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Reversing Petri nets (RPNs) have recently been proposed as a net-based approach to model causal
and out-of-causal order reversibility. They are based on the notion of individual tokens that can be
connected together via bonds. In this paper we extend RPNs by allowing multiple tokens of the same
type to exist within a net based on the individual token interpretation of Petri nets. According to this
interpretation, tokens of the same type are distinguished via their causal path. We develop a causal
semantics of the model and we prove that the expressive power of RPNs with multiple tokens is
equivalent to that of RPNs with single tokens by establishing an isomporphism between the Labelled
Transition Systems (LTSs) capturing the reachable parts of the respective RPN models.

1 Introduction

Reversible computation is a form of computing where transitions can be executed in both the forward and
the reverse direction, allowing systems to return to past states. It has been attracting increasing attention
due to its application in a variety of fields such as low-power computing, biological modelling, quantum
computation, robotics, and distributed systems.

In the sequential setting reversibility is generally understood as the ability to execute past actions
in the exact inverse order in which they occurred, a process referred to as backtracking. However, in
the concurrent setting matters are less clear. Indeed, various approaches have been investigated within
a variety of formalisms [8, 26, 16, 33, 24, 20]. One of the most well-studied approaches considered
suitable for a wide variety of concurrent systems is that of causal-consistent reversibility advocating that
a transition can be undone only if all its effects, if any, have been undone beforehand [7]. The study of
reversibility also extends to out-of-causal-order reversibility, a form of reversing where executed actions
can be reversed in an out-of-causal order [28, 27, 15] most notably featured in biochemical systems.

In this work, we focus on Reversing Petri Nets [24] (RPNs), a reversible model inspired by Petri
nets that allows the modelling of reversibility as realised by backtracking, causal-order, and out-of-
causal-order reversing. A key challenge when reversing computations in Petri nets is handling backward
conflicts. These conflicts arise when tokens occur in a certain place due to different causes making
unclear which transitions ought to be reversed. To handle this ambiguity, RPNs introduce the notion
of a history of transitions, which records causal information of executions. Furthermore, inspired by
biochemical systems as well as other resource-aware applications, the model employs named tokens that
can be connected together to form bonds, and are preserved during execution.

A restriction in RPNs is that each token is unique and in order to model a system with multiple items
of the same type, it is necessary to employ a distinct token for each item, at the expense of the net size.
In the current paper we consider an extension of RPNs, which allows multiple tokens of the same type.
The introduction of multiple identical tokens creates further challenges involving backward conflicts
and requires to extend the RPN machinery for extracting the causal dependencies between transitions.
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We note that formalizing causal dependencies is a well-studied problem in the context of Petri nets,
where various approaches have been proposed to reason about causality [11, 13, 32]. In this work we
draw inspiration from the so-called individual token and collective interpretations of Petri nets [12, 10].
The collective token philosophy considers all tokens of a certain type to be identical, which results in
ambiguities when it comes to causal dependencies. In contrast, in an individual token interpretation,
tokens are distinguished based on their causal path. This approach leads to more complicated semantics
since to achieve token individuality requires precise correspondence between the token instances and
their past. However, it enables backward determinism, which is a crucial property of reversible systems.

Contribution. In this paper we extend RPNs to support multiple tokens of the same type following the
individual token interpretation. As such, tokens are associated with their causal history and, while tokens
of the same type are equally eligible to fire a transition when going forward, when going backwards they
are able to reverse only the transitions they have previously fired. In this context, we define a causal
semantics for the model, based on the intuition that a causal link exists between two transitions if a token
produced by one was used to fire the other. This leads to the observation that a transition may reverse
in causal order only if it was the last transition executed by all the tokens it has involved. We note that
this approach allows a causal-order reversible semantics that, unlike the original RPN model, does not
require any global history information. In fact, all information necessary for reversal is available locally
within the history of tokens. Subsequently, we turn to study the expressiveness of the presented model
in comparison to RPNs with single tokens. To do this we employ Labelled Transition Systems (LTSs)
capturing the state space of RPN models. We show that for any RPN with multiple tokens there exists
an RPN with single tokens with an isomorphic LTS, thereby confirming our conjecture that RPNs with
single tokens are as expressive as RPNs with multiple tokens.

Related Work. The first study of reversible computation within Petri nets was proposed in [4, 5], where
the authors investigated the effects of adding reversed versions of selected transitions by reversing the
directions of a transition’s arcs. Unfortunately, this approach to reversibility violates causality. Towards
examining causal consistent reversibility the work in [21] investigates whether it is possible to add a
complete set of effect-reverses for a given transition without changing the set of reachable markings,
showing that this problem is in general undecidable. In another line of work [20] propose a causal
semantics for P/T nets by identifying the causalities and conflicts of a P/T net through unfolding it into
an equivalent occurrence net and subsequently introducing appropriate reverse transitions to create a
coloured Petri net (CPN) that captures a causal-consistent reversible semantics. On a similar note, [19]
introduces the notion of reversible occurrence nets and associates a reversible occurrence net to a causal
reversible prime event structure, and vice versa. Finally, [6] introduces a reversible approach to Petri nets
following the individual token interpretation. This work is similar to our approach though it refers to a
basic PN model, which does not contain named tokens nor bonds, and it does not support backtracking
and out-of-causal reversibility.

The modelling of bonding in the context of reversibility was first considered within reversible pro-
cesses and event structures in [29], where its usefulness was illustrated with examples taken from soft-
ware engineering and biochemistry. Reversible frameworks that feature bonds as first-class entities, like
RPNs, also include the Calculus of Covalent Bonding [15], which supports causal and out-of-causal-
order reversibility in the context of chemical reactions, as well as the Bonding Calculus [1], a calculus
developed for modeling covalent bonds between molecules in biochemical systems. In fact, the latter
two frameworks and RPNs were reviewed and compared for modeling chemical reactions in [14] with



A. Philippou & K. Psara 133

t1 t2
t2t1

u

v

x

c

i
i-c c

y
i

c

b
b

c-b

t2t1

u

v

x

c

i
i-c c

y

i
c
b

b

c-b

(a) (b)

Figure 1: RPN example of a pen assembly/dissassembly

case study the autoprotolysis of water.
This paper extends a line of research on reversing Petri nets, initially introduced for acyclic nets [22]

and subsequently for nets with cycles [24]. The usefulness of the framework was illustrated in a num-
ber of examples including the modelling of long-running transactions with compensation and a signal-
passing mechanism used by the ERK pathway. The RPN framework has been extended to control re-
versibility in [25] with an application to Massive MIMO. Introducing multiple tokens in RPNs was also
examined in [23] by allowing multiple tokens of the same type to exist within a net following the collec-
tive interpretation and yielding a locally-controlled, out-of-causal-order reversibility semantics. RPNs
have been translated to Answer Set Programming (ASP), a declarative programming framework with
competitive solvers [9], and to bounded Coloured Petri Nets [2, 3].

2 Reversing Petri Nets with Multiple tokens

In our previous works we introduced Reversing Petri Nets, a net-based formalism, which features indi-
vidual tokens that can be connected together via bonds [24]. An assumption of RPNs is that tokens are
pairwise distinct. To relax this restriction, subsequent work [23] introduced token multiplicity whereby
a model may contain multiple tokens of the same type. It was observed that the possibility of firing a
transition multiple times using different sets of tokens, may introduce nondeterminism, also known as
backward conflict, when going backwards. Furthermore, two approaches were identified to define re-
versible semantics in the presence of such backward conflicts, inspired by the individual token and the
collective token interpretations [10, 12], defined to reason about causality in Petri nets. In the individual
token approach, multiple tokens of the same type residing in the same place are distinguished based on
their causal path, whereas in the collective token interpretation they are not distinguished. In [23] the
model of RPNs with multiple tokens was investigated under the collective token approach, yielding an
out-of-causal-order form of reversibility. In this work, we instead apply the individual token interpreta-
tion to define a causal semantics, and we establish that in fact the addition of multiple tokens does not add
to the expressiveness of the model, in that for any RPN with multiple tokens there exists an equivalent
RPN with only a single token of each type.

To appreciate the challenges induced through the introduction of multiple tokens and the difference
between the individual and the collective token interpretations, let us consider the example in Fig. 1(a).
In this example we may see an RPN model of an assembly/disassembly of a pen. The product consists of
the ink, the cup, and the button of the pen, modelled by tokens i, c, and b, respectively. We may observe
that transitions, in addition to transferring tokens between places, have the capacity of creating bonds.
Thus, the process of manufacturing the pen requires the ink to be fitted inside the cup, modelled by the
creation of the bond i−c by transition t1 and, subsequently, the fitting of the button on the cup to complete
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Figure 2: Executing transition t1 in the net (a) may yield the net in (b). Different selections of tokens
could have been made. In net (b) transition t1 is executed with the (only) available tokens leading to net
(c), whereby execution of t2 with the component produced by the first execution of t1 yields net (d).

the assembly, modelled as the creation of the bond c− b by transition t2 (RPN in Fig. 1(b)). The effect
of reversing a transition in RPNs is to break the bonds created by the transition (if any) and returning the
tokens/bonds from the outgoing places to the incoming places of the transition. In [22, 24] machinery
has been developed in order to model backtracking, causal, and out-of-causal-order reversibility for the
model. In particular, in the example of Fig. 1(b) reversing transition t2 will result in the destruction of
bond c−b and the return of token b to place y.

Suppose we wish to extend the model of Fig. 1(a) for the assembly of two pens. Given that in
RPNs tokens are unique, it would be necessary to introduce three new and distinct tokens and clone the
transitions while renaming their arcs to accommodate for the names of the new tokens to be employed,
resulting in a considerable expansion of the model for each new pen to be produced. Thus, a natural
extension of the formalism involves relaxing this restriction and allowing multiple tokens of the same
type to exist within a model. To this effect consider the scenario of Fig. 2(a) presenting a system with an
already assembled/sample pen in place x and two items of each of the ink, cup, and button components.

An issue arising in this new setting is that due to the presence of multiple tokens of the same type,
the phenomenon of backwards nondeterminism occurs when transitions are reversed. For instance, after
execution of transition t1 twice and t2, two assembled pens will exist in place x and well as a component
i− c, as seen in Fig. 2(d). Suppose that in this state transition t1 is reversed. In the collective token
interpretation, all instances of the bond i− c are considered identical. As a result, any of these bonds
could be destroyed during the reversal of transition t1. However, in the individual token interpretation
the various ink and cup tokens are distinguished based on their causal path. Therefore, the first execution
of transition t1 yielding the net in Fig. 2(b) and involving the shaded component of tokens in the figure,
is considered to have caused the execution of transition t2. Given this causal relationships between the
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transitions, under a causal reversibility semantics, the specific i−c component should not be decomposed
until transition t2 is reversed. Similarly, the pre-existing pen should not be broken down into its parts as
it was not the created by any of the transitions. Instead, reversing transition t1 in the RPN of Fig. 2(d)
should break the bond in the component consisting the single bond i− c. Note that this is compatible
with the understanding that disassembly of the product would not allow the separation of the ink from
the inside of the cup before the button is removed, since this is enclosed within the pair of the cup and
the button.

As a result we observe that following the individual token interpretation, reversing a computation re-
quires keeping track of past behavior – in the context of the example, distinguishing the tokens involving
the pre-existing pen and the tokens used to fire each transition. In the following sections we implement
this approach for introducing multiple tokens and we study its properties in the context of causal-order
reversibility. Furthermore, we establish a correspondence between this model and RPNs with single
tokens.

3 Multi Reversing Petri Nets

We present multi reversing Petri nets, an extension of RPNs with multiple tokens of the same type that
allow transitions to be reversed following the individual token interpretation. Formally, they are defined
as follows:

Definition 1 A multi reversing Petri net (MRPN) is a tuple (P,T,A ,AV ,B,F) where:

1. P is a finite set of places and T is a finite set of transitions.

2. A is a finite set of base or token types ranged over by A,B, . . .

3. AV is a finite set of token variables ranged over by a,b, . . . We write type(a) for the type of variable
a and assume that type(a) ∈A for all a ∈AV .

4. B ⊆A ×A is a finite set of undirected bond types ranged over by β ,γ, . . . We assume B to be a
symmetric relation and we consider the elements (A,B) and (B,A) to refer to the same bond type,
which we also denote by A−B. Furthermore, we write BV ⊆AV ×AV , assuming that (a,b) and
(b,a) represent the same bond, also denoted as a−b.

5. F : (P×T ∪T ×P)→P(AV ∪BV ) defines a set of directed labelled arcs each associated with
a subset of AV ∪BV , where (a,b) ∈ F(x,y) implies that a,b ∈ F(x,y). Moreover, for all t ∈ T ,
x,y ∈ P, x 6= y, F(x, t)∩F(y, t) = /0.

A multi reversing Petri net is built on the basis of a set of token types. Multiple occurrences of a
token type, referred to as token instances, may exist in a net. Tokens of the same type have identical
capabilities on firing transitions and can participate only in transitions with variables of the same type.

As standard in net-based frameworks, places and transitions are connected via labelled directed arcs.
These labels are derived from AV ∪BV . They express the requirements and the effects of transitions
based on the type of tokens consumed. Thus, collections of tokens corresponding to the same types and
connections as the variables on the labelled arc are able to participate in the transition. More precisely, if
F(x, t) = X ∪Y , where X ⊆AV , Y ⊆BV , the firing of t requires a distinct token instance of type type(a)
for each a ∈ X , such that the overall selection of tokens are connected together satisfying the restrictions
posed by Y . Similarly, if F(t,x) = X ∪Y , where X ⊆AV , Y ⊆BV , this implies that during the forward
execution of the transition for each a ∈ X a token instance of type type(a) will be transmitted to place x
by the transition, in addition to the bonds specified by Y , some of which will be created as an effect of
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the transition. We make the assumption that if (a,b) ∈ Y then a,b ∈ X and the same variable cannot be
used on two incoming arcs of a transition.

We introduce the following notations. We write ◦t = {x ∈ P | F(x, t) 6= /0} and t◦= {x ∈ P | F(t,x) 6=
/0} for the incoming and outgoing places of transition t, respectively. Furthermore, we write pre(t) =⋃

x∈P F(x, t) for the union of all labels on the incoming arcs of transition t, and post(t) =
⋃

x∈P F(t,x) for
the union of all labels on the outgoing arcs of transition t.

We restrict our attention to well-formed MRPNs, which satisfy the conservation property [18] in the
sense that the number of tokens in a net remains constant during execution. In fact, as we will prove in
the sequel, in well-formed nets individual tokens are conserved.

Definition 2 An MRPN (P,T,A ,AV ,B,F) is well-formed if for all t ∈ T :

1. AV ∩pre(t) = AV ∩post(t) and

2. F(t,x)∩F(t,y) = /0 for all x,y ∈ P, x 6= y.

Thus, a well-formed MRPN satisfies (1) whenever a variable exists in the incoming arcs of a transition
then it also exists on its outgoing arcs, and vice versa, which implies that transitions neither create nor
erase tokens, and (2) tokens/bonds cannot be cloned into more than one outgoing place.

In the context of token multiplicity, a mechanism is needed in order to distinguish between token
instances with respect to their causal path. For instance, consider the MRPN in Fig. 2(d). In this state,
three connected components of tokens are positioned in place x, where tokens of the same type, e.g. the
three c tokens have distinct connections and causal histories. To capture this, we distinguish between
token instances, as follows:

Definition 3 Given an MRPN (P,T,A ,AV ,B,F) a token instance has the form (A, i,xs) where xs is
a (possibly empty) list of triples [(k1, t1,v1), . . . ,(kn, tn,vn)] with n ≥ 0, where i ≥ 1, A ∈ A , and for
all i, ki ∈ N, ti ∈ T , and vi ∈ {∗} ∪AV . We write AI for the set of token instances ranged over by
A1, A2, . . ., and we define the set of bond instances BI by BI = AI ×AI . Furthermore, given Ai =
(A, i, [(k1, t1,v1), . . . ,(kn, tn,vn)]), we write

type(Ai) = A

Ai ↓ = (A, i)

cpathAi = [(t1,v1), . . . ,(tn,vn)]

last(Ai) = (kn, tn,vn)

Ai +(k, t,v) = (A, i, [(k1, t1,v1), . . . ,(kn, tn,vn),(k, t,v)])

init(Ai) = (A, i, [(k1, t1,v1), . . . ,(kn−1, tn−1,vn−1)])

The set of token instances AI corresponds to the basic entities that occur in a system. In the initial
state of a net, tokens have the form (A, i, []) where i is a unique identifier for the specific token instance
of type A. As computation proceeds the tokens evolve to capture their causal path. If a transition t is
executed in the forward direction, with some token instance (A, i, [(k1, t1,v1), . . . ,(kn, tn,vn)]) substituted
for a variable v, then the token evolves to (A, i, [(k1, t1,v1), . . . ,(kn, tn,vn),(k, t,v)]), where k is an integer
that characterizes the executed transition, as we will formally define in the sequel.

In a graphical representation, tokens instances are indicated by • associated with their description,
places by circles, transitions by boxes, and bonds by lines between tokens. Note that token variables
a ∈ F(x, t)∩AV with type(a) = A are denoted by a : A over the corresponding arc F(x, t). An example
of an MRPN can be seen in Fig. 3. In this example, we have A = {I,C,B}, AV = {i,c,b}, and the set
of token instances in the specific state are {(I, i, []),(B, i, []),(C, i, []) | i ∈ {1,2,3}}.



A. Philippou & K. Psara 137

t2t1

u

v

x

c:C

i:I
i-c c:C

y

b:B

c-b

(I,1,[])
(I,2,[])

(I,3,[])

(C,1,[])
(C,2,[])

(C,3,[])
(B,3,[]) (B,1,[])

(B,2,[])

Figure 3: The net of Fig. 2(a) presented as an MRPN.

As with RPNs the association of token/bond instances to places is called a marking such that M : P→
2AI∪BI , where we assume that if (Ai,Bi) ∈M(x) then Ai,Bi ∈M(x). In addition, we employ the notion
of a history, which assigns a memory to each transition H : T → 2N. Intuitively, a history of H(t) = /0
for some t ∈ T captures that the transition has not taken place, or every execution of it has been reversed,
and a history such that k ∈ H(t), captures that the transition had a firing with identifier k that was not
reversed. Note that |H(t)| > 1 may arise due to cycles but also due to the consecutive execution of the
transition by different token instances. A pair of a marking and a history, 〈M,H〉, describes a state of
an MRPN with 〈M0,H0〉 the initial state, where H0(t) = /0 for all t ∈ T and if Ai ∈ M0(x), x ∈ P, then
Ai = (A, i, []), and Ai ∈M0(y) implies that x = y.

Finally, we define con(Ai,W ), where Ai ∈AI and W ⊆AI ∪BI , to be the tokens connected to Ai as
well as the bonds creating these connections according to set W :

con(Ai,W ) = ({Ai}∩W )

∪ {x | ∃w s.t. path(Ai,w,W ),(Bi,Ci) ∈ w,x ∈ {(Bi,Ci),Bi,Ci}}

where path(Ai,w,W ) if w = 〈β1, . . . ,βn〉, and for all 1≤ i≤ n, βi = (xi−1,xi) ∈W ∩BI , xi ∈W ∩AI , and
x0 = Ai. For example, consider the net in Fig. 3 and let W represent the set of token and bond instances
in place x. Then, con((I,3, []),W ) = {(I3,C3,B3,(I3,C3),(C3,B3)}, where I3 = (I,3, []), B3 = (B,3, []),
and C3 = (C,3, []).

3.1 Forward Execution

During the forward execution of a transition in an MRPN, a set of token and bond instances, as specified
by the incoming arcs of the transition, are selected and moved to the outgoing places of the transition,
possibly forming and/or destroying bonds. Precisely, for a transition t we define eff+(t) to be the bonds
that occur on its outgoing arcs but not the incoming ones and by eff−(t) the bonds that occur in the
incoming arcs but not the outgoing ones:

eff+(t) = post(t)−pre(t) eff−(t) = pre(t)−post(t)

Due to the presence of multiple instances of the same token type, it is possible that different token
instances are selected during the transition’s execution. To enable such a selection of tokens we define
the following:

Definition 4 An injective function W : V →AI , where V ⊆AV , is called a type-respecting assignment
if for all a ∈V , if W (a) = Ai then type(a) = type(Ai).
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We extend the above notation and write W (a,b) for (W (a),W (b)) and, given a set L ⊆ AV ∪BV ,
we write W (L) = {W (x) | x ∈ L}.

Based on the above we define the following:

Definition 5 Given an MRPN (P,T,A ,AV ,B,F), a state 〈M,H〉, and a transition t, we say that t is
forward-enabled in 〈M,H〉 if there exists a type-respecting assignment S : pre(t)∩AV →AI such that:

1. S (F(x, t))⊆M(x) for all x ∈ ◦t.
2. If a,b ∈ F(x, t) for some x ∈ ◦t and (a,b) ∈ eff+(t), then S (a,b) 6∈M(x).

3. If a ∈ F(t,y1) and b ∈ F(t,y2), for some y1,y2 ∈ t◦, y1 6= y2, then con(S (a),compf(t,S ,M)) 6=
con(S (b),compf(t,S ,M)).

where compf(t,S ,M) = (
⋃

x∈◦t M(x)∪S (eff+(t)))−S (eff−(t)).

Thus, t is forward-enabled in state 〈M,H〉 if there exists a type-respecting assignment S of token
instances to the variables on the incoming edges of t, which we will refer to as a forward-enabling assign-
ment of t, such that (1) the token instances and bonds required by the transition’s incoming edges, accord-
ing to S , are available from the appropriate input places, (2) if the selected token instances to be trans-
ferred by the transition are to be bonded together by the transition then they should not be already bonded
in an incoming place of the transition (thus the bonds that occur only on the outgoing arcs of a transition
are the bonds being created by the transition), and (3) if two token instances are transferred by a transition
to different outgoing places then these tokens should not be connected. This is to ensure that connected
components are not cloned. Note that compf(t,S ,M) = (

⋃
x∈◦t M(x)∪S (eff+(t)))− S(eff−(t)) de-

notes the set of token and bond instances that occur in the incoming places of t (
⋃

x∈◦t M(x)), including
the new bond instances created by t (S (eff+(t))), and removing the bonds destroyed by it (S (eff−(t))).
Intuitively, compf(t,S ,M) contains the components that are moved forward by the transition.

To execute a transition t according to an enabling assignment S , the selected token instances along
with their connected components are relocated to the outgoing places of the transition as specified by the
outgoing arcs, with bonds created and destroyed accordingly. An additional effect is the update of the
affected token and bond instances to capture the executed transition in their causal path. To capture this
update we define where k is an integer associated with the specific transition instance:

Ai⊕ (S , t,k) =
{

Ai +(k, t,a) if S (a) = Ai

Ai +(k, t,∗) if S −1(Ai) =⊥

Note that Ai may not belong to the range of S , i.e. S −1(Ai) = ⊥, if Ai was not specifically selected
to instantiate a variable in pre(t) but, nonetheless, belonged to a connected component transferred by
the transition. This is recorded in the causal path of the token instance via the triple (k, t,∗). Moreover,
we write (Ai,B j)⊕ (S , t,k) for (Ai⊕ (S , t,k),B j ⊕ (S , t,k)) and, given L ⊆ AI ∪BI , we write L⊕
(S , t,k) = {x⊕ (S , t,k) | x ∈ L}. Finally, the history of the executed transition is updated to include the
next unused integer. Given the above we define:

Definition 6 Given an MRPN (P,T,A ,AV ,B,F), a state 〈M,H〉, a transition t that is enabled in state

〈M,H〉, and an enabling assignment S , we write 〈M,H〉 (t,S)−→ 〈M′,H ′〉 where for all x ∈ P:

M′(x) = (M(x)−
⋃

a∈F(x,t)

con(S (a),M(x)))

∪
⋃

a∈F(t,x)

con(S (a),compf(t,S ,M))⊕ (S , t,k)
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Figure 4: The effect of executing t1 and t2 in the net of Fig. 3, where B3 = (B,3, []), C3 =
(C,3, []), I3 = (I,3, []), I1 = (I,1, [(1, t1, i)]), C2 = (C,2, [(1, t1,c)], I′1 = (I,1, [(1, t1, i),(1, t2,∗)]), C′2 =
(C,2, [(1, t1,c),(1, t2,c)]), and B2 = (B,2, [(1, t2,b)]).

where k = max({0}∪H(t))+1 and

H ′(t ′) =
{

H(t ′)∪{k}, if t ′ = t
H(t ′), otherwise

Fig. 4 shows the result of consecutively firing transitions t1 and t2 from the MRPN in Fig. 3 with
enabling assignments S1, where S1(i) = (I,1, []), S1(c) = (C,2, []), and S2, where S2(b) = (B,2, []),
S2(c) = (C,2, [(1, t1,c)]). We note the non-empty histories of the transitions depicted in the graphical
representation, as well as the updates in the causal paths of the tokens.

3.2 Causal-order Reversing

We now move on to consider causal-order reversibility for MRPNs. In this form of reversibility, a
transition can be reversed only if all its effects (if any), i.e. transitions that it has caused, have already
been reversed. As argued in [24], two transition occurrences are causally dependent, if a token produced
by the one was subsequently used to fire the other. Since token instances in MPRNs are associated with
their causal path, we are able to identify the transitions that each token has participated in by observing
its memory. Furthermore, if last(Ai) = (k, t,a) then the last transition that the token instance Ai has
participated in was transition t and specifically its occurrence with history k.

Based on this observation, a transition occurrence t can be reversed in a certain state if the to-
ken/bonds instances it has employed have not engaged in any further transitions. Thus, we define causal
reverse enabledness as follows.

Definition 7 Consider an MRPN (P,T,A ,AV ,B,F), a state 〈M,H〉, and a transition t. We say that t is
co-enabled in 〈M,H〉 if there exists a type-respecting assignment R : post(t)∩AV →AI such that:

1. R(F(t,x))⊆M(x) for all x ∈ t◦, and

2. there exists k ∈H(t) such that for all (A, i,xs)∈
⋃

x∈P M(x) with (k, t,b)∈ xs for some b, (k, t,b) =
last(Ai).

We refer to R as the co-reversal enabling assignment for the kth occurrence of t.

Thus, a transition t is co-enabled in 〈M,H〉 for a specific occurrence k if there exists a type-respecting
assignment of token instances on the variables of the outgoing arcs of the transition, which gives rise to
a set of token and bond instances that are available in the relevant out-places and, additionally, these
token/bond instances were last employed for the firing of the specific occurrence of the transition.
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Figure 5: The effect of reversing transition t1 with enabling assignment R(i) = I1, R(c) =C2, in a state
following the execution of t1 twice from the net in Fig. 3, first with enabling assignment S1(i) = (I,1, []),
S1(c) = (C,2, []), and next with enabling assignment S2(i) = (I,2, []), S2(c) = (C,1, []) where we write
I1 = (I,1, [(1, t1, i]), I2 = (I,2, [(2, t1, i]), C1 = (C,1, [(2, t1,c]), and C2 = (C,2, [(1, t1,c]).

To implement the reversal of a transition t according to a co-reversal enabling assignment R, the
selected token instances are relocated from the outgoing places of t to its incoming places, with bonds
created and destroyed accordingly. The occurrence of the reversed transition is removed from its history.

Definition 8 Given an MRPN (P,T,A ,AV ,B,F), a state 〈M,H〉, a transition t that is co-enabled with

co-reversal enabling assignment R for the kth occurrence of t, we write 〈M,H〉 (t,R)
 〈M′,H ′〉 where for

all x ∈ P:

M′(x) = (M(x)−
⋃

a∈F(t,x)

con(R(a),M(x)))

∪
⋃

a∈F(x,t)

init(con(R(a),compr(t,R,M)))

and

H ′(t ′) =
{

H(t ′)−{k}, if t ′ = t
H(t ′), otherwise

where compr(t,R,M) = (
⋃

x∈t◦M(x)∪R(eff−(t)))−R(eff+(t)).

In Fig. 5 we may observe the causal-order reversal of transition t1. We note that the history information
of the affected components is updated by removing the occurrence of the reversed transition and the
history information of transition t1 reflects that occurrence with identifier 1 has been reversed.

Let us now consider executions of both forward and backward moves and write 7−→ for −→ ∪ .
We define the reachable states of an MRPN as follows.

Definition 9 Given an MRPN (P,T,A ,AV ,B,F) and an initial state 〈M0,H0〉 we say that state 〈M,H〉
is reachable, if there exist 〈Mi,Hi〉, i≤ n for some n≥ 0, such that 〈M0,H0〉

(t1,W1)7−→ 〈M1,H1〉
(t2,W2)7−→ . . .

(tn,Wn)7−→
〈Mn,Hn〉= 〈M,H〉.
Furthermore, given a type A, an integer i, and a marking M, we write num(A, i,M) for the number of token
instances of the form (A, i,xs) in M, defined by num(A, i,M) = |{(x,Ai) | ∃x∈P,Ai ∈M(x),Ai↓= (A, i)}|.
Similarly, for a bond instance βi ∈BI , we define num(βi,M) = |{x ∈ P | βi ∈ M(x)}|. The following
result confirms that in an execution beginning in the initial state of an MRPN, token instances are pre-
served, at most one bond instance may occur at any time, and a bond instance may be created/destroyed
during a forward/reverse execution of a transition that features the bond as its effect.
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Proposition 1 Given an MRPN (P,T,A ,AV ,B,F), a reachable state 〈M,H〉, and a transition firing

〈M,H〉 (t,W )7−→ 〈M′,H ′〉, the following hold:

1. For all A, i, num(A, i,M′) = num(A, i,M)=1.

2. For all βi ∈BI ,
(a) 0≤ num(βi,M′)≤ 1,
(b) if t is executed in the forward direction with forward enabling assignment S and βi ∈

S (eff+(t)) then num(βi,M′) = 1; if instead βi ∈ S (eff−(t)) then num(βi,M′) = 0, oth-
erwise num(βi,M) = num(βi,M′).

(c) if t is executed in the reverse direction with reverse enabling assignment R and βi ∈
R(eff+(t)) then num(βi,M′) = 0; if instead βi ∈ R(eff−(t)) then num(βi,M′) = 1, other-
wise num(βi,M) = num(βi,M′).

Proof: The proof follows by induction on the length of the execution reaching state 〈M,H〉. If this is
the initial state the result (i.e. clauses 1 and 2(a)) follows by our assumption on the initial state. For the
induction step, let us assume that 〈M,H〉 satisfies the conditions of the proposition.

Let us begin with clause (1) and suppose
(t,W )7−→=

(t,S )−→ , where S is the forward-enabling assignment
for the transition, and let Ai = (A, i,xs) ∈AI . Two cases exist:

1. Ai ∈ con(B j,M(x)) for some B j, S (a) = B j, a ∈ F(x, t). Note that x is unique by the assumption
that num(A, i,M) = 1. To discern the location of Ai in M′ two cases exist.

• Suppose Ai ∈ con(B j,compf(t,S ,M)). We observe that, by Definition 2(1), a ∈ post(t).
Thus, there exists y ∈ t◦, such that a ∈ F(t,y). Note that this y is unique by Definition 2(2).
As a result, by Definition 6, con(B j,compf(t,S ,M))⊆M′(y), which implies that Ai ∈M′(y).

• Suppose Ai 6∈ con(B j,compf(t,S ,M′)) and consider w = 〈(Ai1 ,Ai2), . . . , (Ain ,B j)〉, Ai = Ai1 ,
n ≥ 1, such that path(Ai,w,M(x)). Since Ai 6∈ con(B j,compf(t,S ,M′)) it must be that for
some k, (Aik−1 ,Aik) ∈ S (eff−(t)) and Ai ∈ con(Aik ,M(x)−S (eff−(t))). Using the same
argument as in the previous case for Aik instead of B j, we may conclude that Ai ∈M(y) such
that S (b) = Aik and b ∈ F(t,y).

Now suppose that Ai ∈ con(Ck,compf(t,S ,M)), Ck = S (b) for some b 6= a, b ∈ F(t,y′). Then
it must be that y = y′. As a result, we have that num(A, i,M′) = num(A, i,M) = 1 and the result
follows.

2. Ai 6∈ con(S (b),M(x)) for all b ∈ F(x, t), x ∈ P. This implies that {x ∈ P | Ai ∈M′(x)}= {x ∈ P |
Ai ∈M(x)} and the result follows.

Now suppose
(t,W )7−→=

(t,R)
 where R is the reverse-enabling assignment of the transition. Consider

Ai = (A, i,xs) ∈AI . Two cases exist:

1. Ai ∈ con(B j,M(x)) for some B j, R(a) = B j, a ∈ F(t,x). Note that x is unique by the assumption
that num(A, i,M) = 1. To discern the location of Ai in M′ two cases exist.

• Suppose Ai ∈ con(B j,compr(t,R,M′)). We observe that, by Definition 2(1), a ∈ pre(t).
Thus, there exists y ∈ ◦t, such that a ∈ F(y, t). Note that this y is unique by Definition 2(3).
As a result, by Definition 8,

M′(y) = M(x)−
⋃

a∈F(t,x)

con(R(a),M(x)))∪
⋃

a∈F(x,t)

init(con(R(a),compr(t,R,M)))

Since a ∈ F(y, t)∩F(t,x), Ai ∈ con(R(a),M(x)∪F(y, t)), which implies that a ∈M′(y).
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• Suppose Ai 6∈ con(B j,compr(t,R,M′)) and consider w = 〈(Ai1 ,Ai2), . . . , (Ain ,B j)〉, Ai = Ai1 ,
n ≥ 1, such that path(Ai,w,M(x)). Since Ai 6∈ con(B j, compr(t,R,M′)) it must be that for
some k, (Aik−1 ,Aik) ∈ R(eff+(t)) and Ai ∈ con(Aik ,M(x)−R(eff+(t))). Using the same
argument as in the previous case for Aik instead of B j, we may conclude that Ai ∈M(y) such
that S (b) = Aik and b ∈ F(y, t).

Now suppose that Ai ∈ con(Ck,compr(t,R,M)), Ck = R(b) for some a 6= b, b ∈ F(y′, t). Then it
must be that y = y′. As a result, we have that {z ∈ P | Ai ∈M′(z)}= {y} and the result follows.

2. Ai 6∈ con(R(a),M(x)) for all a ∈ F(t,x), x ∈ P. This implies that {x ∈ P | Ai ∈M′(x)}= {x ∈ P |
Ai ∈M(x)} and the result follows.

The proof of clause 2 follows similar arguments. �

We may now proceed to establish the causal consistency of our semantics. We begin with defining
when two states of an MRPN are considered to be causally equivalent. Intuitively, states 〈M,H〉 and
〈M′,H ′〉 are causally equivalent whenever the executions that have led to them contain the same causal
paths. Note that these causal paths refer to different independent threads of computation, possibly exe-
cuted through different interleavings in the executions leading to 〈M,H〉 and 〈M′,H ′〉. In our setting, we
can enunciate this requirement by observing the causal histories of token instances and requiring that for
each token instance of some type A in one of the two states there is a token instance of the same type that
has participated in the exact same sequence of transitions in the other state:

Definition 10 Consider MRPN (P,T,A ,AV ,B,F) and reachable states 〈M,H〉, 〈M′,H ′〉. Then the
states are causally equivalent, denoted by 〈M,H〉 � 〈M′,H ′〉, if for each x ∈ P, Ai ∈ M(x) there exists
A j ∈M′(x) with cpath(Ai) = cpath(A j), and vice versa.

We may now establish the Loop Lemma for our model.

Lemma 1 (Loop) For any forward transition 〈M,H〉 (t,S )−→ 〈M′,H ′〉 there exists a backward transition

〈M′,H ′〉 (t,R)
 〈M,H〉 and for any backward transition 〈M,H〉 (t,R)

 〈M′,H ′〉 there exists a forward transi-

tion 〈M′,H ′〉 (t,S )−→ 〈M′′,H ′′〉 where 〈M,H〉 � 〈M′′,H ′′〉.

Proof: Suppose 〈M,H〉 (t,S )−→ 〈M′,H ′〉. Then t is clearly reverse-enabled in 〈M′,H ′〉with reverse-enabling
assignment R such that if S (a) = (A, i,xs), then R(a) = (A, i,xs+(t,k,a)), where k is the maximum

element of H(t). Furthermore, 〈M′,H ′〉 t,R
 〈M′′,H ′′〉 where H ′′ = H. In addition, all token and bond

instances involved in transition t (except those in eff+(t)) will be returned from the outgoing places of
transition t back to its incoming places. At the same time, all destroyed bonds (those in eff−(p)) will be
re-formed, according to Proposition 1. Specifically, for all Ai ∈AI , it is easy to see by the definition of 
that Ai ∈M′′(x) if and only if Ai ∈M(x). Similarly, for all βi ∈BI , βi ∈M′′(x) if and only if βi ∈M(x).
The opposite direction can be argued similarly, with the distinction that when a transition is executed
immediately following its reversal, it is possible that the transition instance is assigned a different key,
thus giving rise to a state 〈M′′,H ′′〉 distinct but causally equivalent to 〈M,H〉. �

We now proceed to define some auxiliary notions. Given a transition 〈M,H〉 (t,W )7−→ 〈M′,H ′〉, we say

that the action of the transition is (t,W ) if 〈M,H〉 (t,W )−→ 〈M′,H ′〉 and (t,W ) if 〈M,H〉 (t,W )
 〈M′,H ′〉 and

we may write 〈M,H〉 (t,W )7−→ 〈M′,H ′〉. We write ActN for the set of all actions in an MRPN N. We use

α to range over {t, t | t ∈ T} and write t = t. Given an execution 〈M0,H0〉
(α1,W1)7−→ . . .

(αn,Wn)7−→ 〈Mn,Hn〉,
we say that the trace of the execution is σ = 〈(α1,W1),(α2,W2), . . . ,(αn,Wn)〉, and write 〈M,H〉 σ7−→
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〈Mn,Hn〉. Given σ1 = 〈(α1,W1), . . . ,(αk,Wk)〉, σ2 = 〈(αk+1,Wk+1), . . . ,(αn,Wn)〉, we write σ1;σ2 for
〈(α1,W1), . . . ,(αn,Wn)〉. We may also use the notation σ1;σ2 when σ1 or σ2 is a single transition. A
central concept in what follows is causal equivalence on traces, a notion that employs the concept of
concurrent transitions:

Definition 11 Consider an MRPN (P,T,A ,AV ,B,F), a reachable state 〈M,H〉 and actions (α1,W1)
and (α2,W2). Then (α1,W1) and (α2,W2) are said to be concurrent in state 〈M,H〉, if for all u,v ∈AV ,
if W1(u) = Ai and W2(v) = B j, Ai,B j ∈M(x) then con(Ai,M(x)) 6= con(B j,M(x)).

Thus, two actions are concurrent when they employ different token instances. This notion captures when
two actions are independent, i.e. the execution of the one does not preclude the other. Indeed, we may
prove the following results.

Proposition 2 (Square Property) Consider an MRPN (P,T,A ,AV ,B,F), a reachable state 〈M,H〉 and

concurrent actions (α1,W1) and (α2,W2) in 〈M,H〉, such that 〈M,H〉 (α1,W1)7−→ 〈M1,H1〉 and 〈M,H〉 (α2,W2)7−→
〈M2,H2〉. Then 〈M1,H1〉

(α2,W2)7−→ 〈M′,H ′〉 and 〈M2,H2〉
(α1,W1)7−→ 〈M′′,H ′′〉, where 〈M′,H ′〉 � 〈M′′,H ′′〉.

Proof: It is easy to see that since the two transitions involve distinct tokens then they can be executed
in any order. If, additionally, α1 6= α2 or α1 = α2 and they are both reverse transitions, then the effects
imposed on the histories and the tokens of the transitions will be independent and the same in both cases,
i.e. 〈M′,H ′〉= 〈M′,H ′〉. If instead α1 = α2 and α1, α2 are not both reverse transitions, then it is possible
that distinct tokens will be assigned to the forward transition(s). Nonetheless, the sequence of actions
executed by each token instance will be the same in both interleavings and, thus, the resulting states are
causally equivalent. �

Proposition 3 (Reverse Transitions are Independent) Consider an MRPN (P,T,A ,AV ,B,F), a state
〈M,H〉 and enabled reverse actions (t1,R1) and (t2,R2) where (t1,R1) 6= (t2,R2). Then,(t1,R1) and
(t2,R2) are concurrent.

Proof: It is straightforward to see that two distinct reverse transitions employ different tokens. This is
because a token instance may only reverse the last transition occurrence in its history. Therefore (t1,R1)
and (t2,R2) satisfy the requirement for being concurrent. �

We also define two transitions to be opposite in a certain state as follows:

Definition 12 Consider an MRPN (P,TA ,AV ,B,F) and actions (α1,W1) and (α2,W2). Then (α1,W1)
and (α2,W2) are said to be opposite if α1 = α2 and, if αi = t for some t, for all a ∈ pre(t), init(Wi(a)) =
W3−i(a).

Note that this may arise exactly when the two actions are forward and reverse executions of the same
transition and using the same token instances. We are now ready to define when two traces are causally
equivalent.

Definition 13 Consider a reachable state 〈M,H〉. Then causal equivalence on traces with respect to
〈M,H〉, denoted by σ1�〈M,H〉 σ2, is the least equivalence relation on traces such that (i) σ1 =σ ;(α1,W1);
(α2,W2);σ ′ where 〈M,H〉 σ7−→ 〈M′,H ′〉 and if (α1,W1) and (α2,W2) are concurrent in 〈M′,H ′〉 then
σ2 =σ ;(α2,W2);(α1,W1);σ ′, and (ii) if (α1,W1) and (α2,W2) are opposite transitions then σ2 =σ ;ε;σ ′.

We may now establish the Parabolic Lemma, which states that causal equivalence allows the permu-
tation of reverse and forward transitions that have no causal relations between them. Therefore, com-
putations are allowed to reach for the maximum freedom of choice going backward and then continue
forward.
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Lemma 2 (Parabolic Lemma) Consider an MRPN (P,T,A ,AV ,B,F), a reachable state 〈M,H〉, and
an execution 〈M,H〉 σ7−→ 〈M′,H ′〉. Then there exist traces r,r′ both forward such that σ �〈M,H〉 r;r′ and

〈M,H〉 r;r′7−→ 〈M′′,H ′′〉 where 〈M′,H ′〉 � 〈M′′,H ′′〉.

Proof Following [17], given the satisfaction of the Square Property (Proposition 2) and the independence
of reverse transitions (Proposition 3), we conclude that the lemma holds. A proof from first principles
may also be found in [30]. �

We conclude with Theorem 1 stating that two computations beginning in the same state lead to equiv-
alent states if and only if the two computations are causally equivalent. This guarantees the consistency
of the approach since reversing transitions in causal order is in a sense equivalent to not executing the
transitions in the first place. Reversal does not give rise to previously unreachable states, on the contrary,
it gives rise to causally-equivalent states due to different keys being possibly assigned to concurrent
transitions.

Theorem 1 Consider an MRPN (P,T,A ,AV ,B,F), a reachable state 〈M,H〉, and traces σ1, σ2 such
that 〈M,H〉 σ17−→ 〈M1,H1〉 and 〈M,H〉 σ27−→ 〈M2,H2〉. Then, σ1 �〈M,H〉 σ2 if and only if 〈M1,H1〉 �
〈M2,H2〉.

Proof: Following [17], given the satisfaction of the Parabolic Lemma and the fact that the model does not
allow infinite reverse computations, we conclude that the theorem holds. A proof from first principles
may also be found in [30]. �

4 Multi Tokens versus Single Tokens

We now proceed to define Single Reversing Petri Nets as MRPNs where each token type corresponds to
exactly one token instance.

Definition 14 A Single Reversing Petri Net (SRPN) (P,T,A ,AV ,B,F) is an MRPN where for all A ∈
A , |A|= 1.

Forward and causal-order reversal for SRPNs is defined as for MRPNs. Consequently, SPRNs are
special instances of MRPNs. In the sequel, we will show that for each MRPN there is an “equivalent”
SRPN. To achieve this, similarly to [31], we will employ Labelled Transition Systems defined as follows:

Definition 15 A labelled transition system (LTS) is a tuple (Q,E,→, I) where:

• Q is a countable set of states,

• E is a countable set of actions,

• →⊆ Q×E×Q is the step transition relation, where we write p u−→ q for (p,u,q) ∈→, and

• I ∈ Q is the initial state.

For the purposes of our comparison, we will employ LTSs in the context of isomorphism of reachable
parts:

Definition 16 Two LTSs L1 =(Q1,E1,→1, I1) and L2 =(Q2,E2,→2, I2) are isomorphic, written L1∼= L2,
if they differ only in the names of their states and events, i.e. if there are bijections γ : Q1 → Q2 and

η : E1→ E2 such that γ(I1) = I2, and, for p,q ∈ Q1, u ∈ E1 : γ(p)
η(u)−→2 γ(q) iff p u−→1 q.
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The set R(Q) of reachable states in L = (Q,E,→, I) is the smallest set such that I is reachable and
whenever p is reachable and p u−→ q then q is reachable. The reachable part of L is the LTS R(L) =
(R(Q),E,→R , I), where→R is the part of the transition relation restricted to reachable states. We write
L1 ∼=R L2 if R(L1) and R(L2) are isomorphic. To check L1 ∼=R L2 it suffices to restrict to subsets of Q1
and Q2 that contain all reachable states, and construct an isomorphism between the resulting LTSs.

We proceed to give a translation from MRPNs to SPRNs. First, we present how an LTS can be
associated with an MRPN/SRPN structure.

Definition 17 Let N = (P,T,A ,AV ,B,F) be an MRPN (or SRPN) with initial marking M0. Then
H (N,M0) = ((P→ 2AI∪BI )× (T → 2N),Act, 7−→,〈M0,H0〉) is the LTS associated with N.

We may now establish that for any MRPN there exists an SPRN with an isomorphic LTS.

Theorem 2 For every MRPN N = (P,T,A ,AV ,B,F) with initial marking M0 there exists an SRPN
N′ = (P,T ′,A ′,A ′

V ,B
′,F ′) with initial marking M′0 such that H (N,M0)∼=R H (N′,M′0).

Proof: Let N = (P,T,A ,AV ,B,F) be an MRPN with initial state 〈M0,H0〉. We introduce the notation
W ↓ where for any type-respecting assignment W , W ↓(a) = W (a)↓, that is W assigns to a variable in
the range of W the token instance associated to it by W but with its history removed. Furthermore, if
f = W ↓ we write fs(a) = ai if f (a) = (A, i). We construct N′ = (P,T ′,A ′,A ′

V ,B
′,F ′) with initial state

〈M′0,H ′0〉 as follows:

A ′ = {Ai | ∃(A, i, []) ∈M0(x) for some x ∈ P}
A ′

V = {ai | Ai ∈A ′}
B′ = {(Ai,B j) | Ai,B j ∈A ′,(A,B) ∈B}
T ′ = {tW ↓ | t ∈ T,W : pre(t)→AI is a type-respecting assignment }

F ′(x1,x2) = { fs(a) | ∃i ∈ {1,2},xi = t f ∈ T ′, and a ∈ pre(t)}
∪ {( fs(a), fs(b)) | ∃i ∈ {1,2},xi = t f ∈ T ′,(a,b) ∈ pre(t)}

M′0(x) = {(Ai,1, []) | (A, i, []) ∈M0(x)}, ∀x ∈ P

H ′0(t) = /0, ∀t ∈ T ′

The above construction, projects each type A in N to a set of types Ai in N′ such that, Ai ∈ A ′ for
each instance (A, i, []) of type A in M0. Type Ai contains exactly one element, initially named (Ai,1, []).
Furthermore, for each transition t ∈ T , we create a set of transitions of the form t f ∈ T ′, to associate all
possible ways in which token/bond instances may be taken as input by t with a distinct transition that
takes as input the combination of types projected to by the instances.

We now proceed to define bijections γ and η for establishing the homomorphism between the two
LTSs. To simplify the proof, we assume that during the execution of transitions the enabling assignment
is recorded both in the transition histories, i.e. given a transition t we have (k,W ) ∈ H(t) signifying that
the kth occurrence of t was executed with enabling assignment W and also in a token instance (A, i,xs)
elements of xs have the form (k, t,v,W ↓) again recording the assignment that enabled the specific execu-
tion of the transition occurrence. In this setting, it is easy to associate each token instance of N to a token
instance of N′ as follows, where we write st(Ai) for the equivalent token instance of Ai in the SPRN N′:

st((A, i,xs)) = (Ai,1,ys)
where, if xs = [(ki, t i,vi, f i)]1≤i≤n then ys = [(|{(k, t i,v, f ) | ∃k,v, f s.t.(k, t i,v, f ) ∈ ys}|, t i

f , fs(a))]1≤i≤n.



146 Token Multiplicity in Reversing Petri Nets Under the Individual Token Interpretation

For any reachable state 〈M,H〉 in LTS H (N,M0), we define γ(〈M,H〉) = 〈M′,H ′〉 such that for all
x ∈ P and t f ∈ T ′

M′(x) = {st(Ai) | Ai ∈M(x)}∪{(st(Ai),st(B j)) | (Ai,B j) ∈M(x)}
H ′(t f ) = {1, . . . ,k | k = |{(i,R) ∈ H(t) |R↓= f}|}

Furthermore, given an action (t,W ), we write

η((t,W )) = (tW ↓,W ′)

where if W (a) = Ai then W ′(ai) = st(Ai).
Based on these, we may confirm that there exists an isomorphism between the LTSs H (N,M0)

and H (N′,M′0) as follows. Suppose 〈Mm,Hm〉 is a reachable state of H (N,M0) with γ(〈Mm,Hm〉) =
〈Ms,Hs〉. Two cases exist:

• Suppose 〈Mm,Hm〉
(t,S )−→ 〈M′m,H ′m〉. This implies that t is a forward-enabled transition with forward-

enabling assignment S . Consider η(t,S ) = (tS↓,S ′), as defined above. It is easy to see that tS↓
is also a forward-enabled transition in 〈Ms,Hs〉 with forward-enabling assignment S ′. Further-

more, if 〈Ms,Hs〉
(tS↓,S ′)
−→ 〈M′s,H ′s〉, then

M′s(x) = (Ms(x)−
⋃

a∈F ′(x,tS↓)

con(S ′(a),M′(x)))

∪
⋃

a∈F ′(tS↓,x)

con(S ′(a),compf(tS↓,S
′,Ms))⊕ (S ′, tS ,k)

= (Ms(x)−
⋃

a∈F(x,t)

{st(Ai),(st(Ai),st(B j)) | Ai,(Ai,B j) ∈ con(S (a),Mm(x)))

∪
⋃

a∈F(t,x)

{st(Ai),(st(Ai),st(B j)) | Ai,(Ai,B j) ∈

con(S (a),compf(t,S ,Mm))⊕ (S , t,k)}

where k = max({0}∪{k′|k′ ∈ H(t)})+1 and

H ′(t) =
{

H(t)∪{k}, if t = tS↓
H(t ′), otherwise

We may see that γ(〈Mm,Hm〉) = 〈Ms,Hs〉, and the result follows. Reversing the arguments, we
may also prove the opposite direction.

• Suppose 〈Mm,Hm〉
(t,R)
 〈M′m,H ′m〉. This implies that t is a reverse enabled transition with enabling

assignment R. Consider η(t,R) = (tR↓,R ′), as defined above. It is easy to see that tR↓ is also
a reverse-enabled transition in 〈Ms,Hs〉 with reverse-enabling assignment R ′. Furthermore, if

〈Ms,Hs〉
(tR↓,R ′)
 〈M′s,H ′s〉, then using similar arguments as in the previous case we may confirm that

γ(〈Mm,Hm〉) = 〈Ms,Hs〉. The same holds for the opposite direction. This completes the proof. �

In Fig. 6 we present an MRPN N and its respective SRPN N′. From N we obtain N′ by constructing
the new token types I1, I2,C1,C2 and exactly one token instance of each of these types. The places are
the same in both RPN models. The transitions required for the SRPN are dependent on the types of the
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t

u

v

x

c:C

i:I
i-c

(I,1,[])
(I,2,[])

(C,1,[])
(C,2,[])

(a) MRPN N

t1,1u

v

c:C1

i:I1

i-c
(I1,1,[])
(I2,1,[])

(C1,1,[])
(C2,1,[])

t1,2

t2,1

t2,2

i:I1

i:I2

i:I2

c:C2

c:C1

c:C2

x
i-c

i-c

i-c

(b) Equivalent SRPN N′

Figure 6: Translating MRPNs to SRPNs

variables required for each MRPN transition and the token instances representing that type. Specifically
for each token-instance combination that may fire a transition in the MRPN, a respective transition is
required in the SRPN. In the example, two token instances of type I can be instantiated to variable i and
two token instances of type C can be instantiated to variable v. This yields four combinations of token
instances resulting in four different transitions.

In Fig. 7 we may see the isomorphic LTSs of the two RPNs, where

t1,1 = tS1↓ t1,1 = tR1↓

t1,2 = tS2↓ t1,2 = tR2↓

t2,1 = tS3↓ t2,1 = tR3↓

t2,2 = tS4↓ t2,3 = tR4↓

and the enabling assignments of the actions in the two LTSs are

S1(i) = (I,1, []), S1(c) = (C,1, [])

R1(i) = (I,1, [(t,1, i)]), R1(c) = (C,1, [(t,1,c)])

S2(i) = (I,1, []), S2(c) = (C,2, [])

R2(i) = (I,1, [(t,1, i)]), R2(c) = (C,2, [(t,1,c)])

S3(i) = (I,2, []), S3(c) = (C,1, [])

R3(i) = (I,2, [(t,1, i)]), R3(c) = (C,1, [(t,1,c)])

S4(i) = (I,2, []), S4(c) = (C,2, [])

R4(i) = (I,2, [(t,1, i)]), R4(c) = (C,2, [(t,1,c)])
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⟨M0,H0⟩

(t,S1)

(t,R1)
(t,R2) (t,S2)

(t,S4)
(t,S3)

(t,R4)

(t,R3)

(a) LTS of net of Fig. 6(a)

⟨M0’,H0’⟩

(t1,1,S1’)

(t1,1,R1’)

(t1,2,R2’) (t1,2,S2’)

(t2,2,S4’)

(t2,1,S3’)

(t2,2,R4’)

(t2,1,R3’)

(b) LTS of net of Fig. 6(b)

Figure 7: Isomorphic LTSs of an MRPN and its SPRN translation

and

S ′
1(i) = (I1,1, []), S1(c) = (C1,1, [])

R1(i) = (I1,1, [(t,1, i)]), R1(c) = (C1,1, [(t,1,c)])

S2(i) = (I1,1, []), S2(c) = (C2,1, [])

R2(i) = (I1,1, [(t,1, i)]), R2(c) = (C2,1, [(t,1,c)])

S3(i) = (I2,1, []), S3(c) = (C1,1, [])

R3(i) = (I2,1, [(t,1, i)]), R3(c) = (C1,1, [(t,1,c)])

S4(i) = (I2,1, []), S4(c) = (C2,1, [])

R4(i) = (I2,1, [(t,1, i)]), R4(c) = (C2,1, [(t,1,c)])

5 Conclusions

This paper presents an extension of RPNs with multiple tokens of the same type based on the individual
token interpretation. The individuality of tokens is enabled by recording their causal path, while the
semantics allows identical tokens to fire any eligible transition when going forward, but only the transi-
tions they have been previously involved in when going backward. We have presented a semantics for
causal-order reversibility, which unlike the semantics presented in [24] is purely local and requires no
global control. Another contribution of the paper is a result illustrating that introducing multiple tokens
in the model does not increase its expressive power. Indeed, for every MRPN we may construct an equiv-
alent SRPN, which preserves its computation. In related work [30], MRPNs have also been associated
with backtracking and out-of-causal-order semantics and it was shown that in all settings MRPNs are
equivalent to the original RPN model.

In our current work we are developing a tool for simulating and verifying RPN models [9], which we
aim to apply towards the analysis of resource-aware systems. Our experience in applying RPNs in the
context of wireless communications [25] has illustrated that resource management can be studied and
understood in terms of RPNs since, along with their visual nature, they offer a number of features, such
as token persistence, that is especially relevant in these contexts. In future work, we would like to further
apply our framework in the specific fields as well as in the field of long-running transactions.
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