of guarded (co-)recursion we study its equational proper-
ties. We formulate axioms for guarded fixpoint operators generalizing the axioms of iteration theories
of Bloom and Ésik. Models of these axioms include both standard (e.g., cpo-based) models of iter-
ation theories and models of guarded recursion such as complete metric spaces or the topos of trees
studied by Birkedal et al. We show that the standard result on the satisfaction of all Conway axioms
by a unique dagger operation generalizes to the guarded setting. We also introduce the notion of
guarded trace operator on a category, and we prove that guarded trace and guarded fixpoint operators
are in one-to-one correspondence. Our results are intended as first steps leading to the description
of classifying theories for guarded recursion and hence completeness results involving our axioms of
guarded fixpoint operators in future work.

1 Introduction

Our ability to describe concisely potentially infinite computations or infinite behaviour of systems re-
lies on recursion, corecursion and iteration. Most programming languages and specification formalisms
include a fixpoint operator. In order to give semantics to such operators one usually considers either

• models based on complete partial orders where fixpoint operators are interpreted by least fixpoints
using the Kleene-Knaster-Tarski theorem or

• models based on complete metric spaces and unique fixpoints via Banach’s theorem or

• term models where unique fixpoints arise by unfolding specifications syntactically.

In the last of these cases, one only considers guarded (co-)recursive definitions; see e.g. Milner’s
solution theorem for CCS [21] or Elgot’s iterative theories [13]. Thus, the fixpoint operator becomes
a partial operator defined only on a special class of maps. For a concrete example consider complete
metric spaces which form a category with all non-expansive maps as morphisms, but unique fixpoints
are taken only of contractive maps.

Recently, there has been a wave of interest in expressing guardedness by a new type constructor 3,
a kind of “later” modality, which allows to make the fixpoint operator total, see, e.g., Nakano [23, 24],
Appel et al. [4], Benton and Tabareau [7], Krishnaswami and Benton [19, 18], Birkedal et al. [9, 8] and
Atkey and McBride [5]. For example, in the case of complete metric spaces 3 can be an endofunctor
scaling the metric of any given space by a fixed factor 0 < r < 1 so that non-expansive maps of type
3X → X are precisely contractive maps with a contraction factor of at most r. This allows to define
a guarded (parametrized) fixpoint operator on all morphisms of type 3X ×Y → X of the model. So
far various models allowing the interpretation of a typed language including a guarded fixpoint operator
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have been studied: complete metric spaces, the “topos of trees”, i.e., presheaves on ωop [9] or, more
generally, sheaves on complete Heyting algebras with a well-founded basis [12, 9].

This paper initiates the study of the essential properties of guarded fixpoint operators. In the realm
of ordinary fixpoint operators, it is well-known that iteration theories of Bloom and Ésik [10] completely
axiomatize equalities of fixpoint terms in models based on complete partial orders (see also Simpson and
Plotkin [25]). We make here the first steps towards similar completeness results in the guarded setting.

We begin with formalizing the notion of guarded fixpoint operator on a cartesian category. We
discuss a number of models, including not only all those mentioned above, but also some not mentioned
so far in the context of 3-guarded (co-)recursion. In fact, we consider the inclusion of examples such
as the lifting functor on CPO (which also happens to be a paradigm example of a fixpoint monad, see
Example 2.4.6 and the concluding remark of Section 2.7) or completely iterative monads (see Section
2.2) a pleasant by-product of our work and a potentially fruitful connection for future research. Then,
we formulate generalizations of standard iteration theory axioms for guarded fixpoint operators and we
establish these axioms are sound in all models under consideration. In particular, the central result of
Section 2 is Theorem 2.16: models with unique guarded fixpoint operators satisfy all our axioms.

Hasegawa [16] proved that giving a parametrized fixpoint operator on a category satisfying the so-
called Conway axioms (see, e.g., [10, 25] and Section 2.3 below) is equivalent to giving a traced cartesian
structure [17] on that category.1 Section 3 lifts this result to the guarded setting. We introduce a natural
notion of a guarded trace operator on a category, and we prove in Theorem 3.5 that guarded traces and
guarded fixpoint operators are in one-to-one correspondence. This extends to an isomorphism between
the (2-)categories of guarded traced cartesian categories and guarded Conway categories.

Section 4 concludes and discusses further work.
Proofs of the major theorems will be made available in the full version.

1.1 Notational conventions

We will assume throughout that readers are familiar with basic notions from category theory. We denote
the product of two objects by

A A×B
π`oo

πr //B,

and ∆ : A→ A×A denotes the diagonal. For every functor F we write can = 〈Fπ`,Fπr〉 : F(A×B)→
FA×FB for the canonical morphism.

We denote by CPO the category of complete partial orders (cpo’s), i.e. partially ordered sets (not
necessarily with a least element) having joins of ω-chains. The morphisms of CPO are Scott-continuous
maps, i.e. maps preserving joins of ω-chains. And CPO⊥ is the full subcategory of CPO given by all
cpo’s with a least element ⊥. We will also consider the category CMS of complete 1-bounded metric
spaces and non-expansive maps.

2 Guarded Fixpoint Operators

In this section we define the notion of a guarded fixpoint operator on a cartesian category and present an
extensive list of examples. Some of these examples like the lifting functor (−)⊥ on CPO (see Example
2.4.6) or completely iterative monads (see Section 2.2) do not seem to have been considered as instances
of the guarded setting before. We then introduce (equational) properties of guarded fixpoint operators.

1Cartesian here refers to the monoidal product being the ordinary categorical product.
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These properties are motivated by and closely resemble properties of the fixpoint operator in iteration
theories of Bloom and Ésik [10]. We conclude this section with Theorem 2.16 stating that unique fixpoint
operators satisfy all the properties we study.

2.1 Definition and Examples of Guarded Fixpoint Operators

Assumption 2.1. We assume throughout the rest of the paper that (C ,3) is a pair consisting of a category
C with finite products (also know as a cartesian category) and a pointed endofunctor 3 : C → C , i.e. we
have a natural transformation p : Id→3. The endofunctor 3 is called delay.

Remark 2.2. In references like [9, 8], much more is assumed about both the underlying category and the
delay endofunctor. Whenever one wants to model simply-typed lambda calculus, one obviously imposes
the condition of being cartesian closed. Furthermore, whenever one considers dependent types, one wants
to postulate conditions like being a type-theoretic fibration category (see, e.g., [8, Definition IV.1]).
In such a case, one also wants to impose some limit-preservation or at least finite-limit-preservation
condition on the delay endofunctor, see [9, Definition 6.1]—e.g., to ensure the transfer of the guarded
fixpoint operator to slices. We do not impose any of those restrictions because we do not need them in
this paper. It is an interesting fact that all our derivations require no more than Assumption 2.1. For more
on the connection with the setting of [9], see Proposition 2.6 below.

Definition 2.3. A guarded fixpoint operator on (C ,3) is a family of operations

†X ,Y : C (3X×Y,X)→ C (Y,X)

such that for every f : 3X×Y → X the following square commutes2:

Y
f †

//

〈 f †,Y 〉
��

X

X×Y
pX×Y

// 3X×Y

f

OO

(2.1)

where (as usual) we drop the subscripts and write f † : Y → X in lieu of †X ,Y ( f ). We call the triple
(C ,3,†) a guarded fixpoint category.

Usually, one either assumes that † satisfies further properties or even that f † is unique such that (2.1)
commutes. We will come to the study of properties of guarded fixpoint operators in Section 2.3. Let us
begin with a list of examples.

Examples 2.4. (1) Taking as 3 the identity functor on C and pX the identity on X we arrive at the special
case of categories with an ordinary fixpoint operator C (X×Y,X)→C (Y,X) (see e.g. Hasegawa [16,
15] or Simpson and Plotkin [25]). Concrete examples are: the category CPO⊥ with its usual least
fixpoint operator or (the dual of) any iteration theory of Bloom and Ésik [10].

(2) Taking 3 to be the constant functor on the terminal object 1 and pX = ! : X→ 1 the unique morphism,
a trivial guarded fixpoint operator is given by the family of identity maps on the hom-sets C (Y,X).

(3) Take C to be the category CMS of complete 1-bounded metric spaces (see [19, 18] or [9, Section
5] and references therein), 3r (0 < r < 1) to be an endofunctor which keeps the carrier of the space
and multiplies all distances by r and pX : X→3rX to be the obvious “contracted identity” mapping.

2Notice that we use the convention of simply writing objects to denote the identity morphisms on them.
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Note that a non-expansive mapping f : 3rX → X is the same as an r-contractive endomap, i.e. an
endomap satisfying d( f x, f y)≤ r ·d(x,y). A guarded fixpoint operator is given by an application of
Banach’s unique fixpoint theorem: for every f : 3rX×Y → X we consider the map

Φ f : CMS(Y,X)→ CMS(Y,X), Φ f (m) = f · (pX ×Y ) · 〈m,Y 〉;

notice that CMS(Y,X) is a complete metric space with the sup-metric dY,X(m,n)= supy∈Y{dX(my,ny)};
it is then easy to show that Φ f is an r-contractive map, and so its unique fixpoint is a unique non-
expansive map f † : Y → X such that (2.1) commutes.

(4) Let A be a category with finite products, and let C be the presheaf category presh(ω,A ) := A ωop

of ωop-chains in A . The delay functor 3 takes a presheaf X : ωop→ A to the presheaf 3X with
3X(0) = 1 and 3X(n+ 1) = X(n) for n ≥ 0. And pX is given by (pX)0 : X(0)→ 1 unique and
(pX)n+1 = X(n+1≥ n) : X(n+1)→ X(n). For every f : 3X×Y → X there is a unique f † : Y → X
making (2.1) commutative; it is defined as follows: given f : 3X×Y → X (i.e. f0 : Y (0)→ X(0) and
fn+1 : X(n)×Y (n+1)→ X(n+1)) one defines f † : Y → X by f †

0 = f0 : Y (0)→ X(0) and

f †
n+1 = (Y (n+1)

〈 f †
n ·Y (n+1≥n),Y (n+1)〉

//X(n)×Y (n+1)
fn+1
//X(n+1)).

It is not difficult to prove that f † is the unique morphism such that (2.1) commutes.
Notice that for A = Set, C is the “topos of trees” studied by Birkedal et al. [9]; they prove in
Theorem 2.4 that Setωop

has a unique guarded fixpoint operator.
The next example generalizes this one.

(5) Assume W := (W,<) is a well-founded poset, i.e, contains no infinite descending chains; for sim-
plicity, we can assume W has a root r. Furthermore, let D be a (small) complete category and
C := presh(W,D), i.e., C = D (W,>). Define (3X)(w) to be the limit of the diagram whose nodes
are X(u) for u < w and whose arrows are restriction morphisms: 3X(w) = limv<w X(v). Then as
X(w) itself with restriction mappings forms a cone on that diagram, a natural pX : X →3X is given
by the universal property of the limits. Note that for r, we have that (3X)(r) is the terminal object
1 of D . The †-operation is defined as follows: given f : 3X ×Y → X one defines f † : Y → X by
induction on (W,<); for the root r let f †

r = fr : Y (r) = 1×Y (r)→ X(r), and assuming that f †
v is

already defined for all v < w let

f †
w = (Y (w)

〈k,Y (w)〉
//3X(w)×Y (w)

fw
//X(w)),

where k : Y (w)→ 3X(w) is the morphism uniquely induced by the cone f †
v ·Y (w > v) : Y (w)→

Y (v)→ X(v) for every v < w. One can prove that f † is a morphism of presheaves and that it is
the unique one such that (2.1) commutes. Details will be given in the full version. Regarding the
examples given in [9], see also Proposition 2.6 below.

(6) Let 3 be the lifting functor (−)⊥ on CPO, i.e. for any cpo X , X⊥ is the cpo with a newly added
least element. The natural transformation pX : X → X⊥ is the embedding of X into X⊥. Then CPO
has a guarded fixpoint operator given by taking least fixpoints. To see this notice that the hom-
sets CPO(X ,Y ) are cpos with the pointwise order: f ≤ g iff f (x) ≤ g(x) for all x ∈ X . Now any
continuous f : X⊥×Y → X gives rise to a continuous map Φ f on CPO(Y,X⊥):

Φ f : CPO(Y,X⊥)→ CPO(Y,X⊥), Φ f (m) = pX · f · 〈m,Y 〉.
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Using the least fixpoint s of Φ f one then defines:

f † = (Y
〈s,Y 〉

//X⊥×Y
f
//X );

using that s = Φ f (s) it is not difficult to prove that f † makes (2.1) commutative.

Birkedal et al. [9] provide a general setting for topos-theoretic examples like (4) and (5) (the latter
restricted to the case of Set-presheaves) by defining a notion of a model of guarded recursive terms and
showing that sheaves over complete Heyting algebras with a well-founded basis proposed by [12] are
instances of this notion. The difference between Definition 6.1 in [9] and our Definition 2.3 is that in the
former a) the delay endofunctor 3 is also assumed to preserve finite limits. On other hand b) our equality
(2.1) is only postulated in the case when Y is the terminal object, i.e., only non-parametrized fixpoint
identity is assumed but c) the dagger in this less general version of (2.1) is assumed to be unique. Now,
one can show that assumptions a) and c) imply our parametrized identity (2.1) whenever the underlying
category is cartesian closed, in particular whenever C is a topos. Let us state both the definition and the
result formally:

Definition 2.5 ([9]). A model of guarded fixpoint terms is a triple (C ,3,‡), where

• (C ,3) satisfy our general Assumption 2.1, i.e., 3 : C → C is a pointed endofunctor (with point
p : Id→3) and C has finite limits

• 3 preserves finite limits and

• ‡ is a family of operations ‡X : C (3X ,X)→ C (1,X) such that for every f : 3X → X , f ‡ is a
unique morphism making the following square commute:

1
f ‡

//

f ‡

��

X

X pX
// 3X

f

OO

(2.2)

We write can−1
X ,Y : 3X ×3Y → 3(X ×Y ) for the isomorphism provided by the assumption of limit

preservation for the special case of product3 of X and Y .

Proposition 2.6. If (C ,3,‡) is a model of guarded recursive terms and C is cartesian closed with
curryX

Y,Z : C (X×Y,Z) → C (X ,ZY ),

uncurryX
Y,Z : C (X ,ZY ) → C (X×Y,Z),

evalY,Z : Y ×ZY → Z,
then the operator †X ,Y : C (3X×Y,X)→ C (Y,X) defined as

uncurry1
Y,X([curry

3(XY )
Y,X ( f · 〈(3evalY,X) · can−1

Y,XY · (pY ×3(XY )),π`〉)]‡)

is a guarded fixpoint operator on (C ,3).

3One can note here that for the purpose of stating and proving Proposition 2.6, the assumption of finite limit preservation in
Definition 2.5 can be weakened to finite product preservation. We only keep the stronger assumption for full consistency with
[9, Definition 6.1].
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Obviously, we implicitly identified Y and 1×Y above. Note that the converse implication does
not hold. Example 2.4.6 is a a guarded fixpoint category, but (−)⊥ clearly fails to preserve even finite
products and hence it does not yield a model of guarded recursive terms.

Also, while we do not have a counterexample at the moment, Proposition 2.6 is not likely to hold
when the assumption that C is cartesian closed is removed: we believe there are examples of models of
guarded recursive terms which are not guarded fixpoint categories. However, to apply Proposition 2.6, it
is enough that (C ,3,‡) is a full subcategory of a cartesian closed model of guarded recursive terms such
that, moreover, the inclusion functor preserves products and 3.

Remark 2.7. Monads provide perhaps the most natural and well-known examples of pointed endofunc-
tors. The reader may ask whether delay endofunctors in Example 2.4 happen to be monads. Clearly,
the delay functors in (1), (2) and (6) are. In fact, while the first two ones are rather trivial monads, 6
is a paradigm example of a fixpoint monad of Crole and Pitts [11]. In (3), i.e. the CMS example, the
type 33A→3A is still inhabited (by any constant mapping), but one can easily show that monad laws
cannot hold whatever candidate for monad multiplication is postulated. In the remaining (i.e., topos-
theoretic) examples, monad laws fail more dramatically: 33A→3A is not even always inhabited. The
following section discusses perhaps the most interesting subclass of monads which happen to be delay
endofunctors with unique dagger.

2.2 Completely Iterative Theories

In this subsection we will explain how categories with guarded fixpoint operator capture a classical
setting in which guarded recursive definitions are studied—Elgot’s (completely) iterative theories [13,
14]. The connection to guarded fixpoint operators is most easily seen if we consider monads in lieu
of Lawvere theories, and so we follow the presentation of (completely) iterative monads in [20]. The
motivating example for completely iterative monads are infinite trees on a signature, and we recall this
now. Let Σ be a signature, i.e. a sequence (Σn)n<ω of sets of operation symbols with prescribed arity n.
A Σ-tree t on a set X of generators is a rooted and ordered (finite or infinite) tree whose nodes with n > 0
children are labelled by n-ary operation symbols from Σ and a leaf is labelled by a constant symbol from
Σ0 or by a generator from X . One considers systems of mutually recursive equations of the form

xi ≈ ti(~x,~y) i ∈ I,

where X = {xi | i ∈ I} is a set of recursion variables and each ti is a Σ-tree on X +Y with Y a set of
parameters (i.e. generators that do not occur on the left-hand side of a recursive equation). A system of
recursive equations is guarded if none of the trees ti is only a recursion variable x ∈ X . Every guarded
system has a unique solution, which assigns to every recursion variable xi ∈ X a Σ-tree t†

i (~y) on Y such
that t†

i (~y) = ti[~t†(~y)/~x], i.e. ti with each x j replaced by t†
j (~y). For a concrete example, let Σ consist of a

binary operation symbol ∗ and a constant symbol c, i.e. Σ0 = {c}, Σ2 = {∗} and Σn = /0 else. Then the
following system

x1 ≈ x2 ∗ y1 x2 ≈ (x1 ∗ y2)∗ c,
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where y1 and y2 are parameters, has the following unique solution:

t†
1 =

∗
∗

∗
∗

∗
∗

∗

y1

c
y2

y1

c
y2

y1

and t†
2 =

∗
∗

∗
∗

∗
∗

∗

c
y2

y1

c
y2

y1

c

For any set X , let TΣ(X) be the set of Σ-trees on X . It has been realized by Badouel [6] that TΣ is the
object part of a monad. A system of equations is then nothing but a map

f : X → TΣ(X +Y )

and a solution is a map f † : X → TΣY such that the following square commutes:

X
f †

//

f
��

TΣY

TΣ(X +Y )
[ f †,ηY ]

// TΣTΣY

µY

OO

where η and µ are the unit and multiplication of the monad TΣ, respectively.
It is clear that the notion of equation and solution can be formulated for every monad S. However,

the notion of guardedness requires one to speak about non-variables in S. This is enabled by Elgot’s
notion of ideal theory [13], which for a finitary monad on Set is equivalent to the notion recalled in the
following definition. We assume for the rest of this subsection that A is a category with finite coproducts
such that coproduct injections are monomorphic.

Definition 2.8 ([2]). By an ideal monad on A is understood a six-tuple

(S,η ,µ,S′,σ ,µ ′)

consisting of a monad (S,η ,µ) on A , a subfunctor σ : S′ ↪→ S and a natural transformation µ ′ : S′S→ S′

such that

(1) S = S′+ Id with coproduct injections σ and η , and

(2) µ restricts to µ ′ along σ , i.e., the square below commutes:

S′S
µ ′

//

σS
��

S′

σ

��

SS
µ

// S

The subfunctor S′ of an ideal monad S allows us to formulate the notion of a guarded equation system
abstractly; this leads to the notion of completely iterative theory of Elgot et al. [14] for which we here
present the formulation with monads from [20]:
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Definition 2.9. Let (S,η ,µ,S′,σ ,µ ′) be an ideal monad on A .

1. By an equation morphism is meant a morphism

f : X → S(X +Y )

in A , where X is an object (“of variables”) and Y is an object (“of parameters”).

2. By a solution of f is meant a morphism f † : X → SY for which the following square commutes:

X
f †

//

f
��

SY

S(X +Y )
S[ f †,ηY ]

// SSY

µY

OO

(2.3)

3. The equation morphism f is called guarded if it factors through the summand S′(X +Y )+Y of
S(X +Y ) = S′(X +Y )+X +Y :

X
f

//

((

S(X +Y )

S′(X +Y )+Y

[σX+Y ,ηX+Y ·inr]

OO

4. The given ideal monad is called completely iterative if every guarded equation morphism has a
unique solution.

Examples 2.10. We only briefly mention two examples of completely iterative monads. More can be
found in [2, 20, 3].

(1) The monad TΣ of Σ-trees is a completely iterative monad.

(2) A more general example is given by parametrized final coalgebras. Let H : A →A be an endofunc-
tor such that for every object X of A a final coalgebra T X for H(−)+X exists. Then T is the object
assignment of a completely iterative monad; in fact, T is the free completely iterative monad on H
(see [20]).

We will now explain how completely iterative monads are subsumed by the notion of categories with
a guarded fixpoint operator. To this end we fix a completely iterative monad S. We will show that the dual
of its Kleisli category C = (AS)

op is equipped with a guarded fixpoint operator. First notice, that since
AS has coproducts given by the coproducts in A we see that C has products. Next we need to obtain the
endofunctor 3 on C . This will be given as the dual of an extension of the subfunctor S′ : A →A of S
to the Kleisli category AS. Indeed, it is well-known that to have an extension of S′ to AS is equivalent to
having a distributive law of the functor S′ over the monad S (see Mulry [22]).

But it is easy to verify that the natural transformation

S′S
µ ′
//S′

ηS′
//SS′

satisfies the two required laws and thus yields a distributive law. Moreover, the ensuing endofunctor
3op = S′ on AS is copointed, i.e. we have a natural transformation p from S′ to Id : AS → AS; indeed,
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its components at X are given by the coproduct injections σX : S′X → SX , and it is not difficult to verify
that this is a natural transformation; thus, 3 is a pointed endofunctor on C .

Now observe that a morphism f : 3X×Y → X is equivalently a morphism

f : X → S(S′X +Y )

in A . We are ready to describe the guarded fixpoint operator on C .
Construction 2.11. For any morphism f : X → S(S′X +Y ) form the following morphism

f = (X
f
//S(S′X +Y )

S(σX+ηY )
//S(SX +SY ) Scan //SS(X +Y )

µX+Y
//S(X +Y )),

where can = [Sinl,Sinr] : SX + SY → S(X +Y ). It is not difficult to verify that f is a guarded equation
morphism for S, and we define f † : X → SY to be the unique solution of f .
Proposition 2.12. For every f , f † from Construction 2.11 is a unique morphism Y → X in C such
that (2.1) commutes.

In fact, to prove this proposition one shows that solutions of f : X → S(X +Y ) (i.e. morphisms
s : X → SY such that (2.3) commutes) are in one-to-one correspondence with morphisms Y → X is C
such that (2.1) commutes.

2.3 Properties of Guarded Fixpoint Operators

In this section we study properties of guarded fixpoint operators. Except for uniformity these properties
are purely equational. They are generalizing analogous properties of iteration theories; more precisely,
they would collapse to the original, unguarded counterparts when 3 is instantiated to the identity endo-
functor (see Example 2.4(1)).
Definition 2.13. Let (C ,3,†) be a guarded fixpoint category. We define the following properties of †:

(1) Fixpoint Identity. For every f : 3X ×Y → X the diagram (2.1) commutes. This is built into the
definition of guarded fixpoint categories and only mentioned here again for the sake of completeness.

(2) Parameter Identity. For every f : 3X×Y → X and every h : Z→ Y we have

Z h //Y
f †
//X = (3X×Z

3X×h
//3X×Y

f
//X )†.

(3) (Simplified) Composition Identity. Given f : 3X×Y → Z and g : Z→ X we have

(3X×Y
f
//Z

g
//X )† = (Y

( f ·(3g×Y ))†
//Z

g
//X ).

(4) Double Dagger Identity. For every f : 3X×3X×Y → X we have

(Y
f ††
//X ) = (3X×Y ∆×Y

//3X×3X×Y
f
//X )†.

(5) Uniformity. Given f : 3X×Y → X , g : 3X ′×Y → X ′ and h : X → X ′ we have

3X×Y
f
//

3h×Y
��

X

h
��

3X ′×Y g
// X ′

=⇒

X

h

��

Y

f † 99

g† $$
X ′
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We call the first four properties (1)–(4) the Conway axioms.
Notice that the Conway axioms are equational properties while (5) is quasiequational (i.e. an impli-

cation between equations).
Next we shall show that in the presence of certain of the above properties the natural transformation

p : Id→ 3 is a derived structure. Let (C ,3) be equipped with an operator † not necessarily satisfy-
ing (2.1). For every object X of C define qX : X →3X as follows: consider

fX = (3(3X×X)×X
3πr×X

//3X×X )

and form

qX = (X
f †
X //3X×X

π` //3X ).

Lemma 2.14. Let (C ,3) be equipped with the operator †. Then:
1. If † satisfies the parameter identity and uniformity, then q : Id→3 is a natural transformation.

2. If † satisfies the fixpoint identity, then qX = pX for all X.
Definition 2.15. A guarded fixpoint category (C ,3,†) satisfying the Conway axioms (i.e. fixpoint, pa-
rameter, composition and double dagger identities) is called a guarded Conway category.

If in addition uniformity is satisfied, we call (C ,3,†) a uniform guarded Conway category.
And (C ,3,†) is called a unique guarded fixpoint category if for every f : 3X ×Y → X , f † : Y → X

is the unique morphism such that (2.1) commutes. In this case, we can just write a pair (C ,3) rather
than a triple (C ,3,†).

The next theorem states that such a unique † satisfies all the properties in Definition 2.13.
Theorem 2.16. If (C ,3) is a unique guarded fixpoint category, then it is a uniform guarded Conway
category.
Examples 2.17. (1) Several of our examples in 2.4 are unique guarded fixpoint categories and hence

their unique † satisfies all the properties in Definition 2.13. This holds for Examples 2.4(2)–(6), and
also for the example of completely iterative monads in Section 2.2.

(2) One can prove that Example 2.4(7), i.e., C = CPO with the lifting functor 3= (−)⊥ satisfies all the
properties of Definition 2.13, i.e. (CPO,(−)⊥) is a uniform guarded Conway category. But it is not
a unique guarded fixpoint category: for let X = {0,1} be the two-chain, Y = 1 the one element cpo
and f : X⊥ = X⊥×Y → X be the map with f (0) = f (⊥) = 0 and f (1) = 1. Then both 0 : 1→ X and
1 : 1→ X make (2.1) commutative.

3 Guarded Trace Operators

In the case special case where 3 is the identity functor (see Example 2.4(1)), it is well-known that a
fixpoint operator satisfying the Conway axioms is equivalent to a trace operator w.r.t. the product on C
(see Hasegawa [16, 15]). In this section we present a similar result for a generalized notion of a guarded
trace operator on (C ,3).
Remark 3.1. Recall that the notion of an (ordinary) trace operator was introduced by Joyal, Street and
Verity [17] for symmetric monoidal categories. The applicability of the notion of trace to non-cartesian
tensor products is in fact one of main reasons of its popularity. Our generalization can also be formulated
for symmetric monoidal categories, see the remark preceding Construction 3.4 below. However, the main
results in this section, i.e., Theorems 3.5 and 3.7 do not make any use of this added generality. Hence,
we keep the Assumption 2.1 like in the remainder of the paper.
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Definition 3.2. A (cartesian) guarded trace operator on (C ,3) is a natural family of operations

TrX
A,B : C (3X×A,X×B)→ C (A,B)

subject to the following three conditions:

1. Vanishing. (I) For every f : 31×A→ B we have

Tr1
A,B( f ) = (A∼= 1×A

p1×A
//31×A

f
//B).

(II) For every f : 3X×3Y ×A→ X×Y ×B we have

TrYA,B(Tr
X
3Y×A,Y×A( f )) = TrX×Y

A,B (3(X×Y )×A
can×A

//3X×3Y ×A
f
//X×Y ×A).

2. Superposing. For every f : 3X×A→ X×B we have

TrX
A×C,B×C( f ×C) = TrX

A,B( f )×C.

3. Yanking. Consider the canonical isomorphism c : 3X×X → X×3X . Then we have

TrX
X ,3X(c) = (X

pX
//3X ).

If Tr is a (cartesian) guarded trace operator on (C ,3), (C ,3,Tr) is called a guarded traced (carte-
sian) category.

Of course, when 3 is taken to be the identity on C (as in Example 2.4(1)), our notion of guarded
trace specializes to the notion of an ordinary trace operator (w.r.t. product) of Joyal, Street and Verity.

In addition, as in the case of ordinary trace operators naturality of Tr can equivalently be expressed
by three more axioms:

4. Left-tightening. Given f : 3X×A→ X×B and g : A′→ A we have

TrX
A′,B(3X×A′

3X×g
//3X×A

f
//X×B) = (A′

g
//A

TrX
A,B( f )

//B).

5. Right-tightening. Given f : 3X×A→ X×B and g : B→ B′ we have

TrX
A,B′(3X×A

f
//X×B

X×g
//X×B′ ) = (A

TrX
A,B( f )

//B
g
//B′ ).

6. Sliding. Given f : 3X×A→ X ′×B and g : X ′→ X we have

TrX
A,B(3X×A

f
//X ′×B

g×B
//X×B) = TrX ′

A,B(3X ′×A
3g×A

//3X×A
f
//X ′×B).

Remark 3.3. The generalization for a symmetric monoidal category (C ,⊗, I,c) equipped with a pointed
endofunctor 3 : C → C requires the assumption that 3 is comonoidal, i.e., equipped with a morphism
mI : 3I → I and a natural transformation mX ,Y : 3(X ×Y )→ 3X ×3Y satisfying the usual coherence
conditions. In fact, in the formulation of Vanishing (II) we used that in every category the product × is
comonoidal via mX ,Y = can.
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Construction 3.4. 1. Let (C ,3,Tr) be a guarded traced category. Define a guarded fixpoint operator
†Tr : C (3X×A)→ C (A,X) by

f †Tr = TrX
A,X(3X×A

〈 f , f 〉
//X×X)) : A→ X .

2. Conversely, suppose (C ,3,†) is a guarded fixpoint category. Define Tr†
X
A,B : C (3X×A,X×B)→

C (A,B) by setting for every f : 3X×A→ X×B

Tr†
X
A,B( f ) = (A

〈(π`· f )†,A〉
//X×A

pX×A
//3X×A

f
//X×B

πr //B).

The main result in this section states that the category C is guarded traced iff it is a guarded Conway
category:

Theorem 3.5. 1. Whenever (C ,3,Tr) is a guarded traced category, (C ,3,†Tr) is a guarded Con-
way category. Furthermore, Tr†Tr is the original operator Tr.

2. Whenever (C ,3,†) is a guarded Conway category, (C ,3,Tr†) is guarded traced. Furthermore,
†Tr† is the original operator †.

The proof details are similar to the proof details for ordinary fixpoint operators and traced cartesian
categories (see Hasegawa [15]). Here one has to stick 3 in “all the right places” in all the necessary
verifications of the axioms for trace and dagger, respectively. However, some of proof steps, in particular
the derivation of a guarded version of the so-called Bekič identity require some creativity; it is not a
completely automatic adaptation.

Hasegawa related uniformity of trace to uniformity of dagger and we can do the same in the guarded
setup. Recall that in iteration theories uniformity (called functorial dagger implication) plays an impor-
tant role. On the one hand, this quasiequation implies the so-called commutative identities, an infinite set
of equational axioms that are added to the Conway axioms in order to yield a complete axiomatization
of fixpoint operators in domains. On the other hand, most examples of iteration theories actually sat-
isfy uniformity, and so uniformity gives a convenient sufficient condition to verify that a given Conway
theory is actually an iteration theory.

Definition 3.6. A guarded trace operator Tr is called uniform if for every morphism f : 3X×A→ X×B,
f ′ : 3X ′×A→ X ′×B and h : X → X ′ we have

3X×A
f
//

3h×A
��

X×B

h×B
��

3X ′×A
f ′
// X ′×B

=⇒ TrX
A,B( f ) = TrX ′

A,B( f ′) : A→ B.

Theorem 3.7. 1. Whenever (C ,3,Tr) is a uniform guarded traced category, †Tr is a uniform guarded
Conway operator.

2. Whenever (C ,3,†) is a uniform guarded Conway category, Tr† is a uniform guarded trace oper-
ator.

Remark 3.8. Actually, Hasegawa proved a slightly stronger statement concerning uniformity then what
we stated in Theorem 3.7; he showed that a Conway operator is uniform w.r.t. any fixed morphism
h : X → X ′ (i.e. satisfies uniformity just for h) iff the corresponding trace operator is uniform w.r.t. this
morphism h. The proof is somewhat more complicated and in our guarded setting we leave this as an
exercise to the reader.
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Finally, let us note that the bijective correspondence between guarded Conway operators and guarded
trace operators established in Theorem 3.5 yields an isomorphism of the (2-)categories of (small) guarded
Conway categories and guarded traced (cartesian) categories. The corresponding notions of morphisms
are, of course, as expected:

Definition 3.9.
1. F : (C ,3C ,†)→ (D ,3D ,‡) is a morphism of guarded Conway categories whenever F : C → D

is a finite-product-preserving functor satisfying

C
3C
//

F
��

C

F
��

D
3D
// D

and pD
FX = F(pC

X ) : FX →3DFX = F(3CX), (3.1)

and preserving dagger, i.e., for every f : 3X×A→ X we have

F( f †) = (3DFX×FA∼= F(3C X×A)
F f
//FX )‡.

2. A morphism F : (C ,3C ,TrC )→ (D ,3D ,TrD) is a finite-product-preserving F : C → D satis-
fying (3.1) above and preserving the trace operation: for every f : 3C X ×A→ X ×B in C we
have

F(Tr X
C A,B( f )) = Tr FX

D FA,FB(3DFX×FA∼= F(3C X×A)
F f
//F(X×B)∼= FX×FB).

Corollary 3.10. The (2-)categories of guarded Conway categories and of guarded traced (cartesian)
categories are isomorphic.

4 Conclusions and Future Work

We have made the first steps in the study of equational properties of guarded fixpoint operators popular
in the recent literature, e.g., [23, 24, 4, 7, 9, 19, 18, 9, 5]. We began with an extensive list of examples,
including both those already discussed in the above references and some whose connection with the
“later” modality has not seemed obvious so far—e.g., Example 2.4.6 or completely iterative theories in
Section 2.2. Furthermore, we formulated the four Conway properties and uniformity in analogy to the
respective properties in iteration theories and we showed them to be sound w.r.t. all models discussed
in Section 2. In particular, Theorem 2.16 proved that our axioms hold in all categories with a unique
guarded dagger. In Theorem 3.5, we have a generalization of a result by Hasegawa for ordinary fixpoint
operators: we proved that to give a (uniform) guarded fixpoint operator satisfying the Conway axioms is
equivalent to giving a (uniform) guarded trace operator on the same category.

Our paper can be considered as a work in progress report. Our aim is to eventually arrive at complete-
ness results similar to the ones on iteration theories. We do not claim that the axioms we presented are
complete. In the unguarded setting, completeness is obtained by adding to the Conway axioms an infinite
set of equational axioms called the commutative identities, see [10, 25]. We did not consider those here,
but we considered the quasi-equational property of uniformity which implies the commutative identities
and is satisfied in most models of interest. Only further research can show whether this property can
ensure completeness in the guarded setup or one needs to postulate stronger ones.
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Other future work pertains to a syntactic type-theoretic presentation of the axioms we studied and a
description of a classifying guarded Conway category.

Concerning further models of guarded fixpoint operators, it would be worthwhile to consider fixpoint
monads of Crole and Pitts [11] more closely. These generalize our example of the category CPO with
the lifting monad. One can prove that any fixpoint monad induces a guarded fixpoint operator satisfying
parameter and simplified composition identities as well as uniformity. However, proving the double
dagger identity in the general case is an open problem.

It would also be interesting to obtain examples of guarded traced monoidal categories which are not
ordinary traced monoidal categories and which do not arise from guarded Conway categories. Traces
w.r.t. a trace ideal as considered by Abramsky, Blute and Panangaden [1] might be a good starting point.
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