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The ρ-calculus (Reflective Higher-Order Calculus) of Meredith and Radestock is a π-calculus-like
language with some unusual features, notably, structured names, runtime generation of free names,
and the lack of an operator for scoping visibility of names. These features pose some interesting
difficulties for proofs of encodability and separation results. We describe two errors in a previously
published attempt to encode the π-calculus in the ρ-calculus by Meredith and Radestock. Then we
give a new encoding and prove its correctness, using a set of encodability criteria close to those
proposed by Gorla, and discuss the adaptations necessary to work with a calculus with runtime gen-
eration of structured names. Lastly we prove a separation result, showing that the ρ-calculus cannot
be encoded in the π-calculus.

1 Introduction

Process calculi are formalisms for modelling and reasoning about concurrent and distributed computa-
tions; a prominent example is the π-calculus of Milner, Parrow and Walker [13, 12]. These languages
commonly begin by assuming a countably infinite set of atomic names N , ranged over by x,y,z. This
is not an unreasonable assumption for most purposes, but it does leave open the question of how this set
of names should actually be interpreted, e.g. if we were to create an implementation of the π-calculus or
one of its variants [20, 16, 5].

A similar issue arises with the scoping operator (νx)P, which is used to declare a new name x with
visibility limited to P. Here the question becomes how we should choose this new name x, such that it
is actually ensured to be unique. For a process modelling a program running on a single computer, this
can easily be solved, e.g. with a counter; but if the process models a distributed system, with programs
running on distinct computers, the solution is less obvious. These issues are not directly handled in the
π-calculus model, but only become apparent when we consider a more practical implementation of the
set of names.

A radically different approach is taken in the Reflective Higher-Order (RHO or ρ) calculus proposed
by Meredith and Radestock in [11]. These authors instead begin by positing that the set of names is built
by a syntax, similar to the syntax for processes, and thus generated from a finite set of elements. One
could imagine different possibilities for this syntax, but Meredith and Radestock here make the unusual
choice of letting names be ‘quoted’ processes, written pPq. Thus, if P is a process, then pPq is a name.
This creates a mutually recursive definition, since processes also contain names. The full syntax of the
ρ-calculus is then

P ∈Pρ ::= 0
∣∣ P1 | P2

∣∣ x〈|P|〉
∣∣ x(y).P

∣∣ qxp
x,y ∈ pPρq ::= pPq
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Three of the constructs are as in the π-calculus: The nil process, 0, is the inactive process; The
parallel construct, P1 | P2, is the parallel composition of processes P1 and P2; and the input construct,
x(y).P, is a blocking operation, awaiting a communication on the channel x of some name, which, upon
reception, will be bound to y in the continuation P.

The two remaining constructs are particular to the ρ-calculus: The lift construct x〈|P|〉 quotes the
process P, thereby creating the name pPq, and outputs it on x; thus name generation is handled explicitly
in the ρ-calculus, rather than implicitly by a π-calculus style ν-operator. This is the second peculiarity
of this calculus, since the newly generated name will be free in the continuation of the corresponding
input, and therefore also observable if substituted for the subject of an input or lift. As we shall later see,
this feature is crucial for showing a separation result w.r.t. the π-calculus.

Lastly, the drop construct qxp removes the quotes of the name to run the process within them, thereby
enabling higher-order behaviour (i.e. process mobility). This construct is thus similar to a process vari-
able X in e.g. HOπ [17, 18], and is also the reason for the ‘reflective’ epithet in the name of this calculus.
It derives from Smith [19], who defined reflection as the ability of a program to turn code into data,
compute with it, modify it, and turn it back into running code, which in the ρ-calculus is captured by the
combination of the lift and drop constructs, and the duality of names and processes.

Although superficially quite similar to the π-calculus, these features suggest that the ρ-calculus is
actually rather different. As argued above, the use of structured terms as names, and explicit name gen-
eration, seem more realistic from an implementation perspective, as it places the problems of choosing
the next name, and of ensuring freshness, within the language itself, rather than simply assuming that
these features just work behind the scenes. However, providing a solution to these problems is not trivial,
as we shall see below. For example, in [11] Meredith and Radestock also propose an encoding of the
asynchronous, choice-free fragment of the π-calculus into the ρ-calculus, reviewed in section 3, but as
we shall show in section 4, this encoding contains two fatal errors, invalidating their correctness result.

In what follows, we shall instead propose a different encoding of the π-calculus into the ρ-calculus
and formally prove its correctness w.r.t. a number of encodability criteria closely related to those pro-
posed by Gorla in [8], but with some adaptations necessitated by the aforementioned peculiar features
of the ρ-calculus (Propositions 1-5). Using the same criteria we then derive a separation result, showing
that the converse of this statement does not hold: there cannot be an encoding of the ρ-calculus into
the π-calculus satisfying the same criteria (Theorem 1).1 This result is quite surprising, and it suggests
that we cannot always just reduce higher-order behaviour to the first-order paradigm, as Sangiorgi was
able to do with HOπ in [18]. This is because higher-order behaviour in the ρ-calculus is not just an
extension on top of an already computationally complete language, as it is the case with HOπ which
extends the ‘first-order’ π-calculus, but rather appears as a special case of the more general phenomenon
of reflection, where processes (code) are communicated without modification.

2 The Reflective Higher-Order Calculus

We begin by presenting the ρ-calculus following Meredith and Radestock in [11]. As we have already
seen the syntax above, we shall here focus on the semantics, which we shall give in terms of a reduction
system. Firstly, we shall need a notion of structural congruence on processes, written ≡. We shall
postpone its precise definition slightly, but the intuition is that P1 ≡ P2 denotes that P1 and P2 are the
same process, up to some insignificant structural change, such as reordering of components in parallel
composition or a change of bound names (α-conversion).

1Full proofs of most results are available in a technical report [10].
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Now, since names are quoted processes, this notion of structural congruence is extended to the set of
names: the name equivalence relation, written ≡N , is defined as the least equivalence on names closed
under the following rules:

[N-STRUCT]
P1 ≡ P2

pP1q≡N pP2q
[N-DROP]

x1 ≡N x2

pqx1pq≡N x2

The point of [N-STRUCT] is that if the processes within quotes have the same structure (up to structural
congruence), then the quoted processes should also represent the same name. Furthermore, by [N-DROP],
we allow nested levels of quotes and drops to ‘cancel out.’

Next, we shall need the notions of free and bound names, fn(P) and bn(P), which are defined in
the usual (syntactic) way, with input being the only formal binder in the language. Thus bn(x(y).P) =
{y}∪bn(P), and all other names are free. We write n(P), fn(P)∪bn(P) for all the names in P, and we
also write x#P to mean that x is fresh for P. However, with structured names, it is no longer enough that
x /∈ n(P); x must also not be name equivalent to any name in P. Thus we say x#P, ∀n ∈ n(P) . x 6≡N n.
Lastly, we write P{x/y} for the safe substitution of x for y within P. However, given our considerations
about ≡N above, P{x/y} will not only replace y, but also any name that is name equivalent to y. Note
also, in particular, that substitution does not recur into processes under quotes. Thus pPq{x/y} = pPq
for all names y where y 6≡N pPq, and pPq{x/y}= x otherwise.

We shall now return to the definition of structural congruence: it is defined as the usual least congru-
ence on processes, containing α-equivalence and the abelian monoid rules for parallel composition with 0
as the unit element. However, with structured terms as names, the congruence rules take on a slightly un-
usual form, since we now also need to compare names. For example, to conclude x1(y1).P1 ≡ x2(y2).P2
we would need the following rule in structural congruence:

[S-IN]
x1 ≡N x2 P1 {z/y1} ≡ P2 {z/y2}

x1(y1).P1 ≡ x2(y2).P2
(z#P1,P2)

This yields another mutual recursion between structural congruence and name equivalence.
With these concepts in place, we can at last give the reduction rules for our semantics as follows:

[ρ -PAR]
P1→ P′1

P1 | P2→ P′1 | P2
[ρ -STRUCT]

P1 ≡ P′1 P′1→ P′2 P′2 ≡ P2

P1→ P2

[ρ -COM]
x1 ≡N x2

x1(y).P1 | x2 〈|P2|〉 → P1 {pP2q/y}
The [ρ -PAR] and [ρ -STRUCT] rules are standard (as in e.g. the π-calculus); the former lets us con-

clude a reduction of one component in a parallel composition, whilst the latter allows us to rewrite the
process, using structural congruence ≡, such that its form can match the conclusion of one of the other
rules.

The [ρ -COM] rule is also almost standard: The process P2 is quoted and sent out over x2, and the
matching input receives it as the name pP2q and substitutes it for y in the continuation P1. However, since
names in the ρ-calculus have structure, we must be able to explicitly conclude the equivalence x1 ≡N x2
between the two subjects in a communication. This is thus different from calculi with atomic names
where exact syntactic equality is (usually implicitly) required between subjects.

One last detail concerns substitution: In structural congruence, including α-equivalence, P{x/y} is
defined as the usual capture-avoiding substitution of names for names. However, the substitution used in
the semantics is slightly different, as it is also used to handle the qxp construct, which was not given a
reduction rule above. The semantic substitution also contains the clause qxp{pPq/y}= P if x≡N y, thus
replacing the process qxp with P; and qxp{pPq/y}=qxp if x 6≡N y. This is the only way in which a qxp
is ever executed, and it implies that the drop of a free name is a deadlock, as it can never be touched by
a substitution at runtime.
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3 The encoding of Meredith and Radestock

In [11], Meredith and Radestock proposed an encoding of the asynchronous, choice-free π-calculus,
taking full abstraction w.r.t. weak, barbed bisimilarity as their correctness criterion. Unfortunately, that
encoding is not correct, as we shall now show. The counter-examples are instructive, as they highlight
some of the difficulties inherent in working with a calculus without the assumption of an infinite set of
atomic names and explicit scoping operators.

First, we recall the syntax and semantics of the asynchronous choice-free π-calculus, as given e.g.
in [14]. Note that some of the constructs and concepts are similar to those found in the ρ-calculus. We
shall therefore reuse some of the symbols and rely on context to distinguish whether a π-calculus or
ρ-calculus construct is meant. The syntax is:

P ∈Pπ ::= 0
∣∣ P1 | P2

∣∣ x(y).P
∣∣ x<z>

∣∣ (νx)P
∣∣ !P

The semantics is given in terms of a reduction system with the rules

[π -COM]
x(y).P | x<z>→ P{z/y} [π -RES]

P→ P′

(νx)P→ (νx)P′

and with rules for parallel composition and structural congruence similar to those in the ρ-calculus (rules
[ρ -PAR] and [ρ -STRUCT] above). Structural congruence ≡ over Pπ contains the same rules as in the ρ-
calculus, but with syntactic equality replacing name equivalence, and also the following rules for scoping
and replication:

(νx)0 ≡ 0
(νx)(νy)P ≡ (νy)(νx)P

!P ≡ P | !P
(νx)P1 | P2 ≡ (νx)(P1 | P2) if x /∈ fn(P2)

Now for the encoding, assume a function ϕ : N → pPρq from π-calculus atomic names to ρ-
calculus names. Since the set of π-calculus names is countably infinite, it can for example be mapped
to the set of natural numbers. The function ϕ could then be regarded as an enumeration of names (or
a successor function), starting e.g. from p0q for the name x0, and then letting the name xi+1 be defined
in terms of the name xi as for example xi+1 , pxi 〈|0|〉q. In the sequel, we shall say that px〈|0|〉q is a left
increment of x, written +x. Then we can generate a countably infinite sequence of names x0,x1,x2, . . .,
starting from any name x = x0, as +x = x1,++x = +x1 = x2, . . . and so on. This shows that the set of π-
calculus names can be implemented as ρ-names, as, by the definition of name equivalence and structural
congruence, we have that x 6≡N px〈|0|〉q.

Correspondingly we can define x+ , px(p0q).0q as a right increment of x, which gives us another
countably infinite sequence. Another option is name composition x · y , px〈|0|〉 | y(p0q).0q, which
yields yet another sequence with x2 = x · x,x3 = x2 · x,x4 = x3 · x, . . . and so on.

These are all examples of static quoting techniques for consistent name generation, and each could
be used to implement the function ϕ . Given such techniques, Meredith and Radestock then begin by
assuming that all π-calculus names are already implemented as ρ-names. Their translation function
JPKn0,p0 requires two names as parameters, which must be chosen such that they are distinct from all the
names in P, and furthermore that no name within P can ever be generated from n0 or p0 by means of the
aforementioned methods of static name generation. One way of ensuring this is by letting

n0 = p ∏
x∈fn(P)

x〈|0|〉q and p0 = p ∏
x∈fn(P)

x(p0q).0q

where ∏ denotes generalised parallel composition.
The translation function also uses two short-hands: D(x), x(y).(qyp | x〈|qyp|〉) is a copying process

used to implement replication; and x<y>, x〈|qyp|〉 simulates output in the π-calculus, since by [N-DROP]
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we have that pqypq ≡N y. The translation JPK = JPKn0,p0 [11, p. 13] is then given by the following
recursive equations:2

J0Kn,p = 0
Jx<y>Kn,p = x<y>

Jx(y).PKn,p = x(y).JPKn,p

JP1 | P2Kn,p = JP1K+n,+p | JP2Kn+,p+

J(νx)PKn,p = p(x).JPK+n,+p | p<n>

J!PKn,p = n · p〈|n+(n).p+(p).(JPKn,p | D(n · p) | n+〈|n<n>|〉 | p+〈|p<p>|〉)|〉
| D(n · p) | n+<+n> | p+<+p>

A central element in this translation is the encoding of replication, J!PKn,p, so we shall give some
further details about its underlying intuitions. Firstly, with higher-order process mobility, we can create
a diverging process simply as x〈|D(x)|〉 | D(x). This construction is reminiscent of the λ -calculus Ω-
combinator (λx.xx)λx.xx: D(x) will run the process it receives on x whilst simultaneously making it
available again on x, so by sending it a copy of D(x) itself, we obtain a process that continuously copies
itself. Then, by embedding another process P in this construct, x〈|P | D(x)|〉 | D(x), we obtain a process
that will create arbitrarily many copies of P at runtime. Thus we can implement unguarded replication
by using just a single name x. However, this name x must not be used by any other process, lest it
might interfere with the replication. This is achieved in the above encoding by composing the two name
parameters, n and p, to obtain a new name n · p.

Secondly, if JPKn,p were simply copied in this fashion, any usage of the parameters n and p within the
translation of P would also be copied, which thus could create a name clash. Therefore, the inner process
is prefixed with two inputs that bind n and p within the continuation. In parallel, we then have two other
processes, n+<+n> and p+<+p>, that output the new names +n and +p, which will be substituted for n
and p. These processes are also copied, and in the next round of replication they will instead create the
names p+n<+n>q and p+p<+p>q, and so on, thereby implementing a runtime form of name generation,
similar to our static quoting technique.

For the purpose of defining a notion of behavioural equivalence that is comparable to that of other
calculi that do feature a ν-operator, Meredith and Radestock define a name-restricted observation predi-
cate ↓N for the ρ-calculus, parametrised with a set of names N . The idea is to only allow observation
of names in this set. We follow their definition, but also allow the observation predicate to distinguish
between input x, and output x:3

[ρ -BOUT]
x1 ≡N x2 x1 ∈N

x1 〈|P|〉 ↓N x2
[ρ -BIN]

x1 ≡N x2 x1 ∈N

x1(y).P ↓N x2
[ρ -BPAR]

P1 ↓N x̂ ∨ P2 ↓N x̂
P1 | P2 ↓N x̂

where x̂ ranges over x,x. An N -restricted barbed bisimulation is then a symmetric, binary relation RN

on processes, parametrised with a set of names N , such that (P1,P2) ∈RN implies:
• If P1→ P′1 then there exists a P′2 such that P2→ P′2 and (P′1,P

′
2) ∈RN .

• If P1 ↓N x̂ then P2 ↓N x̂.
We say that P1 is N -restricted barbed bisimilar to P2, written ∼N , if there exists an N -restricted
barbed bisimulation RN such that (P1,P2) ∈RN . The corresponding ‘weak’ observation predicate is
then written

P ⇓N x̂, ∃P′ . P→∗ P′∧P′ ↓N x̂
2The translation has been adapted to use our notation for name increments, which we find more intuitive than xl and xr,

which is used in the original presentation. We also use x<y> rather than x[y] for output, which is more in line with standard
π-calculus notation.

3The added distinction between input and output observations is only for use in our later development of a correct encoding,
and does not invalidate our claim that the encoding by Meredith and Radestock is incorrect, since our counter-examples shall
only rely on observing outputs.
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where →∗ is the reflexive and transitive closure of →, and by replacing P2 ↓N x̂ with P2 ⇓N x̂, and
P2 → P′2 with P2 →∗ P′2 in the above definition, we obtain the corresponding notion of a weak N -
restricted barbed bisimulation. We say that P1 is weakly N -restricted barbed bisimilar to P2, written
≈N , if there exists a weak N -restricted barbed bisimulation RN that relates them.

The corresponding observation predicate for the π-calculus is built by the following rules for obser-
vation on output, restriction and replication

[π -BOUT]
x ∈N

x<y> ↓N x
[π -BRES]

P ↓N x̂
(νz)P ↓N x̂

(x 6= z) [π -BREP]
P ↓N x̂
!P ↓N x̂

and with rules similar to [ρ -BPAR] and [ρ -BIN] in the ρ-calculus for observation on parallel composition
and input, with strict syntactic equality replacing name equivalence in the premise of the latter rule. The
notions of a weak observation predicate, and (strong resp. weak) N -restricted barbed bisimulation and
bisimilarity for the π-calculus are then defined as in the ρ-calculus. We write P ↓ x̂, P ⇓ x̂, P1 ∼ P2 and
P1 ≈ P2 when N is the set of all names, corresponding to no restriction on the names we can observe.
This yields the familiar notions of (strong resp. weak) barbed bisimilarity in the π-calculus (as defined
in e.g. [12]).

Given these notions of behavioural equivalence, Meredith and Radestock then state the following as
a theorem [11, p. 14, Theorem 5.3], but without providing a proof:

P1 ≈ P2 ⇐⇒ JP1K≈fn(P1)∪fn(P2) JP2K (1)

with observation in the ρ-calculus restricted to fn(P1)∪ fn(P2), i.e. the free names in P1 and P2, imple-
mented as ρ-names.4

4 The errors

We shall now see why the claim stated in 1 does not hold. Firstly, consider the following π-calculus
processes:

P1 , !(νz)u<z> and P2 , (νz)!u<z>

Clearly, they represent different behaviours: P2 will continuously send out the same fresh name z on
u, whilst P1 will send out different fresh names, as we can see by applying α-conversion after unfolding
the replication (see [10, p. 11] for details). We can also easily construct a testing context C such that they
can be distinguished by the (π-calculus) ⇓ x predicate, for example

C , [ ] | u(n1).u(n2).(n1 | n2.x)

where the objects for the input/output of n1,n2 and x are ignored, as this only requires pure synchronisa-
tion. Clearly, if the two names received on u are the same, then n1 and n2 will be the same name, so they
can synchronise and we will therefore be able to observe x after 3 reduction steps. And conversely, if the
two names are distinct, then we will not observe x. Thus C[P1] 6⇓ x whilst C[P2] ⇓ x as argued above.

Now we make a slight adjustment to the two terms. By composing an arbitrary process Q with the
inner output process u<z> we obtain the following:

P′1 , !((νz)u<z> | Q) and P′2 , (νz)!(u<z> | Q)

4Note that the original presentation [11, p. 14, Theorem 5.3] only has P1 ≈ P2 ⇐⇒ JP1K ≈fn(P1) JP2K, but we regard this
as a simple omission, since it trivially would not hold for the implication from right to left: Take for example P1 , x<z> and
P2 , x<z> | w<z>. Then we have that fn(P1) = {x}, and indeed JP1K ≈{x} JP2K since for i ∈ {1,2} we have that JPiK 6→ and
JPiK ↓{x} x; but obviously P1 6≈ P2, since P2 ↓ w but P1 6↓ w.
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The actual behaviour of Q is irrelevant; it is there solely to induce the parameter pair (n, p) to be split
into a ‘left pair’ (+n,+p) and a ‘right pair’ (n+, p+) that are passed to the translations of the left (resp.
right) parts of the parallel composition. Note also that this changes nothing w.r.t. observability of x: we
still have that C[P′1] 6⇓ x and C[P′2] ⇓ x.

We shall now perform the actual translation. To make it more readable, we tabulate the names
generated by static quoting during the translation and rename them as follows:

n · p = a p+ = c +p = e (+p)+ = g ++n = i
n+ = b +n = d (+n)+ = f (+n) · (+p) = h ++p = j

Note that none of these names will be observable by the ⇓fn(P1)∪fn(P2) predicate, because they are gener-
ated by the translation, and hence are not in the set fn(P1)∪ fn(P2) of free names of P1 and P2. Now, here
is the translation:

JP′1Kn,p = a
〈∣∣∣b(n).c(p).

(
e(z).u<z> | e<d> | JQK f ,g | D(a) | b〈|n<n>|〉 | c〈|p<p>|〉

)∣∣∣〉
| D(a) | b<d> | c<e>

JP′2Kn,p = p(z).h
〈∣∣∣ f(d).g(e).

(
u<z> | JQK f ,g | D(h) | f 〈|d<d>|〉 | g〈|e<e>|〉

)∣∣∣〉
| D(h) | f<i> | g< j> | p<n>

By performing the reductions, we see (not surprisingly) that JP′2Kn,p firstly performs the communica-
tion on p, which causes z to be replaced by n, and the process afterwards expands into arbitrarily many
instances of u<n> (see [10, p. 12] for a reduction sequence). On the other hand, the translated process
JP′1Kn,p will immediately go through the replication steps, thereby creating arbitrarily many instances
of the process e(z).u<z> | e<d> corresponding to the translation of (νz)u<z>. This process obviously
reduces to u<d> in one step. However, precisely because of the aforementioned split of (n, p) over the
translation of parallel composition, the name d will not be updated by the replication context. This pro-
cess will therefore also repeatedly output the same name d on u, and the (translated) form of our testing
context can therefore no longer distinguish the processes.

Both JP′1K and JP′2K thus reduce to arbitrarily many copies of either u<d> (for P′1) or u<n> (for P′2),
and u is the only name we can observe, as all the other names are created by the translation. This then
gives us our desired counter-example: by also translating the testing context we obtain a pair of processes
where

C[P′1] 6≈C[P′2] but JC[P′1]K≈fn(C[P′1])∪fn(C[P′2]) JC[P′2]K

in contradiction of the implication from right to left in the claim stated in 1.
The detailed analysis above gives us a clear idea of the root cause of the problem: The translation

of replication creates a context with the purpose of ensuring that the names (n, p) used within it will
repeatedly be substituted with new, fresh names (+n,+p) dynamically built from the previous names, and
these act as sources of new names for any occurrence of (νz)P within a replicated process. The point is
precisely to ensure that each instance of a replicated ν operator will generate a unique new name, and the
parameters (n, p) on the translation function act as ‘handles’ to access this resource; they are the names
that have most recently been replicated.

The problem arises because this property of being the ‘most recently replicated names’ is not pre-
served by the translation of parallel composition: It splits the pair into a left and a right pair, used in the
translation of the left and right parallel components:

JP1 | P2Kn,p = JP1K+n,+p | JP2Kn+,p+
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Thus, the access to the most recently replicated names is lost in the translation of the inner processes,
because, as we noted above, substitution does not recur into processes under quotes. Therefore, when
the replication context increments (n, p) at runtime, this update cannot touch the n and p embedded in
the statically incremented names (+n,+p) and (n+, p+) which the translation function generates for the
translation of parallel composition. This is why we added an arbitrary Q to create a parallel composition
in our counter-example above.

However, the error above is not the only one in the claim by Meredith and Radestock: whilst its
root cause was the splitting of names over the translation of parallel composition, we can also create
another example that is more directly related to the interplay between (νx)P and replication. Consider
the following processes:

P1 , !(νz)u<z> and P2 , !(νq)(νz)u<z>

Note that P1 and P2 are structurally congruent, since the new name q is never used. Thus P1 ≈ P2 also
holds. Yet when we translate those terms, the name incrementation in the translation of a term of the
form (νx)P means that we again lose access to the most recently replicated names from the translation
of replication. This can be easily seen if we perform the translation stepwise, using the same tabulated
list of names as before. For both processes, the translation of replication is the same:

J!PKn,p = a〈|b(n).c(p).(JPKn,p | D(a) | b〈|n<n>|〉 | c〈|p<p>|〉)|〉 | D(a) | b<d> | c<e>

Now let P′1 , (νz)u<z> and P′2 , (νq)(νz)u<z> and replace JPKn,p above with JP′1Kn,p and JP′2Kn,p

respectively. The translations of the inner processes yield:

J(νz)u<z>Kn,p = p(z).u<z> | p<n>

J(νq)(νz)u<z>Kn,p = p(q).(e(z).u<z> | e<d>) | p<n>

which reduce to u<n> and u<d> respectively. The names n, p are bound in the replication context and
will therefore be updated whenever the process replicates. However, in the case of P2, these names are
statically incremented in the translation of (νq) to yield the names +n = d and +p = e, and these two
names will therefore not be updated at runtime, just as in the previous counter-example. Consequently,
in the case of P2 the names sent out on u will not be distinct; they will all be the name +n = d. We can
therefore use the same testing context C as in the previous example and proceed as before to generate
another contradiction of the claim in 1; this time by distinguishing the translated terms, although we have
C[P1]≈C[P2] in the π-calculus. In summary, neither of the implications in the claim stated in 1 hold.

5 Our criteria for encodability

Both of the previous examples illustrate the difficulties involved in reasoning about a parametrised trans-
lation. Usually, the parameters represent a property or invariant that is assumed to be preserved through-
out the translation, and a proof of correctness of the translation must therefore also include a proof that
this invariant or property is indeed preserved. For example, in the present case, the invariant assumed to
hold for the parameters is precisely that they always refer to the most recently replicated names. How-
ever, this assumption is never formally stated in the original ρ-calculus paper [11], and as the examples
above show, it does not hold either. Thus, a naive attempt to show correctness of the translation by induc-
tion in the clauses of the translation function may therefore seemingly go through, if the parameters are
not considered. This is doubly problematic in the present case, because the observation predicate used
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in the bisimulation relation over ρ-calculus terms is parametrised so that we do not observe the names
created by the translation function.

Full abstraction, of which the claim in 1 is an instance, may also not be the most informative cor-
rectness criterion, as argued by Gorla and Nestmann [9]; for example, it does not necessarily prevent
the translation from introducing divergence. Also, as we are here more interested in showing that the
π-calculus is ‘implementable’ in the ρ-calculus than in transferring equations between the source and
target language, we shall instead follow the approach of such authors as Gorla [8], Carbone and Maffeis
[4] and others, and state a number of criteria for what we consider a valid encoding, where we also take
the presence of parameters into account:

Definition 1 (Language). A language L is a tuple L , (P,N ,→,'), where P is a set of terms, N
is a set of names, →⊆P ×P is the reduction relation, with →∗denoting the reflexive and transitive
closure of→, and '⊆P×P is a notion of behavioural equivalence.

We say a term P ∈P diverges, written P→ω , if P has an infinite reduction sequence. We use
σ : N →N to denote a substitution function in L . For encodings, we need the notion of a source
and a target language, and we shall generally use the convention of subscripting s (for source) and t (for
target) to a language L or its components, including substitutions, and we let S ∈Ps and T ∈Pt .

Definition 2 (Encoding). An encoding of Ls into Lt is a tuple (J KN ,ϕ,δ ), where J KN : Ps→Pt is a
translation function, parametrised with a finite list of names N ∈N k

t ; and ϕ : Ns→Nt is a renaming
policy, mapping names in the source language into names in the target language; and δ : N k

t →N k
t is

a name derivation function, mapping k-ary tuples of target names to tuples of equal arity for some k.

The name derivation function δ allows us to express that the list of name parameters N may evolve
in some predictable way during the course of translation. This seems necessary in particular when we
are working with a language with structured terms as names. In some cases we may also need to derive
multiple tuples of names from the same input tuple; thus to comply with the requirement that δ is a single
function, we could e.g. envision using an extra, designated name as argument to control the derivation
method used by δ . However, to abstract away from such details, we say that a tuple of names N2 is
derivable from some tuple of names N1, written N1  N2, if δ(N1) = N2, and likewise that N1  n if
n ∈ N2. Note that we abuse the notation slightly and treat the lists as sets when the position of each
individual component does not matter.

Definition 3 (Valid encoding). We shall regard an encoding as valid, if it satisfies at least the following
criteria:

1. Compositionality: JS1 | . . . | SnKN =C | JS1KN1 | . . . | JSnKNn where C is an optional coordinating
context and fn(C)⊆ ϕ(fn(S1 | . . . | Sn))∪N, and for each i ∈ {1, . . . ,n} we have that N Ni.

2. Substitution invariance: JSσsKN ' JSKNσt for each σs, where ϕ(σs(x)) = σt(ϕ(x)).

3. Operational correspondence: S→∗ S′ ⇐⇒ ∃T ′ . JSKN →∗ T ′∧T ′ ' JS′KN′ and N N′.

4. Observational correspondence: We require that N ∩ϕ(M ) = /0 for any set of observable names
M . Then P ↓M x̂ ⇐⇒ JPKN ⇓ϕ(M ) ϕ(x̂).

5. Divergence reflection: JPKN →ω =⇒ P→ω .

6. Parameter independence: JPKN1 ' JPKN2 for each finite N1,N2.

These criteria are very close to those proposed by Gorla [8], except that we have chosen observational
correspondence, rather than the less specific success testing; i.e. P→∗↓ X implies JPKN →∗↓ X. This
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can easily be obtained, simply by choosing a specific name x and then defining X as a process with x in
subject position, as we did in our counter-examples above.

Furthermore, as we are here allowing parameters to appear on the translation, we have also added
the criterion of parameter independence, which does not appear in [8]. This is just to ensure that the
behaviour of the translated terms will not depend on the exact choice of the parameters. Likewise, we
have also added name restriction to the observation predicate for observational correspondence ⇓M , and
we require that N ∩M = /0; i.e. that the parameters should not be observable. This seems a natural
requirement, since we also require that N ⊆Nt ; i.e. that the parameters belong to the target language.
They should therefore not be observable on the source terms.

6 A correct encoding

As the previous examples have illustrated, the main difficulty in creating an encoding of the π-calculus
in the ρ-calculus, is how to achieve a robust source of fresh names at runtime that are guaranteed never
to cause a name clash. One way is to use a dedicated process for this purpose. Consider the following
process, where D(x) is defined as in section 3:

!N(x,z,v,s), D(x) | x
〈∣∣∣z(a).v(r).

(
D(x) | r 〈|qap|〉 | z〈|a〈|0|〉|〉

)∣∣∣〉 | z〈|qsp|〉

This process is a name server; it consistently generates names corresponding to consecutive left-
increments of the initial name s and outputs them on the ‘return address’ r received on v. We refer to the
above form as the initial state of the name server and note that after two reductions it evolves to the form

v(r).
(

D(x) | r 〈|qsp|〉 | z〈|pqspq〈|0|〉|〉
)
| x
〈∣∣∣z(a).v(r).

(
D(x) | r 〈|qap|〉 | z〈|a〈|0|〉|〉

)∣∣∣〉
which we refer to as its ready state, where it blocks, awaiting a request for a new name on v. The first
request will return pqspq; a second request will return ppqspq〈|0|〉q= +s, and so on.

We can verify that the names will all be distinct by considering the quote depth of a name (resp.
process) defined thus:

QD(pPq) =

{
QD(x) if P≡qxp
1+QD(P) otherwise

QD(P) =

{
max{QD(x) | x ∈ fn(P)} if fn(P) 6= /0
0 otherwise

The quote depth of a name x1 corresponds to the maximum number of calls to [N-STRUCT] used to
conclude name equivalence x1 ≡N x2 for some name x2. Thus, a necessary (but not sufficient) condition
for two names to be name equivalent is that they have the same quote depth. Names are therefore
automatically stratified based on their quote depth:
Lemma 1 (Stratification). x1 ≡N x2 =⇒ QD(x1) = QD(x2).

We can also partition names into namespaces in the following way: let N[ ] be a collection of name
contexts, ranged over by N, with one or more holes occurring in the position of free names. If s is a
name, then so is N[s] for some N ∈N[ ]. We write N[s] , {N[s] | N ∈N[ ] }, and we say that N[s]
is a namespace rooted at s. Clearly, if QD(N) = n (counting QD([]) = 0), and QD(s) = i and QD(s′) = j,
then QD(N[s]) = n+ i and QD(N[s′]) = n+ j.

Using the concepts of name contexts, we can describe our aforementioned three static quoting tech-
niques as three distinct name space ‘templates,’ built by the following grammars:

+N ∈ +N[ ] ::= [ ]
∣∣ p+N 〈|0|〉q

N+ ∈N +
[ ] ::= [ ]

∣∣ pN+(p0q).0q
N◦ ∈N ◦

[ ] ::= [ ]
∣∣ pN◦ 〈|0|〉 | N◦(p0q).0q
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We shall use these namespace templates to implement the name derivation function δ . Thus, if we let
N̂ denote any of the name contexts +N,N+,N◦ then s s′ if there exists a name context N̂ such that
s′ ≡N N̂[s]. This assures us that even if two namespaces use the same structure, e.g. +N[ ], all their
names will still be distinct if their roots are not name equivalent, and neither is derivable from the other.

In case of the name server, we see that it generates the namespace +N[s], i.e. the namespace of left-
increments rooted at s, where s is a parameter. Thus if s1 6≡N s2 and neither is derivable from the other,
then !N(x,z,v,s1) and !N(x,z,v,s2) will generate similarly structured namespaces, +N[s1] and +N[s2], but
consisting of different sets of names. Yet we can easily construct a mapping +N[s1] 7→

+N[s2] simply by
replacing s1 with s2 within each name +N[s1] ∈ +N[s1]. This will be important in the proof for parameter
independence below.

Based on these considerations we can now construct our encoding. We let the encoding be defined
as JPK , JPKn,v | !N(x,z,v,s), where we assume we can choose the names n,v,x,z,s such that they are
distinct from all free names in P and n,v,x,z 6∈ +N[s]. As in the encoding by Meredith and Radestock, we
shall assume that all π-calculus names are implemented as ρ-names, and thus we shall generally omit
explicit reference to ϕ in the following. We shall also limit ourselves to the π-calculus fragment with
only input-guarded replication, to ensure that the encoding does not introduce divergence, unlike the
encoding by Meredith and Radestock which replicates eagerly and therefore always diverges.5 This can
be achieved by prefixing the object of the lift with an input construct, i.e. n〈|x(y).(D(n) | P)|〉, since

D(n) | n〈|x(y).(D(n) | P)|〉 → x(y).(D(n) | P) | n〈|x(y).(D(n) | P)|〉

and the process then blocks until it receives a communication on x. Given these considerations, the
translation function J Kn,v is then given by the following equations:

J0Kn,v = 0
JP1 | P2Kn,v = JP1K+n,v | JP2Kn+,v

Jx(y).PKn,v = x(y).JPKn,v

Jx<z>Kn,v = x<z>
J(νx)PKn,v = v<n> | n(x).JPKn·n,v

J!x(y).PKn,v = D(n) | n〈|x(y).(D(n) | JPKn·n,v)|〉
The idea is that we simplify the ‘bookkeeping’ involved in runtime name generation by isolating it

to a single, contextual process. This prevents errors of the first kind in the encoding by Meredith and
Radestock, which resulted from processes losing access to the most recently replicated names. Here, the
name v is used by all processes to contact the name server, and since it is never updated this access can
never be lost. Conversely, the name n, which is used for the ‘return address,’ as well as for replication, is
always updated incrementally, during the translation. It is never bound or reused, unlike in the translation
by Meredith and Radestock, where the replication context used +n,+p but also bound n, p and passed
them to the inner translation of P, which resulted in the second kind of error. We say that a name is
unique for the translation if it is never generated more than once by the translation function, and this is
the invariant that should hold for the parameter n:
Lemma 2 (Uniqueness). For each clause JC[P]Kn,v = JCKn,v[JPKn′,v], where n n′, and JCKn,v contains
a set of names N′ = {n1, . . . ,nk } such that n N′, it holds that if n is unique for the translation, then so
are n1, . . . ,nk and n′.

This can easily be shown by examining the clauses of the translation function, assuming n is unique.
For every usage of n in a clause, we always either increase the quote depth of the parameter we pass to
the inner call to the translation, or we shift the parameter into a new namespace by composition. Further-
more, the behaviour of the translated process does not depend on the structure of the name parameter n,
as long as n is unique:

5This is only a slight limitation, as we can use input-guarded replication to encode full replication. Note also that having
only input-guarded replication would not have prevented any of the errors described in section 4.
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Proposition 1 (Independence of parameters). If n,n′,s,s′#n(P) and all are unique for the translation,
then JPKn,v | !N(x,z,v,s)∼fn(P) JPKn′,v | !N(x,z,v,s′).

This follows from the fact that the translation only generates finitely many names, say, of the structure
N[ ], so we can construct a finite substitution σt : N[n]→N[n′] and simply apply it to JPKn,v to obtain
JPKn′,v. Then as we know that n,n′,s,s′#n(P), and by construction x /∈ fn(P) for each x ∈N[s]∪N[s′],
none of these names can be observed by the ↓fn(P) predicate, so they cannot be used to distinguish the
two processes. A similar argument can then be made for the name server and the two namespaces +N[s]
and +N[s′] generated by it at runtime.

Next, we formulate a (mostly) standard result relating substitution in the two calculi:

Proposition 2 (Substitution). Let σs , {u/w} denote substitution in the π-calculus, and let σt , {u/w}
denote substitution in the ρ-calculus. Then JPσsKn,v = JPKn,vσt if u,w#P,n,v,N[n].

This is proved by induction in the clauses of the translation. The condition u,w#P,n,v,N[n] ensures
that the substitution cannot touch any of the names created by the translation, which is reasonable, since
the substitutions we care about should derive from communications in the π-calculus, and not from
some of the ‘internal’ reductions in the ρ-calculus that are used to simulate replication or requests for
new names.

Our next result establishes that our translation preserves observability of subjects, as long as we
restrict observations to the set of free names in P:

Proposition 3 (Weak observational correspondence). Let ⇓N be the least predicate such that JSK ⇓N n̂
holds if either of the following conditions are satisfied:

1. if S = S1 | S2 and JS1K ⇓N n̂∨ JS2K ⇓N n̂

2. if S 6= S1 | S2 and JSKn,v | !N(x,z,v,s)→∗ T ′∧T ′ ↓N n̂

Then for any x, P ↓fn(P) x̂ ⇐⇒ JPK ⇓fn(P) x̂.

This is proved by induction in the clauses of the translation. Note that we purposefully restrict
the weak observation predicate to only allow reductions involved in replication and requesting a fresh
name from the name server; i.e. by splitting it directly over parallel compositions rather than allowing
them to first interact. This is necessary for proving the implication from right to left in Proposition 3,
since reductions might otherwise expose more names that are not immediately observable in the source
terms. This restriction can be lifted if we replace ↓ by ⇓ in the π-calculus, but we prefer this slightly
more complicated formulation to illustrate that observability is strictly preserved, in the sense that any
auxiliary steps required in the ρ-calculus are ‘internal,’ deriving either from a replication step, a request
for a new name, or from the name server as it moves from its initial state to its ready state, and neither of
these are observable by the ↓fn(P) predicate.

Next we show that the translation preserves the semantic meaning of the source program:

Proposition 4 (Operational correspondence). P→∗ P′ ⇐⇒ JPK→∗≈fn(P) JP′K.

This proof can be split into two parts. For the forward direction (completeness) we can actually show
the stronger statement that P→ P′ =⇒ JPK→→∗∼fn(P) JP′K by induction in the reduction semantics of
the π-calculus, as every reduction in the π-calculus is matched by one or more steps in the ρ-calculus.
The proof often relies on Proposition 2 for the cases of communication, replication and (νx)P, and on
Proposition 1 when we translate the reduct of the π-calculus term as this often induces a slightly different
form on the parameters.

For the other direction (soundness) we can only prove the weaker form JPK→∗ T ′ =⇒ ∃P′.P→∗
P′∧T ′ ≈fn(P) JP′K, due to the extra reductions deriving from the name server, replication, or requests for
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new names. Thus we proceed by induction in the reduction sequence, and often again making use of
Proposition 1.

Having only the weaker form of completeness, with →∗ instead of →, of course means that this
statement in itself is not enough to verify that the translation does not introduce divergence. We therefore
prove this separately:
Proposition 5 (Divergence reflection). JPK→ω =⇒ P→ω .

We show this by induction in the clauses of the translation function. The matter is made easier
by the fact that a reduction sequence related to the name server, requests for new names, or unfolding
replication, is always of finite length: the name server takes two steps to evolve from its initial state to its
ready state, where it blocks until it receives a request; serving a request requires two steps, and then two
further steps to return to its ready state; and input-guarded replication takes a single step to unfold once,
after which it blocks until it receives an input.

7 A separation result

The ρ-calculus can encode the π-calculus, as we saw in the previous section. However, the converse
does not hold. Under some general assumptions about the behavioural equivalence ' used in the target
language, we can show that there cannot be an encoding of the ρ-calculus into the π-calculus that satisfies
our validity criteria from Definition 3. This result relies on a simple observation about substitution in the
π-calculus, namely that reduction is preserved under substitution:
Lemma 3. Let σt = {x/n} be a substitution in the π-calculus, with n∈ fn(P) and x#P. Then P→ P′ =⇒
Pσt → P′σt .

This can easily be shown by induction in the semantic rules, and then with an extra induction in
structural congruence for the [π -STRUCT] rule.

Next, we consider our requirements for the notion of behavioural equivalence: First of all, ' should
obviously be an equivalence relation. Secondly, it should in some sense preserve the semantics of the
processes it equates: as we are here working in a reduction system, it should at least preserve reductions
and observability, and it should be preserved under substitution:
Definition 4 (Behavioural equivalence requirements). We require that ' be at least an equivalence
relation over π-terms satisfying the following:

1. P1 ' P2∧P1→∗ P′1 =⇒ ∃P′2 . P2→∗ P′2∧P′1 ' P′2
2. P1 ' P2∧P1 ⇓ x̂ =⇒ P2 ⇓ x̂

3. P1 ' P2 =⇒ P1σt ' P2σt

The requirements suggest that ' should be at least weak, barbed congruence, which does not seem
too demanding. However, we prefer to keep the formulation general, without committing to one specific
notion of behavioural equivalence, to emphasise that other, stronger choices are also possible. The
following result will then hold for any such choice:
Theorem 1 (Separation). If ' satisfies the requirements of Definition 4, then there is no encoding of the
ρ-calculus into the π-calculus satisfying the criteria of Definition 3.

Proof. Assume to the contrary that there exists a translation J KN : Pρ →Pπ satisfying the criteria of
Definition 3. We show that this leads to a contradiction. Firstly, let u, pqx1p | qx2pq, and consider the
processes P and P′ where

P, P1 | P2 P1 , a〈|qx1p | qx2p|〉 P2 , a(n).n〈|0|〉 P′ , u〈|0|〉
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Thus P = a〈|qx1p | qx2p|〉 | a(n).n〈|0|〉 and clearly P 6↓ u and u /∈ fn(P), but P→ pqx1p | qx2pq〈|0|〉 =
u〈|0|〉= P′ and P′ ↓ u.

Consider now the substitution σt , {m/ϕ(u)} for some fresh name m, i.e. m 6= ϕ(u) and with m /∈
fn(JPKN). P→ P′ gives, by criterion 3 (operational completeness), that JPKN →∗ T ′ and T ′ ' JP′KN′

for some T ′ and N′ derivable from N. By criterion 2 (substitution invariance), σt(ϕ(u)) = m implies
∃σs.ϕ(σs(u)) = m, so we can combine σs with the observability predicate. By criterion 4 (observational
correspondence), since P′ 6↓ σs(u), we therefore also have that JP′KN 6⇓ m. This establishes that

JPKN →∗ T ′∧T ′ ' JP′KN′ ∧ JP′KN′ 6⇓ m

as expected. By requirement 2 in Definition 4, since JP′KN′ ' T ′, it must therefore also be the case that
T ′ 6⇓ m, and hence that JPKN 6⇓ m.

Now consider the term JPKNσt : Lemma 3 yields JPKNσt →∗ T ′σt ' JP′KN′σt , and by criterion 2
(substitution invariance) JP′KN′σt ' JP′σsK. As we know that P′ ↓ u, this implies that P′σs ↓ σs(u), which
again implies that JP′σsKN′ ⇓ σt(ϕ(u)), which implies JP′KN′σt ⇓ m. This establishes that

JPKNσt →∗ T ′σt ∧T ′σt ' JP′KN′σt ∧ JP′KN′σt ⇓ m

again, as expected. By requirement 2 in Definition 4, since JP′KN′σt ' T ′σt , it must therefore also be the
case that T ′σt ⇓ m, and hence that JPKNσt ⇓ m.

However, consider now the effect of applying the substitution JPKNσt . By criterion 1 (composition-
ality), we have that

JPKNσt =Cσt | JP1KN1σt | JP2KN2σt =C | JP1KN1σt | JP2KN2σt

where we can eliminate the substitution from C, since ϕ(u) /∈ N ∪N1 ∪N2, as this immediately would
violate criterion 6 (parameter independence); and as we know that u /∈ fn(P), we therefore also know
that ϕ(u) /∈ fn(C), since C at most can contain a subset of the (ϕ-translated) free names of the process
and the parameters. Thus the substitution has no effect on C.

Now consider the two subterms JP1KN1σt and JP2KN2σt . By criterion 2, JP1KN1σt ' JP1σsKN1 and
JP2KN2σt ' JP2σsKN2 , but when we apply the substitution, we get that

P1σs = (a〈|qx1p | qx2p|〉)σs = a〈|qx1p | qx2p|〉= P1 P2σs = (a(n).n〈|0|〉)σs = a(n).n〈|0|〉= P2

since obviously u /∈ fn(P1) and u /∈ fn(P2), so the substitution has no effect on any of the subterms. Thus

C | JP1σsKN1 | JP2σsKN2 =C | JP1KN1 | JP2KN2

and hence JPσsKN = JPKN . By criterion 2 (substitution invariance) JPσsKN ' JPKNσt , and thus we have
that JPKNσt ' JPKN . This then yields the desired contradiction, since, as established above, JPKNσt ⇓ m
but JPKN 6⇓m, whilst by requirement 2 of Definition 4 it must hold that JPKNσt ' JPKN ∧JPKNσt ⇓m =⇒
JPKN ⇓ m.

The above proof exploits the reflective capability of the ρ-calculus to create new, free names at
runtime, which are therefore also observable and substitutable. Thus, a substitution can affect the reduct
of a process, without affecting the process itself, if the reduction step creates a new name. This cannot
be mimicked in the π-calculus, where names have no structure and cannot be composed at runtime. Any
new free name appearing at runtime can therefore only come from the translation parameters, since it
cannot come from the source term; but this would then violate the criterion of parameter independence,
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since we would then have to choose the parameters such that they correspond to the names that will be
created at runtime.

This result does not directly depend on the higher-order characteristics of the ρ-calculus, and adding
higher-order behaviour to the π-calculus would not suffice to enable it to encode the ρ-calculus. In [18],
Sangiorgi gave an encoding of the Higher-Order π-calculus, HOπ , in the π-calculus. His encoding also
satisfies our criteria from Definition 3, and we therefore also have the following result:

Corollary 1. There is no encoding of the ρ-calculus into HOπ satisfying the criteria of Definition 3,
when ' satisfies the requirement in Definition 4.

Indeed, if such an encoding existed, we could compose it with the encoding of HOπ into the π-
calculus, to obtain an encoding of the ρ-calculus into the π-calculus, in contradiction of Theorem 1.
This also indicates that the key feature of the ρ-calculus which cannot be represented in the π-calculus,
is not its higher-order characteristics per se, but rather its capability for reflection, which gives it higher-
order characteristics as a by-product.

8 Related works

The issues of encodability and assessing the relative expressiveness of various process calculi has been
considered by several authors; in particular, Gorla [8] proposed a framework for reasoning about en-
codability and separation w.r.t. a set of criteria that also served as inspiration for the criteria used in the
present paper. Towards the end of the paper, Gorla also discusses some of the difficulties involved in for-
mulating a general framework for encodability in the presence of parameters, which particularly pertain
to the question of which language the names belong to (the source or the target). In the present case, the
answer is clearly the target language, which is further underscored by our restrictions on observability
and compositionality; i.e. that the parameters should not be observable in the source term; and that, for
each recursive call to the translation function, the parameters should be derivable from the initial set.
Furthermore, we have added the criterion of parameter independence. We believe that such a criterion
will generally be necessary for encodings that allow the set of parameters to ‘evolve’ or be updated in
some structured way during the course of the translation, which seems particularly likely when we are
working with structured names or terms. More recently, van Glabbeek [7] has also proposed a definition
of a valid encoding, which he derives from a notion of a semantic equivalence or preorder, rather than
basing it on a list of commonly agreed-upon criteria (as we have done in the present paper, following
Gorla). However, this work also does not consider parametrised translations.

Also related is the work by Carbone and Maffeis [4] on expressivity of polyadic synchronisation.
Their eπ-calculus substitutes names for names (as in the π-calculus), but allows n-ary vectors of names
x1 · . . . · xn of arbitrary length n ≥ 0 to appear in subject position of input/output prefixes, and subjects
must then match on all n names to yield a reduction. Thus name vectors can be altered at runtime, but
they cannot grow in length as in the ρ-calculus. However, we could conceive of a (purposefully ill-
sorted) variant of eπ that would allow entire vectors of names to be substituted for single names, thereby
allowing new vectors of increasing length to be composed at runtime. We do not know if such a calculus
could encode the ρ-calculus, but we suspect that it might, if equipped with an appropriate notion of name
equivalence.

Another approach to using structured terms as names is given by Bengtson et al. [2, 3] and Parrow et
al. [15] in their work on Ψ-calculi, which is based on the theory of nominal sets and datatypes by Gabbay
and Pitts [6]. Ψ-calculi allow both subjects and objects to be terms from an arbitrary nominal datatype,
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and with substitution of terms for names. This enables runtime composition of terms, and, notably, the ρ-
calculus can be instantiated as a (higher-order) Ψ-calculus, as the present author and others have shown
in [1].

9 Conclusion

The original ρ-calculus paper [11] by Meredith and Radestock raises some interesting questions about
the nature of names in process calculi. By including name generation in the language, it forces any
process to give an explicit account of the source of any fresh names required during its execution, whilst
this is entirely implicit in the π-calculus with the (νx)P operator. This adds a degree of realism to the
ρ-calculus, which may be relevant from an implementation perspective, but also requires some extra
care when we wish to reason about it formally. For example, Meredith and Radestock attempted to show
that the π-calculus can be interpreted in the ρ-calculus, but their encoding did not properly account for
the invariant that must hold for the names used as parameters in their encoding; i.e. that the parameters
always refer to the most recently replicated names, leading to two errors that invalidate their correctness
result. The purpose of the present paper has been to describe these errors and then give a new encoding
of the π-calculus, for which we have shown correctness w.r.t. a set of criteria for encodability close to
those proposed by Gorla [8]. The main difference is that we here use a parametrised translation, and
we therefore had to take parameters into account in our criteria. This seems unavoidable when we are
working with a calculus with structured names like the ρ-calculus, where all names are global and cannot
be declared at runtime.

Our encoding works, modulo the criteria in Definition 3; yet it may not be an entirely satisfactory
solution in at least one regard: the name server acts as a single, central source of fresh names. If we
consider the scenarios one might wish to model in the π-calculus, having such a single central process
might be acceptable for e.g. models of programs running on a single computer, or models of client-server
systems with a star topology. However, for distributed systems with a different network topology, the
translation would not yield an adequate representation. Thus, the encoding may preserve the semantics
of a program, but not necessarily the intuitions underlying its structure. We could instead conceive of
a more elaborate encoding, where e.g. each replication also instantiates its own copy of a name server
to service the replicated processes. This would be closer to the intention in the encoding by Meredith
and Radestock; but as we have seen, one would then have to be careful to ensure that each replica of the
name server will generate a distinct namespace to avoid the possibility of a name clash. This could be
achieved by letting each replica first request fresh names for all its parameters, including the namespace
root s which must then be composed or otherwise shifted into a new namespace. Yet this creates a
scaffolding problem, where, in order to instantiate a new source of fresh names, one must first have a
source of fresh names. It does not remove the need for an initial, ‘top level’ instance of the name server.
These considerations illustrate some of the difficulties involved in working with, and reasoning about,
structured names with global visibility. None of these problems are present in the π-calculus, yet any
implementation of a π-calculus program would need to include a solution to the problem of obtaining
fresh names. In the words of Meredith and Radestock [11], the π-calculus does not provide a ‘theory of
names.’

We have also shown that the π-calculus cannot encode the ρ-calculus in a way that satisfies the same
criteria, modulo some requirements on the notion of behavioural equivalence' used in Definition 4. The
key to this separation result seems precisely to be the ability of the ρ-calculus to create new free names
at runtime, which cannot be mimicked in the π-calculus. This ability is a consequence of reflection in the
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ρ-calculus, which also gives it higher-order characteristics as a by-product. In a process-calculus setting
where computation is modelled as communication, higher-order behaviour appears as just a special case
of reflection, where processes (code) are transmitted without modification. Thus, the separation result is
also interesting in light of a remark by Sangiorgi regarding the encodability of HOπ into the π-calculus.
He notes that this “[. . . ] proves that the first-order paradigm, being by far simpler, should be taken as
basic. Such a conclusion takes away the interest in the opposite direction, namely the representability of
the π-calculus within a language using purely communications of agents . . . ” [17, p. 8]. But as we have
seen, this does not seem to hold in the more general case where higher-order characteristics derive from
the capability of reflection. The ρ-calculus purely uses communication of agents (processes), because
names and processes are the same thing.
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