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The Invariant Refinement Method for Self Adaptation (IRM-SA) is a design method targeting de-
velopment of smart Cyber-Physical Systems (sCPS). It allows for a systematic translation of the
system requirements into the system architecture expressed as an ensemble-based component sys-
tem (EBCS). However, since the requirements are captured using natural language, there exists the
danger of their misinterpretation due to natural language requirements’ ambiguity, which could even-
tually lead to design errors. Thus, automation and validation of the design process is desirable. In
this paper, we (i) analyze the translation process of natural language requirements into the IRM-SA
model, (ii) identify individual steps that can be automated and/or validated using natural language
processing techniques, and (iii) propose suitable methods.

1 Introduction

Smart Cyber-Physical Systems (sCPS) are complex distributed decentralized systems of cooperating
mobile and stationary devices closely interacting with the physical environment. Examples of sCPS
include systems like smart home, smart traffic management, etc.

Designing and developing such a system is a quite complex task with many challenges. Mobility
and distribution bring the high level of dynamism to the system, which has to be aware of changes in
its environment. Openness and open-endness are other challenging issues resulting in needs that the
designed system has to be able to tackle unanticipated changes and participants unknown at design time.

The traditional software design and development techniques have been shown unsuitable for such
systems and novel approaches [8, 13} |14] have been proposed to tackle with the challenges. One of these
promising approaches is Ensemble-Based Component Systems (EBCS) [1]]. Using EBCS, the system is
modeled and developed as a set of ensembles, i.e., dynamic cooperation groups of software components.
Components are specified by their knowledge (i.e., component’s attributes) and by a set of processes
manipulating the knowledge.

The Invariant Refinement Method for Self Adaptation IRM-SA) [2] is a design method targeting de-
velopment of sCPS using EBCS. IRM-SA allows for a systematic translation of the system requirements
written in natural language into the system architecture expressed as components and ensembles. Using
IRM-SA, a designer gradually refines the initial requirements and iteratively builds a model that con-
sists of so-called invariants. Invariants are then hierarchically decomposed and at the lowest level, they
directly correspond to an implementation (in the DEECo component model [1]], with which IRM-SA is
currently tied).

J. Kofrori, J. Tumova, B. Buhnova (Eds.): Formal Engineering © J. Vinarek, P. Hnetynka
Approaches to Software Components and Architectures (FESCA’16) This work is licensed under the
EPTCS 205, 2016, pp. 59 doii10.4204/EPTCS.205.5 Creative Commons|Attribution License.


http://dx.doi.org/10.4204/EPTCS.205.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

60 Towards an Automated Requirements-driven Development of sCPS

To speedup and ease the design process with IRM-SA, the guide ['|and graphical editor [|have been
created. The editor allows for editing of the constraints and performing several basic validations of the
designed IRM-SA model. Additionally, skeletons of the implementation can be generated directly from
the designed model. Even though the guide and editor exist, the whole process, i.e., translation of re-
quirements into the IRM-SA model, is manual and it can be time-consuming and laborious. Additionally,
as the requirements are expressed as a text in natural language, there is a danger of ambiguity and misin-
terpretation of them, which can result in a suboptimal design. Even more, designers can unintentionally
miss important requirements.

The goal of this paper is to analyze the IRM-SA design process and identify particular steps, which
can be, fully or at least partially, automated with the help of natural language processing tools. To achieve
the goal, we use our experience gained with automated processing of textual use-cases, their verification
and transformation into an implementation ([[15} (16} [18]]).

The paper is structured as follows: Section[2]explains the IRM-SA method and its inputs and outputs.
Section [3|discusses steps of the IRM-SA method from the perspective of their automation and proposes
solutions for them. Finally, Section ] discusses related work while Section[5|concludes the paper.

2 IRM-SA explained by example

In this section, we briefly describe the IRM-SA method and its usage on an example (for a detailed
description, please see the IRM-SA guide).

The experiment described in [6] proved that usage of IRM-SA represents a significant help in EBCS
design and development. Participants of this experiment designed using IRM-SA an EBCS architecture
with less errors than participants using another design method. Even though, the resulting architectures
were not completely without errors, especially thank to different understanding of the input requirements
provided as a text in natural language and thus, there is still space for improvements.

This is even more important, as one of the outputs of the IRM-SA method — the IRM-SA model — can
be used not only at design time, but also during development and maintenance of the developed system.
In particular, the IRM-SA model allows for traceability between purpose of each invariant (requirement)
and its realization and therefore it is ideal for documentation and maintenance. Plus, as stated in [10],
it is a mistake to understand requirements specifications as final and unchangeable and thus keeping
up-to-date traceability links to requirements is quite important.

Additionally, the IRM-SA model is in the DEECo implementation employed for controlling self-
adaptation of the system, i.e., the model captures multiple alternatives of the system architecture and the
appropriate one is chosen based on actual situation.

To sum up, the IRM-SA model is one of the key artifacts of the developed system and its correctness
is essential. Therefore, designers/developers would benefit from a tool which not only allows for easy
creation of the model (the currently available editor allows for this) but also which would be able to
(semi)automatically parse the textual requirements, generate parts of the model from the requirements,
and validate individual actions performed by the designer/developer. To provide such a tool, natural
language processing methods and tools have to be incorporated in the process.

Ihttp://svn.pst.ifi.1lmu.de/ascens/guide/irm/
Zhttps://github.com/d3scomp/IRM-SA


http://svn.pst.ifi.lmu.de/ascens/guide/irm/
https://github.com/d3scomp/IRM-SA

J. Vinarek, P. Hnetynka 61

2.1 IRM-SA method and model

The IRM-SA design method is an iterative top-down design approach. A designer has to perform the
following steps in order to built the IRM-SA model from the requirement specification:

1. Find the top-level goals of the system and specify the top-level (abstract) invariants.

2. Find the components of the system (and their fields) by asking “which knowledge does each in-
variant involve and where is this knowledge obtained from?”

3. Decompose each invariant by asking “how can this invariant be satisfied?”’

4. Separate the concerns of the abstract invariants into sub-invariants that correspond to (abstract)
activities that can be done in isolation.

5. Compose invariants together by asking “why do I need to satisfy these invariants?”

6. In case of situation-specific requirements, try first to accurately capture the condition of being in
one situation or another. Use the assumptions to do that. Then use OR decomposition to specify
which invariants to satisfy in each situation.
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Figure 1: IRM-SA model for e-cars system

Figure[I|shows the IRM-SA model created for the electric car (e-car) navigation and parking system
example; its requirement specification is in Figure [2] Both the specification and model are overtaken
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from the IRM-SA guide (and they were also employed in the experiment mentioned above). The model
was created manually with the help of the IRM-SA model editor.

The highlighting and underlining in the requirements specification is included solely for the purpose
of this paper and would not appear in an actual specification. Meaning of the highlighting/underlining is
as follows:

e Underlined text refers to components and their attributes (double line for components, single line
for attributes). Red color is used for the “E-car” component, blue one for the “Parking” component)

e Highlighted text is related to a particular invariant; colors correspond with colors in figure[I]

e Purple numbers in the requirements specification refer to corresponding invariants in the model.

Electric Car Navigation and Parking (ECNP)

Summary:
The main objective of this system is to allow e-cars to coordinate with parking stations and have an adequately up-to-date view of the

availability of parking spaces at each time point. At the same time, e-cars should monitor their battery level and choose a different
trip plan (e.g., which involves picking a parking place which is closer to the e-car) if the existing plan is not possible to follow any more.

Requirements:
The general requirements for the ECNP are:

1. Every e-car has to arrive to its place of interest (POI) and park within a radius of 100 meters. [2] In order to do that, every car
needs to :
(a) Continuously monitor its energy level (battery) ;[9]
(b) Continuously monitor its position) ;[7]

(c) Continuously assess whether its energy level would be enough to complete the trip based on the distance left to cover;

(8]
(d) Have a plan to follow, which is based on its energy level and on the available parking slots in the parking places near the
POI .[11, 14]

2. Every parking place has to continuously monitor its availability level (e.g., in terms of available parking slots per time slot .[10]

3. The information regarding the availability of the parking slots has to be exchanged with the appropriate e-cars .[12, 15]

The situation-specific requirements of the ECNP are:

4. When an e-car is more than Skm far from the POI [16], it should update its plan at least once per 60 seconds .[14]

5. Whenan e-car is equal to or less than Skm far from the POI [13], it should update its plan at least every 10 seconds [11].

Figure 2: e-cars system requirements

3 Automation of IRM-SA

In this section, we analyze the IRM-SA method from the perspective of its automation. We identify in-
dividual steps that can be automated using natural language processing techniques, and propose suitable
methods.

The individual goals of such an automation are: (i) (semi)automatically generate invariants in the
IRM-SA model from the requirements document (and thus make synchronization and traceability be-
tween the requirements and IRM-SA model more robust and faster to obtain), (ii) (semi)automatically
validate the resulting IRM-SA model.
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3.1 Component identification

Components in EBCS design represent “smart” entities of the system. In our example, there are two
types of components — E-Car and Parking. Both components and also their attributes are several times
mentioned in the requirements as well as in the summary. Based on our experience with derivation of the
domain model from textual specification [[17]], it seems possible to obtain a list of potential components
in an automated fashion. Also, a similar approach is employed in [3]], where authors retrieve UML class
models from test cases.

Both names of the components and their attributes are in the requirement texts almost always repre-
sented as noun phrases, which in simple sentences appear as subjects or objects (either direct or indirect).
To parse a sentence and identify its elements, the Stanford CoreNLP toolkit [[11] is an ideal tool. For
example, with the usage of the Stanford dependency parser on the sentence ”Every car needs to contin-
uously monitor its energy level (battery).”, we get the dependency graph showed in Figure 3| The parser
returns a part-of-speech (POS) tag for each word (e.g., VB for verb in base form, NN for singular noun)
and dependency relations between the words (e.g., nsubj for nominal subject or dobj for direct object).
The resulting list of potential names of components and attributes contains car (nominal subject) and
energy level (direct object). Unfortunately, this might not be sufficient (not all of the subjects/objects
are components/attributes). A possible way to overcome this issue is to employ statistical classification
techniques to learn the patterns from training data. Similarly, we have employed these techniques in [18]].

needs/VBZ
car/NN monitor/VB
Every/DT to/TO  continuously/RB level/NN
nmod:poss
compound appos
its/PRP$ energy/NN battery/NN

Figure 3: Dependencies and POS tags obtained from Stanford dependency parser

3.2 Component disambiguation

Another issue with the list of candidates for component/attribute names is that it may be ambiguous.
Multiple noun phrases may refer to the same component, e.g., in our e-cars system specification the
words “e-car” and “car” refer to the same component. Similarly, “parking station” and “parking place”
or “energy level” and “battery”. These ambiguities can be a sign of a poorly written specification and
their replacement with the same word or phrase is advisable. On the other hand, such a situation may
happen (especially if the specification is prepared by multiple authors and/or it evolves over time) and
even more, in some cases, the use of different words for the same entity may be intentional, e.g., in a case
of abbreviations and noun phrase shortenings (“place of interest” and “POI” or “trip plan” and “plan”,
etc.).

A distinction of these cases is not always clear and we expect that user will have to be involved in a
decision about these ambiguities.

For example, the requirement in Figure |3|is written in a way which suggest that the phrase “energy
level” and “battery” can be used interchangeably. This relation can be deduced automatically, as the
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word “battery” has been marked as appositional modifier (appos) of the word “level”. Another option for
disambiguation might be employment of string distance metrics [4E] to identify corresponding entities
(e.g., “car” and “‘e-car”).

3.3 Invariant type identification

During applying the IRM-SA method, sentences in the Requirements section of the specification are
rather directly translated into invariants of the IRM-SA model. However, the issue is to identify whether
the particular sentence relates to the abstract, process, exchange or assumption invariant. It would be
helpful, if the IRM-SA editor could automatically propose the invariant type.

Assumption invariants should be included only in the situation-specific section of the requirements
specification and thus is easier to locate them (see the yellow highlighting in Figure [2] and the yellow
invariants in Figure [T). Additionally, the particular sentences express a condition, which is necessary
to detect and extract. To extract it, the dependency parser can be again utilized. To support it, tools
for information extraction like OllieE] or OpenIEE] can also be used as they are able to detect enabling
conditions.

To distinguish between process and exchange invariants, it is necessary to analyze the main verb
of the sentence (see the blue and green highlighting in Figure [2] and the blue and green invariants in
Figure [I). With verbs such as “exchange” or “propagate”, there is a high chance that the sentence
corresponds to exchange invariant, while verbs “have”, “monitor”, “assess”, “obtain”, “acquire” or “de-
termine” usually denote a process invariant. A direct solution would be a simple comparison of the
particular verb with a predefined set of verbs but it would be rather limiting. Instead, a suitable approach
is to classify verbs according to their meaning, which is taken from WordNet[12]. WordNet is a large
lexical database of English nouns, verbs, adjectives and adverbs. In the database, synonyms are grouped
together forming so-called synsets. The synsets are interlinked according to their relations, forming net-
work of related words and concepts. Multiple WordNet similarity measures were proposed and their
implementation is availablef’-] and can be used for the process and exchange invariants identification.

Finally, sentences containing additional sub-requirements can be marked as abstract invariants (the
gray highlighting and the gray invariants in Figures [I|and [2)).

3.4 Knowledge flow recognition

One of the key IRM-SA ideas is that each invariant (with the exception of assumption ones) represents
a computation that produces output knowledge given a particular input knowledge such that the invariant
is satisfied (as stated in [2]).

For example, in the invariant deduced from the requirement 1(d) in Figure[2] the energy level and POI
of the vehicle and the available parking slots from the parking places serve as the input parameters for
computation of the vehicle’s plan (all possible parameters, i.e., component attributes, are already known
as they were identified in the previous phases). Schematically, it can be written

V::energy, V::POI, P::availability -> V::plan.

3an implementation available at http: //secondstring.sourceforge.net/

4https://github.com/knowitall/ollie
Shttps://github.com/knowitall/openie
Shttp://search.cpan.org/dist/WordNet-Similarity/
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Such an abstraction of the requirements to input and output parameters allows for easier reasoning about
the invariants and it is employed in subsequent sections.

However, an issue is how to identify which parameters are input and which output. A straightforward
automatic approach for distinguishing input parameters from the output ones is an iteration starting
from the simple invariants and taking into account types of parameters already distinguished from the
previous iterations. The approach starts with the process invariants having only single parameter. Such
a parameter must be an output one (otherwise the invariant would not produce any knowledge and the
above mentioned IRM-SA idea would not hold). Examples of such invariants are requirements 1(a) and
1(b). Next, if a single attribute is present in multiple invariants, it can be assumed that it serves as an
input parameter. Nevertheless, this is only an assumption and thus a fully automated approach is hard to
achieve. A possible solution is to use an assisted iterative approach, in which a tool identifies input and
output parameters and the human designer confirms/reverts the decisions.

In some cases, computation associated with an abstract invariant may not have all the parameters
precisely specified, as the particular parameters are unknown yet. They may be specified in the child
invariants and from the view of the higher-level invariant, they can be seen as an implementation detail.
In such cases, we use the notation V: : 7 to mark that the component V participates in the invariant, but
the specific attribute is specified later in a child invariant. The final assignment of the parameter is up to
the designer.

3.5 Invariant refinement and composition

In EBCS, communication between components is implicit via their knowledge sharing, which is con-
veyed via ensembles. An ensemble is thus specified via a condition determining when components are
part of the particular ensemble and via knowledge that has to be interchanged.

Let us again assume the requirement 1(d) with the parameter abstraction

V::energy, V::POI, P::availability -> V::plan.

As the parameters come from different components (V and P) but the computation can be performed only
in a single component, it is clear that the invariant has to be refined as a composition of several invariants,
from which at least one is an exchange invariant (in the implementation, the exchange invariants results
in the ensemble definition). Such situations can be rather easily detected automatically based on the
parameters’ owners.

Nevertheless, refinement and composition of the abstract invariants is more difficult as they repre-
sent high-level goals and can intentionally abstract from some “implementation details”, i.e., omit some
attributes. For example, in Figure [T, composition of the invariants 5 and 6 means that the trip plan
is computed first without any knowledge about availability of the parking places (the output parame-
ter V: :planFeasibility in the invariant 5) and then it is made more specific with information about
the availability (the invariant 6). Different composition of the lower-level invariants would lead to a
completely different behavior.

Another issue in the automatic composition of invariants is a reasoning about situation-specific re-
quirements, which have to be grouped together according to a requirement they belong to. The grouping
is performed based on their output parameters and can result in duplication of invariant subtrees. How-
ever, identification of the right subtree to be duplicated is not straightforward. Both these issues are very
hard to solve automatically and we plan to further investigate possibilities of their automation in more
detail.
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3.6 Model validation

With the abstraction of invariants described in [3.4] the IRM-SA model can be automatically validated
according to the knowledge flow. In particular, following checks can be performed:

e Configurations with missing input parameters can be discovered (i.e., an invariant producing the
particular attribute is not included in the configuration due to a missing dependency relation).

e Configurations with multiple invariants writing to the same attribute can be detected.
e Also, detection of unused output parameters or unused attributes can be performed.

All of these checks may point to flaws in the model and/or specification and discover them early.

4 Related work

As far as we know, there are no attempts to automatize requirements processing for EBCS design. Never-
theless, a related approach is described in [3[], in which authors propose an approach called NPL-KAOS
that can automatically obtain a KAOS model from large volume of literature (KAOS [9] is a goal-oriented
requirement engineering method and it was one of inspirations for the IRM-SA method). With the use
of natural language processing tools and text mining techniques they process abstracts of scientific pub-
lications. First, they detect goal-oriented keywords and then they use the Stanford parser to tag semantic
structures. From obtained semantic trees they extract goals and finally organize them into taxonomies.
The taxonomies are used to define relations between goals and this way they simulate the process of
refinement. Similarly to our approach, the authors try to automatically derive a model from textual data
which would serve for purposes of requirements engineering. However, their problem is different. Their
main goal is to help requirements engineer during the early stages of goal elicitation by extraction of main
concepts from the large body of research abstracts. Although the extraction process may miss some goals
in the single abstract, with large number of abstracts they can count on the fact that the goal will be at
the end noticed. Contrary, our method is intended to process a single specification and therefore cannot
reckon on this effect.

In [3]], the authors (semi-)automatically derive a UML model and OCL constraints from a specifica-
tion and test cases, which are both written in natural language. They employ formal methods to verify
correctness of the derived design. First, grammatical analysis is used to derive UML class diagrams from
the test cases. Then, the behavior of test cases is inspected and the UML sequence diagrams are derived.
In the next step, OCL constraints are deduced from the requirements and test cases. Finally, verification
of static aspects (UML class diagrams and OCL invariants) and dynamic aspects (satisfaction of speci-
fied method pre-conditions and post-conditions) is checked. As in our approach, authors use the Stanford
parser to get dependencies from the sentences. They also employ WordNet (in their case, to distinguish
components of the system and actors). The main difference is that we directly target sSCPS design and
EBCS and therefore include an identification of process and exchange invariants, adaptability, etc.

5 Conclusion

In the paper, we have analyzed the IRM-SA design method with respect to its possible automation with
the help of natural language processing methods and tools. We have identified steps that can be automated
and sketched solutions. As the automated natural language understanding is generally still a challenging
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issue, the full automation is hard (and in many cases impossible) to achieve. Thus, we target a semi-
automated system that guides the human designer, recommends solutions and validates the designers
actions.

Currently, we plan to implement all the identified proposed solutions, to integrate them to the existing
IRM-SA editor and to validate the resulting system on a real-life case-study.

Even though the proposed approaches are tailored to IRM-SA (which is currently tied with the
DEECo component model), they can be reused in different contexts. The IRM-SA method itself can
be without changes applied to another ensemble-based component model (e.g., Helena [7]) and the ap-
proaches proposed in this paper can be applied in tools for the KAOS method or similar ones.
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