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We present work on behavioral specifications of OSGi components. Our behavioral specifications
are based on finite automata like formalisms. Behavioral specifications can be used to find appro-
priate components to interact with, detect incompatibilities between communication protocols of
components and potential problems resulting from the interplay of non-deterministic component
specifications. These operations can be carried out during development and at runtime of a system.
Furthermore, we describe work carried out using the Eclipse based implementation of our framework.

1 Introduction

Traditional software component systems come – if at all – with a basic typing that indicates possible
values at the component interface. In our work, we are extending this view to specify possible behavior
of components in addition to the basic typing. We use a typing that encapsulates protocols specified by
finite automata based descriptions. We present a first version of an implementation for the OSGi [19]
framework. OSGi allows dynamic reconfiguration of Java based software systems. We demonstrate a
tool based approach that allows the specification of method call based communication protocols, and
the formalization of creation and deletion of components during a system’s lifetime. We check possible
behavior of interacting components for behavioral compatibility including deadlocks. We can resolve
possible incompatibilities by choosing options from non-deterministic behavioral specifications and –
after discovery of a potential incompatibility – reacting inside the components accordingly.

This work describes efforts towards an operationalization and an implementation of a behavioral
types framework for OSGi. It realizes parts of our vision described in [6]. Unlike our work presented
in [7], it is realized entirely using Java technology and is aimed towards the OSGi component system.
A more comprehensive version of our OSGi semantics is described in a report [5]. In this paper, we
primarily address protocol based behavior of components. The new contributions of this work comprise:
• A formal definition of the OSGi semantics that is suitable for the abstract view that our behavioral

types provide on OSGi.

• A first implementation of a finite automata based behavioral type system for OSGi that integrates
different tools and workflows into a framework.

• Early versions of editors and related code for supporting adaption and checking.

• An exemplarily integration of behavioral type checkers comprising minimization, normalization
and comparison. One checker has been implemented in plain Java. Additionally we have integrated
a checker and synthesis tool presented in [12] for deciding compatibility, deadlock freedom and
detecting conflicts in non-deterministic specifications at runtime and development time.

• Usage scenarios (interaction protocols) of our behavioral types for OSGi at runtime and develop-
ment time.

• The modeling of an example system: a booking system to show different usage scenarios.

http://dx.doi.org/10.4204/EPTCS.108.6
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Figure 1: Behavioral types at development time

1.1 Our Setting

Figure 1 shows the development chain supported by our framework. The development of our Eclipse
based development process for OSGi bundles can roughly be divided into four phases. Bundles are top-
level OSGi components that aggregate classes, Java packages and deployment information. The four
phases are supported by our behavioral descriptions in the following way.

• In the requirements and specification phase, after the component / bundle structure has been de-
termined, one can start using our tools for behavioral types. Requirements on components and
specified protocols for component interaction can be described by using the automata like specifi-
cation mechanisms provided by our behavioral types.

• During the implementation, one creates bundles which contain the OSGi bundle information: static
dependencies, classically typed interface descriptions, objects to be created at start of the bundle
and Eclipse specific plugin information, e.g., extensions to the user interface. In addition to this
we add our behavioral descriptions. These are given as files and can become accessible through
the OSGi registration service. The OSGi registration service keeps tracks of objects / services
provided by bundles and their properties.

• At deployment and runtime of the system one has bundles including their behavioral specifications.
These are 1) registered at the OSGi infrastructure and 2) can be used to discover appropriate com-
ponents. Components can further use these (as shown in Figure 2) to decide 3) whether and how
they want to interact, to discover potential incompatibilities and ways to resolve them. Decision
may be based on algorithms and tools which are provided as separate bundles.

1.2 Related Work

Interface automata [1] are one form of behavioral types. Like in this work, component descriptions are
based on automata. The focus is on communication protocols between components which is one aspect
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Figure 2: Behavioral types at runtime

that we also address in this paper. Interface automata are especially aimed at compatibility checks of
different components interacting at compile time of a system. Behavioral types have also been used in
the Ptolemy framework [18] with a focus on real-time systems.

Specification and contract languages for component based systems have been studied in the context
of web services. A process algebra like language and deductive techniques are studied in [9]. Another
process algebra based contract language for web services is studied in [8]. Emphasize in the formalism
is put on compliance, a correctness guaranty for properties like deadlock and livelock freedom. Another
algebraic approach to service composition is featured in [14].

JML [11] provides assertions, pre- and postconditions for Java programs. It can be used to specify
aspects of behavior for Java methods. A similar description mechanism has been used for systems
specified in synchronous dataflow languages like Lustre [13]. Assertion like behavioral specifications
have also been studied in the context of access permissions [10].

Behavioral types as means for behavioral checks at runtime for component based systems have been
investigated in [3]. In this work, the focus is rather put on the definition of a suitable formal representation
to express types and investigate their methodical application in the context of a model-based development
process.

A language for behavioral specification of components, in particular of object oriented systems –
but not OSGi –, is introduced in [16]. Compared to the requirement-based descriptions proposed in
our paper, the specifications used in [16] are still relatively close to an implementation. Recent work
regarding refinement of automata based specifications is, e.g., studied in [20].

To the best of our knowledge, existing work does describe OSGi and its semantics only at a very
high level. Other behavioral type like frameworks do not exist for OSGi up till now. A specification of
the OSGi semantics based on process algebras is featured in [22]. Some investigations on the relation
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between OSGi and some more formal component models have been done in [17]. Means for ensuring
OSGi compatibility of bundles realized by using an advanced versioning system for OSGi bundles based
on their type information is studied in [4]. Aspects on formal security models for OSGi have been studied
in [15].

1.3 Overview

We present OSGi and our formalization of its semantics in Section 2. Section 3 introduces our automata
based behavioral types specification mechanism. Operations on behavioral types at development and at
runtime are described in Section 4 for the OSGi framework. Implementation of the framework using
Eclipse / OSGi techniques is described in Section 5. Section 6 exemplifies the use of behavioral types
and its operations for a booking system and a conclusion is given in Section 7.

2 OSGi and its Semantics

We present an overview on OSGi following our description in [6] and present a formalization of the
semantics based on our more detailed report [5].

The OSGi framework is a component and service platform for Java. It allows the aggregation of Java
packages and classes into bundles (cf. Figure 3) and comes with additional deployment information. The
deployment information triggers the registration of services for the OSGi framework. Bundles provide
means for dynamically configuring services, their dependencies and usages. OSGi bundles are used as
the basis for Eclipse plugins but also for embedded applications including solutions for the automotive
domain, home automation and industrial automation. Bundles can be installed and uninstalled during
the runtime. For example, they can be replaced by newer versions. Hence, possible interactions between
bundles can in general not be determined statically.

Bundles are deployed as .jar files containing extra OSGi information. This extra information is stored
in a special file inside the .jar file. Bundles generally contain a class implementing an OSGi interface that
contains code for managing the bundle, e.g., code that is executed upon activation and stopping of the
bundle. Upon activation, a bundle can register its services to the OSGi framework and make it available
for use by other bundles. Services are implemented in Java. The bundle may itself start to use existing
services. Services can be found using dictionary-like mechanisms provided by the OSGi framework.
Typically one can search for a service which is provided using an object with a specified Java interface.
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In the context of this paper, we use the term OSGi component as a subordinate concept for bundles,
objects and services provided by bundles.

The OSGi standard only specifies the framework including the syntactical format specifying what
bundles should contain. Different implementations exist for different application domains like Equinox1

for Eclipse, Apache Felix2 or Knopflerfish3. If bundles do not depend on implementation specific fea-
tures, OSGi bundles can run on different implementations of the OSGi framework.

A Method-Call Semantics

In the following we provide a formal semantics for OSGi. We concentrate on capturing behavior origi-
nating from method calls between different bundles and objects. Memory and exchange of data between
these bundles and objects is not taken into account. Thus, we provide an overapproximation – in the
sense of possible behavior – and abstraction of a real system.

Object and method definitions An object is defined as a tuple (m0, ...,mn) comprising constructor and
method definitions m0, ...,mn. Since we incorporate constructors into this tuple it cannot be empty.

The semantics of an object is given by the semantic interpretation of its methods and its object state.
The semantics of a method is giving by an automaton (L,E, l0) comprising a set of locations L an initial
location l0 ∈ L and edges E = (li,M, l j) between locations. An addition to source and target location
li and l j an edge comprises a set (can be ordered) of method calls and special calls M. These can be
tuples (m,o,b) ∈M comprising a method definition m of an object o that is associated with a bundle b.
Furthermore, M can contain special calls for: adding and removing bundles, and creating and deleting
objects. Each transition from E represents an action that is atomic or non-terminating to the method but
not to the OSGi system. It can represent a memory update, but also other method calls. A method call
can itself trigger a non-terminating method in the same or in other objects. Therefore a transition does
not necessarily represent a terminating operation.

An object state is a set of tuples {(mn, lni , idn,csn), ...,(mp, lp j , idp,csp)} comprising active method
status states (mn, lni , idn,csn), ...,(mp, lp j , idp,csp). Each tuple represents a method call, consisting of a
method definition, its actual locations, an identifier id and a call state cs.

The call state is part of an active method status state. It is a set of method definitions and method
id plus status information for which the active method is waiting to return. The id is used to distinguish
different calls to the same method.

Bundles From an operational semantics point of view, bundles aggregate objects into units that are
enumerated in the OSGi system and can be loaded and removed during runtime by user commands
or from other bundles. A bundle is a set of objects {oactivator, ...} comprising an object oactivator =
(...,mstart ,mstop, ...) which is created on activation. It comprises two distinguished methods mstart ,mstop

which are called during activation and deactivation.
In an implemented OSGi system, the oactivator object has to implement the

BundleActivator interface defined in org.osgi.framework. It comprises two methods with
signatures:

void start(BundleContext context) throws java.lang.Exception

1http://www.eclipse.org/equinox/
2http://felix.apache.org/site/index.html
3http://www.knopflerfish.org/

http://www.eclipse.org/equinox/
http://felix.apache.org/site/index.html
http://www.knopflerfish.org/
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and

void stop(BundleContext context) throws java.lang.Exception

The semantical definition of bundle states aggregates its object states. A bundle state is defined as
a set of object states {soi , ...,sok} for object states soi , ...,sok . Like for bundles, objects, and methods,
we distinguish between a system state and a system definition – capturing a systems architecture. Both
can change during the lifetime of a system. A standard OSGi system has one (as, e.g., in the Equinox
framework implementation) or more bundles which are active at startup.

OSGi systems and OSGi system states An OSGi system is a set of bundles. It comprises a distin-
guished bundle binit which is activated at start-up. Analog to object and bundle state, we define an OSGi
system state. A system state is defined as a set of bundle states {sbi , ...,sbk} for bundle states sbi , ...,sbk .
The initial state of an OSGi system comprises the start of the start method in the activator object of the
initial bundle. The initial state of an OSGi system is defined as sinit = {sbinit} with sbinit = {oactivator} and
oactivator = {(mstart , lstart0 ,0, /0)}.

Dynamic architecture of OSGi systems An important aspect of our formalization is the impact on
OSGi operations that can change the structure of OSGi systems. Such operations can be triggered by
OSGi methods themselves, e.g., comprising adding and removing objects and bundles. Another option
is to perform these operations by a command line interface (e.g., starting Eclipse with the console option
using Equinox) at runtime on the OSGi framework. Here, we distinguish the following structure chang-
ing operations on OSGi systems: Starting / loading a system, adding a bundle and activating it, removing
a bundle (and deactivating it), adapting a bundle and its services, closing / removing a system. Char-
acteristic for these operations is the fact that new behavior becomes possible or is removed at runtime
of the OSGi system. Thus, the semantics of an OSGi system and possible events can in general not be
determined statically at the start of a system.

State transitions in OSGi State transitions can modify both, structure of a system and the state of
objects, bundles and a system. They are made up from local transitions appearing within methods and
from handling terminated methods. In general state transitions are highly non-deterministic and define a
relation of

previous system state × previous system definition ×
next system state × next system definition

For an OSGi system S = {...,b, ...}: We regard the system state s = {...,sb, ...} with so ∈ sb and
(m, li, id,cs) ∈ so. From here, the following basic state transition cases can be distinguished:

• Calling a method m′ of object o′ from a bundle b′: We regard a transition (li,M, l j) ∈ o with o ∈ b.
The following steps are performed.

1. The step can be performed under the preconditions that (m′,o′,b′) ∈M and o′ and b′ exist in
S.

2. cs is updated by adding the method call indicating its bundle, object and id.
3. A new element (m′, l′0, id

′, /0) is added to the object state where m′ belongs to o′. id′ is a new
identifier for the method m′.

• Executing a method step: We regard a transition (li,M, l j) ∈ o with o ∈ b.
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1. The step can be performed under the precondition that cs = /0.
2. so is updated as s′o = so/(m, li, id,cs)∪{(m, l j, id,cshandle(M))}. Thus,

(m, li, id,cs) is removed and (m, l j, id,cshandle(M)) is added instead.
cshandle transforms M into a representation that indicates which methods have been called
and keeps track of their ids. Furthermore, cshandle takes care of special operations that
modify the system definition.

• Returning from a method call: Any method status state with cs = /0 and no edge that may lead to a
possible succeeding state can be processed in the following way:

1. The method status state is removed.
2. The call state of any method that m has called is updated such that the entry for the m call is

removed.

Furthermore, the following operations are handled:
• Adding a bundle : The cs from any object state so with (m, li, id,cs) ∈ so can contain a special

operation (denoted: add bundle b′) for adding a bundle b′ and changing the system definition
from S into S′ = S∪{b′}.
• Removing a bundle: The cs from any object state so with (m, li, id,cs) ∈ so can contain a spe-

cial operation for removing a bundle b′ (denoted: remove bundle b′) and changing the system
definition from S into S′ = S/{b′}.
• Creating an object. The cs from any object state so with (m, li, id,cs) ∈ so can contain a special

operation (denoted: create object (o′,b)) for adding an object o′ and changing a bundle definition
b ∈ S to b′ = b∪{o′}. The system definition is, thus, changed from S into S′ = S/b∪{b′}.
• Deleting an object: The cs from any object state so with (m, li, id,cs) ∈ so can contain a special op-

eration (denoted: delete object (o′,b)) for deleting an object o′ and changing a bundle definition
b ∈ S to b′ = b/o′. The system definition is, thus, changed from S into S′ = S/b∪{b′}.

Key characteristics of the OSGi semantics The method call semantics described above features some
key-characteristics of OSGi:
• State transitions in bundles and objects are triggered out of the bundles and objects themselves.

They only involve the component where they originate from and components that are interacted
with during a state transition. The rest of the system remains untouched with respect to the under-
lying abstractions of our semantics.

• Different components run asynchronously as long as there is no method call between them.

• Method calls provide synchronization points between components.

• Method calls are blocking.

3 Behavioral Types as Specification Mechanism

Our framework essentially supports finite automata for specifying expected incoming, potential outgoing
method calls, the creation and deletion of components during a time span and other events that may occur
in the lifetime of a system. A component’s behavior can be specified by one or multiple automata each
one describing a behavioral aspect. Formally, we have an alphabet of labels Σ, a set of locations L, an
initial location l0 and a set of transition edges E where each transition is a tuple (l,σ , l′) with l, l′ ∈ L and
σ ∈ Σ. These are aggregated into a tuple to form a behavioral specification:
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(Σ,L, l0,E)

This view abstracts from the specifications given in Section 2. Our intention is to define interaction
protocols or some aspects of them like the expected order of incoming and outgoing method calls for a
component. Specifications for different components are independent of each other as long as there is no
method call (e.g., indicated by the same label name) in the specifications.

Example: Two components interacting Specifications can be used for different behavioral aspects.
Figure 4 shows two excerpts of automata for outgoing and expected method calls from two different
component specifications:

({newPrtcl,oldPrtcl, ...},{l0, l1, l2, ...}, l0,{(l0,newPrtcl, l1),(l0,oldPrtcl, l2), ...})

and

({newPrtcl, ...},{l0, l1, ...}, l0,{(l0,newPrtcl, l1), ...})

Here, the first component can do two different method calls in its initial state: newPrtcl, oldPrtcl. The
second component expects one method call newPrtcl in its initial state. In this case both components
may interact with each other, if both components use the newPrtcl.

4 Checking Compatibility and Making Components Compatible

We describe operations that can be used at development and at runtime of a system. The operations use
behavioral types from Section 3. Furthermore, we briefly describe the handling of potential incompati-
bilities discovered by type comparison at runtime within a software system.

4.1 Simple Behavioral Type Checking

We have developed and implemented different operations for handling and comparing behavioral types,
for deciding compatibility and for deadlock freedom.

Simple comparison for equality of types and comparison for refinement between two automata based
specifications involves the following steps.

• A basis for the comparison of two types is the establishment of a set of semantical artifacts (e.g.,
method calls) that shall be considered. The default is to use the union of all semantical artifacts that
are used in the two types. Comparison for refinement is achieved by eliminating certain semantical
artifacts from this set. For consistency this also requires eliminating associated transitions from
the types or, depending on the desired semantics, replacing an edge with an empty or τ label.

• It is convenient to complete specifications for further comparison: Specification writer may only
have specified method calls or other semantical artifacts that trigger a state change. Here, we
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automatically add an error location. We collect possible labels and for locations that do not have
an edge for a label leading to another location indicating a possible semantical artifact, we add
edges with the missing label to the error location.

• In case of specifications which have been completed and that have no locations with two outgoing
edges with the same labels, we perform a minimization of automata based specifications. This
way, we merge locations and get rid of unnecessary complexity automatically.

• Normalization of automata based specifications. This, involves the ordering of edges and in some
cases locations with respect to the lexicographic order of their labels / location names.

• Checking for equality involves the checking of equality of the labels on edges. Optionally, one
can also consider the equality of location names of an automaton. Location names may imply
some semantics but in our standard settings they only serve as ids. When location names serve
only as ids, we construct a mapping between location names of the two automata involved in the
comparison operation.

These operations have been implemented in Java. They do not need additional tools or non-standard
plugins.

4.2 Deciding Compatibility and Deadlock-Freedom

In addition to the operations described in Section 4.1 we have adapted a SAT and game-based tool –
VissBIP presented in [12] – to serve as a compatibility and deadlock checker for our behavioral types for
OSGi. Our framework uses VissBIP to support the checking of the following properties:
• Deadlocks checking: deadlocks resulting from potential sequences of method calls can be detected.

• Compatibility: A component anticipating a certain behavior of incoming method calls matches
potential behavior of outgoing method calls by other components.

VissBIP uses a simplified version of the BIP semantics [21]. A system comprises concurrent au-
tomata with labeled edges. The automata synchronize with each other by performing edges with the
same labels in parallel. Otherwise, the default case is that automata do not synchronize with each other.
For comparing method call based behavioral specifications we use VissBIP on specifications that com-
prise expected incoming and outgoing method calls of components. In OSGi synchronization between
components happens only when one component calls a method of the other component as indicated in the
behavioral specification and the OSGi semantics. On the VissBIP side this corresponds to same labels in
the automata that represent the behavior. In addition to the label compatibility checking, VissBIP is able
to perform the introduction of priorities.

4.3 Runtime Adaption of Systems

One way of runtime adaption is the reaction to potential deadlocks or incompatibilities. Recall Figure 4:
it shows behavioral specifications of two components which intend to communicate with each other.
Possible outgoing method calls of one component and expected incoming method calls of the other
component are shown. It can be seen that the first component is able to communicate using two different
protocols: one starts by calling an initialization method newPrtcl, the other one starts by calling an
initialization method oldPrtcl. The other component expects the newPrtcl call.

When we give these two specifications to VissBIP, it will return a list of priorities where the new-
Prtcl edge is favored over the oldPrtcl edge in the first specification. In a Java implementation the first
component can use this to dynamically decide at runtime which protocol to use.
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• First, the component loads its own behavioral specification and the specification of the expected
method calls of the second component. Technically, we support loading files and the registration
of models as properties / attributes of bundles as provided by the OSGi framework.

• Next, we invoke VissBIP or another checking routine. Passing the behavioral specifications as
parameters.

• The checking routine gives us a list of priorities. In the Java code we have a switch statement as
a starting point for handling the different protocols. We check the priorities and go to the case for
the appropriate protocol.

Thus, in addition to deadlock detection, we can use behavioral specifications for coping with different
versions of components and desired interacting protocols.

4.4 Component Discovery at Runtime

A central feature of our behavioral descriptions for OSGi components is registering them to a central
OSGi instance. In order to inform other components of the existence of a bundle with behavioral of-
fers and needs, we register its behavioral properties using the OSGi service registry belonging to a
BundleContext which is accessible for all bundles in the OSGi system:

registerService(java.lang.String[] clazzes,
java.lang.Object service,
java.util.Dictionary<java.lang.String,?> properties)

Here, we register a collection of behavioral objects as properties for a service representing a bundle under
a String based key. In our framework, we register a collection of behavioral models as ”BEHAVIOR”.
The behavioral models are loaded from XML files that are integrated into the bundle. The behavioral
models come with meta information which identify the parts of the behavior of a bundle which they
describe. The service itself is represented as an object. Additional interface information is passed using
the clazzes argument.

5 Tool Support during Development and at Runtime

The features described in this paper have been implemented in Eclipse. Our framework offers the fol-
lowing ingredients and is build using the following concepts:

• EMF/.ecore based meta model of behavioral descriptions for easy interactions with other Eclipse
based tools. Each specification is associated with a description which classifies what is actually
specified, e.g., incoming method calls, outgoing method calls, component creation and deletion or
something mixed.

• Editors for behavioral descriptions. Figure 5 shows a screenshot of an editor for automata based
specifications.

• Other operations like abstractions, minimization and comparison of behavioral types (some of
them are described in Section 4.1) are implemented. They can be used by referencing one of our
plugins and can be extended.

• An integration of the VissBIP checker as Eclipse plugin / OSGi bundle and transformations for
using it with our behavioral types are offered.
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Figure 5: Specifying behavior using our editors in Eclipse

While the editors are only invoked at development time, the specifications and operations on them
are used both: at development time and at runtime of the system for reconfiguration. At development
time, they are invoked using the Eclipse front-end. At runtime, they are invoked using method calls to
plugins that realize the operations and are deployed as OSGi bundles.

6 Behavioral Types for a Booking System

We present the use of behavioral types to highlight some features and usages of our work on an example:
a flight booking system.

Figure 6 shows the main ingredients of our flight booking system. Clients are served by middle-
ware processes which are created and managed by a coordination process. Middleware processes use
concurrently a flight database and a payment system. The described system is an example inspired by
realistic systems where the middleware is implemented using Java/OSGi. In addition to the middleware
components we describe databases and parts of the frontend using our behavioral types to make checks
of these parts possible.

The following means of behavioral interaction can be distinguished:

• Component calls between methods / communication protocol In our flight booking system, a
client can call a coordination process and middleware processes. Middleware processes can call
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Figure 6: Components of our flight booking system

methods providing access to the flight database and the payment subsystem. The method calls
need to respect a distinct protocol which can be encoded using our behavioral types.

• Creation and deletion of new components The coordination process creates and removes mid-
dleware process such that there is one process per client. Providing support for analysis of such
dynamic aspects is a long term goal for our behavioral types but not in the scope of this work.

• Concurrent access to shared resources Middleware processes perform reservations, cancella-
tions, rebookings, seat reservations and related operations on the flight database. These operations
do require the locking of parts of the data while an operation is performed. For example, during a
seat reservation a certain amount of the available seats in an aircraft is locked so that a customer
can chose one without having to fear that another customer will chose the same seat at the very
same time. In the current state we are able to provide some behavioral types support here.

Example: Specification of outgoing method calls of a middleware process Specifications of pos-
sible expected incoming and potential outgoing method calls give information about a communication
protocol that is to be preserved. Typically different interaction sequences are possible, especially since
we are dealing with abstractions of behavior. In the booking system, a middleware process commu-
nicates with a flightdatabase (db) and the payment system (pay). The expected order of method calls
for a flight booking to these systems is shown in Figure 7. The figure shows only an excerpt of the
possible states and transitions. In addition to this, the initial state allows the start of a seat reservation
process and a cancellation process. Moreover, Figure 7 shows only the state changing method calls of
the behavioral specification of the booking process. Our real behavioral specification completely lists all
possible method calls in each state. This way, we can further analyze compatibility issues for example
with database systems that do not support all possible method calls of a middleware process.

In comparison to the outgoing method calls of a middleware process, the incoming method call spec-
ification is much simpler: A constructor call is performed by the coordination process upon initialization.
After that, the communication with the client is done using a webserver interface – comprising method
calls that send raw request data to the middleware process and return raw response data that trigger,
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Figure 7: Outgoing method calls of a middleware process
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Figure 8: Behavioral model for seat reservation of a flight

e.g., displaying selected flights by the client – where no states in the communication process can be
distinguished.

Example: Specification of database elements Access to our database is done using method calls to
a database process and is formalized using our automata based specification formalisms. The method
calls result in locking and unlocking database elements. Seat reservation in a flight requires that a certain
partition of the available seats is blocked during the selection process so that a client can make a choice.

Figure 8 shows our behavioral model of seat reservation for a single flight. Different loads are
distinguished: low means that many seats are still available, while high means that only a few seats are
available. The full state indicates that no additional seat reservations can be made, only cancellations
are possible. The model is an abstraction of the reality since instead of treating each seat – potentially
hundreds of available seats – independently we only distinguish their partitioning into four equivalence
classes: low, medium, high and full.

Example: Database elements and deadlocks Access to the flight database can result in deadlocks.
The model from Figure 8 can serve as a basis for deadlock analysis. Consider the scenario shown in
Figure 9: For each flight a different instance of the seat reservation model exists. Given three airports A,
B and C: Suppose two people – person 1 and person 2 – want to fly from A to C via B. Seats for two
flights need to be reserved: from A to B and from B to C. It is not desirable to reserve a seat from B to C
if no seat is available for the flight to A to B. Otherwise, it might not be desirable to fly from A to B if
no seat is available for the flight from B to C.

During the seat reservation a deadlock may occur: If person 1 reserves the last seat for the A to B
flight before doing reservations for the B to C flight and person 2 reserves the last seat for the B to C flight
before a seat reservation for the A to B flight a deadlock may occur, which may result in the cancellation
of both journeys although one person could have taken the journey.
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deadlock?

Client 1 Client 2

Seat reservation order

B C

time

A

B

A B

C

B

Flight order

BA C

Figure 9: Concurrent seat reservation on two flights

If it is known before to the seat reservation system that person 1 and person 2 will fly from A to
C – which is a reasonable assumption given the fact that they have entered their desired start and end
destination into the system – we are able to detect such deadlocks. They can occur if both behavioral
models of the seat reservation system are already in the high state – given that no other participants are
doing reservations at this time we may also take compensating actions.

Evaluation Modeling of the flight booking system has been carried out in several versions with sev-
eral degrees of detail in our behavioral types framework plugins. Behavioral models are described as
independent files. We have used our implemented operations on these files. Compatibility and deadlock
checking can be performed without problems for several components interacting together. For our com-
patibility checking, we do not use all specifications of the entire system together but pick those that are
relevant for a certain communication aspect.

7 Conclusion

We presented a first version of a framework for behavioral types for OSGi systems. In this paper, the
main focus is on the OSGi semantics, the specification of behavior and checking the compatibility of
specifications. Handling and reacting to specifications at runtime is another topic. We have described
our implementation and its architecture.

So far, we are concentrating on Eclipse / OSGi systems. Other application areas for the future
comprise 1) work towards behavioral types for distributed software services 2) work towards real-time
embedded systems. This might require leaving the Java / OSGi setting, since these applications typically
involve C code which communicates directly with – if at all – an operating system. There is, how-
ever, work on extensions for real-time applications of OSGi using real-time Java (e.g., [2]). Additional
specification formalisms and the integration of new checking techniques are another challenge.
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