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We present Concurrent GV (CGV), a functional calculus with message-passing concurrency gov-

erned by session types. With respect to prior calculi, CGV has increased support for concurrent

evaluation and for cyclic network topologies. The design of CGV draws on APCP, a session-typed

asynchronous π-calculus developed in prior work. Technical contributions are (i) the syntax, seman-

tics, and type system of CGV; (ii) a correct translation of CGV into APCP; (iii) a technique for

establishing deadlock-free CGV programs, by resorting to APCP’s priority-based type system.

1 Introduction

The goal of this paper is to introduce a new functional calculus with message-passing concurrency gov-

erned by linearity and session types. Our work contributes to a research line initiated by Gay and Vas-

concelos [8], who proposed a functional calculus with sessions here referred to as λsess; this line of work

has received much recent attention thanks to Wadler’s GV calculus [26], which is a variation of λsess.

Our new calculus is dubbed Concurrent GV (CGV); with respect to previous work, it presents three

intertwined novelties: asynchronous (buffered) communication; a highly concurrent reduction strategy;

and thread configurations with cyclic topologies. The design of CGV rests upon a solid basis: an op-

erationally correct translation into APCP (Asynchronous Priority-based Classical Processes), a session-

typed π-calculus in which asynchronous processes communicate by forming cyclic networks [13].

We discuss the salient features of CGV by example, using a simplified syntax. As in λsess, communi-

cation in CGV is asynchronous: send operations place their messages in buffers, and receive operations

read the messages from these buffers. Let us write send (u,x) to denote the output of message u along

channel x, and recv y to denote an input on y. The following program expresses the parallel composition

(‖) of two threads:

letx = send (u,x) in
let(v,y) = recv y in ()

∣

∣

∣

∣

∣

∣

∣

∣

lety = send (w,y) in()

In variants of λsess with synchronous communication, such as GV and Kokke and Dardha’s PGV [17, 18],

this program is stuck: the send on y (underlined, on the right) cannot synchronize with the receive on y

(on the left): it is blocked by the send on x (on the left), and there is no receive on x. In contrast, in CGV

the send on x can be buffered after which the communication on y can take place.

In CGV, reduction is “more concurrent” than usual call-by-value or call-by-name strategies. Con-

sider the following program:

(

λx . let(u,y) = recv y in

letx = send (u,x) in()

)

(

send (v,z)
)

In λsess, reduction is call-by-value and so the function on x can only be applied on a value. However, the

function’s parameter (send on z) is not a value, so it needs to be evaluated before the function on x can
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be applied. Hence, this program can only be evaluated in one order: first the send on z, then the receive

on y. In contrast, the semantics of CGV evaluates a function and its parameters concurrently: the send

on z and the receive on y can be evaluated in any order. Note that asynchrony plays no role here: both

buffering a message and synchronous communication entail a reduction in the function’s parameter.

The third novelty is cyclic thread configurations: threads can be connected by channels to form cyclic

networks. Consider the following program:

let (u,x) = recv x in

lety = send (u,y) in ()

∣

∣

∣

∣

∣

∣

∣

∣

letx = send (v,x) in
let(w,y) = recv y in()

Here we have two threads connected on channels x and y, thus forming a cyclic thread configuration.

Clearly, this program is deadlock-free. In λsess, the program is well-typed, but there is no deadlock-

freedom guarantee: the type system of λsess admits deadlocked cyclic thread configurations. In GV and

Fowler et al.’s EGV [7] (an extension of Fowler’s AGV [6]) there is a deadlock-freedom guarantee for

well-typed programs; however, their type systems only support tree-shaped thread configurations—this

limitation is studied in [4, 5]. Hence, the program above is not well-typed in GV and EGV.

These novelties are intertwined, in the following sense. Asynchronous communication reduces the

synchronization points in programs (as output-like operations are non-blocking), therefore increasing

concurrent evaluation. In turn, reduced synchronization points can streamline verification techniques for

deadlock-freedom based on priorities [16, 22, 23, 3], which unlock the analysis of process networks with

cyclic topologies. Indeed, in an asynchronous setting only input-like operations require priorities.

We endow CGV with a type system with functional types and session types; we opted for a design

in which well-typed terms enjoy subject reduction / type preservation but not deadlock-freedom. To

validate our semantic design and attain the three novelties motivated above, we resort to APCP. In our

developments, APCP operates as a “low-level” reference programming model. We give a typed trans-

lation of CGV into APCP, which satisfies strong correctness properties, in the sense of Gorla [10]. In

particular, it enjoys operational correspondence, which provides a significant sanity check to justify our

key design decisions in CGV’s operational semantics. Interestingly, using our correct translation and the

deadlock-freedom guarantees for well-typed processes in APCP, we obtain a technique for transferring

the deadlock-freedom property to CGV programs. That is, given a CGV program C, we prove that if the

APCP translation of C is typable (and hence, deadlock-free), then C itself is deadlock-free. This result

thus delineates a class of deadlock-free CGV programs that includes cyclic thread configurations.

In summary, this paper presents the following technical contributions: (1) CGV, a new functional cal-

culus with session-based asynchronous concurrency; (2) A typed translation of CGV into APCP, which

is proven to satisfy well-studied encodability criteria; (3) A transference result for the deadlock-freedom

property from APCP to CGV programs. An extended version contains omitted technical details [14].

2 Concurrent GV

2.1 Syntax and Semantics

The main syntactic entities in CGV are terms, runtime terms, and configurations. Intuitively, terms

reduce to runtime terms; configurations correspond to the parallel composition of a main thread and

several child threads, each executing a runtime term. Buffered messages are part of configurations. We

define two reduction relations: one is on terms, which is then subsumed by reduction on configurations.

The syntax of terms (L,M,N) is given and described in Figure 1. We use x,y, . . . for variables;

we write endpoint to refer to a variable used for session operations (send, receive, select, offer). Let
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Terms (L,M,N):

x (variable) new (create new channel)

() (unit value) spawn M (execute pair M in parallel)

λx .M (abstraction) send (M,N) (send M along N)

M N (application) recv M (receive along M)

(M,N) (pair construction) selectℓM (select label ℓ along M)

let(x,y) = M inN (pair deconstruction) caseM of {i : M}i∈I (offer labels in I along M)

................................................................................................................................................

Runtime terms (L,M,N) and reduction contexts (R):

L,M,N ::= . . . |M⦃N/x⦄ | send′(M,N)

R ::= [] |R M | spawn R | send R | recv R | let(x,y) = R inM

| selectℓR | caseR of {i : M}i∈I | R⦃M/x⦄ |M⦃R/x⦄ | send′(M,R)

................................................................................................................................................

Structural congruence for terms (≡M) and term reduction (−→M):

SC-SUBEXT x /∈ fn(R)⇒ (R[M])⦃N/x⦄ ≡M R[M⦃N/x⦄]

E-LAM (λx .M) N−→MM⦃N/x⦄

E-PAIR let(x,y) = (M1,M2) inN−→MN⦃M1/x,M2/y⦄

E-SUBSTNAME M⦃y/x⦄−→MM{y/x}

E-NAMESUBST x⦃M/x⦄−→MM

E-SEND send (M,N)−→M send
′(M,N)

E-LIFT M−→MN⇒R[M]−→M R[N]

E-LIFTSC M≡M M
′∧M

′−→MN
′∧N

′ ≡M N⇒M−→MN

Figure 1: The CGV term language.

fn(M) denote the free variables of a term. All variables are free unless bound: λx .M binds x in M,

and let(x,y) = M inN binds x and y in N. We introduce syntactic sugar for applications of abstractions:

letx = M inN denotes (λx .N) M. For (λx .M) N, we assume x /∈ fn(N), and for let(x,y) = M inN, we

assume x 6= y and x,y /∈ fn(M).

Figure 1 also gives the reduction semantics of CGV terms (−→M), which relies on runtime terms

(L,M,N), reduction contexts (R), and structural congruence (≡M). Note that this semantics comprises

the functional fragment of CGV; we define the concurrent semantics of CGV hereafter.

Runtime terms, whose syntax extends that of terms, guide the evaluation strategy of CGV; we discuss

an example evaluation of a term using runtime terms after introducing the reduction rules (Example 2.1).

Explicit substitution M⦃N/x⦄ enables the concurrent execution of a function and its parameters. The

intermediate primitive send′(M,N) enables N to reduce to an endpoint; the send primitive takes a pair

of terms as an argument, inside which reduction is not permitted (cf. [8]). Reduction contexts define the
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Markers (φ ), messages (m,n), configurations (C,D,E), thread (F ) and configuration (G ) contexts:

φ ::= � | ♦ m,n ::= M | ℓ

C,D,E ::= φ M |C ‖D | (νννx[~m〉y)C |C⦃M/x⦄

F ::= φ R |C⦃R/x⦄ G ::= [] | G ‖C | (νννx[~m〉y)G | G⦃M/x⦄

................................................................................................................................................

Structural congruence for configurations (≡C):

SC-TERMSC M≡M M
′⇒φ M≡C φ M

′

SC-RESSWAP (νννx[ε〉y)C ≡C (νννy[ε〉x)C

SC-RESCOMM (νννx[~m〉y)(νννz[~n〉w)C ≡C (νννz[~n〉w)(νννx[~m〉y)C

SC-RESEXT x,y /∈ fn(C)⇒ (νννx[~m〉y)(C ‖D)≡C C ‖ (νννx[~m〉y)D

SC-RESNIL x,y /∈ fn(C)⇒ (νννx[ε〉y)C ≡C C

SC-SEND’ (νννx[~m〉y)(F̂ [send′(M,x)]‖C) ≡C (νννx[M,~m〉y)(F̂ [x]‖C)

SC-SELECT (νννx[~m〉y)(F [select ℓx]‖C)≡C (νννx[ℓ,~m〉y)(F [x]‖C)

SC-PARNIL C ‖♦()≡C C

SC-PARCOMM C ‖D ≡C D‖C

SC-PARASSOC C ‖ (D‖E)≡C (C ‖D)‖E

SC-CONFSUBST φ (M⦃N/x⦄)≡C (φ M)⦃N/x⦄

SC-CONFSUBSTEXT x /∈ fn(G )⇒ (G [C])⦃M/x⦄ ≡C G [C⦃M/x⦄]

................................................................................................................................................

Configuration reduction (−→C):

E-NEW F [new]−→C (νννx[ε〉y)(F [(x,y)])

E-SPAWN F̂ [spawn (M,N)]−→C F̂ [N]‖♦M

E-RECV (νννx[~m,M〉y)(F̂ [recv y]‖C)−→C (νννx[~m〉y)(F̂ [(M,y)]‖C)

E-CASE j ∈ I⇒ (νννx[~m, j〉y)(F [case yof {i : Mi}i∈I ]‖C)−→C (νννx[~m〉y)(F [M j y]‖C)

E-LIFTC C−→CC′⇒G [C]−→C G [C′]

E-LIFTM M−→MM
′⇒F [M]−→C F [M′]

E-CONFLIFTSC C ≡C C′∧C′−→C D′∧D′ ≡C D⇒C−→C D

Figure 2: The CGV configuration language.

non-blocking parts of terms, where subterms may reduce. We write R[M] to denote the runtime term

obtained by replacing the hole [] in R by M, and fn(R) to denote fn(R[()]); we will use similar notation

for other kinds of contexts later.

We discuss the reduction rules. The Structural congruence rule SC-SUBEXT allows the scope ex-

trusion of explicit substitutions along reduction contexts. Rule E-LAM enforces application, resulting

in an explicit substitution. Rule E-PAIR unpacks the elements of a pair into two explicit substitutions
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(arbitrarily ordered, due to the syntactical assumptions introduced above). Rules E-SUBSTNAME and

E-NAMESUBST convert explicit substitutions of or on variables into standard substitutions. Rule E-

SEND reduces a send into a send′ primitive. Rules E-LIFT and E-LIFTSC close term reduction under

contexts and structural congruence, respectively. We write M−→k
M
N to denote that M reduces to N in

k steps.

Example 2.1. We illustrate the evaluation of terms using runtime terms through the following example,

which contains a send primitive and nested abstractions and applications. In each reduction step, we

underline the subterm that reduces and give the applied rule:

(

λx . send ((),x)
) (

(λy . y) z
)

(E-LAM)

−→M

(

send ((),x)
)

⦃
(

(λy . y) z
)

/x⦄ (E-SEND)

−→M

(

send′((),x)
)

⦃
(

(λy . y) z
)

/x⦄ (E-LAM)

−→M

(

send′((),x)
)

⦃(y⦃z/y⦄)/x⦄ (SC-SUBEXT)

≡M send
′
(

(),x⦃(y⦃z/y⦄)/x⦄
)

(E-NAMESUBST)

−→M send
′((),y⦃z/y⦄) (E-SUBSTNAME)

−→M send
′((),z)

Notice how the send primitive needs to reduce to a send′ runtime primitive such that the explicit substi-

tution of x can be applied. Also, note that the concurrency of CGV allows many more paths of reduction.

Note that the concurrent evaluation strategy of CGV may also be defined without explicit substitu-

tions. In principle, this would require additional reduction contexts specific to applications on abstrac-

tions and pair deconstruction, as well as variants of Rules E-SUBSTNAME and E-NAMESUBST specific

to these contexts. However, it is not clear how to define scope extrusion (Rule SC-SUBEXT) for such a

semantics. Hence, we find that using explicit substitutions drastically simplifies the semantics of CGV.

Concurrency in CGV allows the parallel execution of terms that communicate through buffers. The

syntax of configurations (C,D,E) is given in Figure 2. The configuration φ M denotes a thread: a

concurrently executed term. The thread marker helps to distinguish the main thread (φ = �) from child

threads (φ = ♦). The configuration C ‖D denotes parallel composition. The configuration (νννx[~m〉y)C
denotes a buffered restriction: it connects the endpoints x and y through a buffer [~m〉, binding x and y

in C. The buffer’s content, ~m, is a sequence of messages (terms and labels). Buffers are directed: in

x[~m〉y, messages can be added to the front of the buffer on x, and they can be taken from the back of the

buffer on y. We write [ε〉 for the empty buffer. The configuration C⦃M/x⦄ lifts explicit substitution to

the level of configurations: this allows spawning and sending terms under explicit substitution, such that

the substitution can be moved to the context of the spawned or sent term.

The reduction semantics for configurations (−→C, also in Figure 2) relies on thread and configuration

contexts (F and G , respectively) and structural congruence (≡C). We write F̂ to denote a thread context

in which the hole does not occur under explicit substitution, i.e. the context is not constructed using the

clause R⦃M/x⦄; this is used in rules for send′, spawn, and recv, effectively forcing the scope extrusion

of explicit substitutions when terms are moved between contexts (cf. Example 2.4).

We comment on some of the congruences and reduction rules. Rule SC-RESSWAP allows to

swap the direction of an empty buffer; this way, the endpoint that could read from the buffer

before the swap can now write to it. Rule SC-RESCOMM allows to interchange buffers, and

Rule SC-RESEXT allows to extrude their scope. Rule SC-RESNIL garbage collects buffers of closed

sessions. Rule SC-CONFSUBST lifts explicit substitution at the level of terms to the level of threads, and
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Rule SC-CONFSUBSTEXT allows the scope extrusion of explicit substitution along configuration con-

texts. Notably, putting messages in buffers is not a reduction: Rules SC-SEND’ and SC-SELECT equate

sends and selects on an endpoint x with terms and labels in the buffer for x, as asynchronous outputs are

computationally equivalent to messages in buffers.

Reduction rule E-NEW creates a new buffer, leaving a reference to the newly created endpoints in the

thread. Rule E-SPAWN spawns a child thread (the parameter pair’s first element) and continues (as the

pair’s second element) inside the calling thread. Rule E-RECV retrieves a term from a buffer, resulting

in a pair containing the term and a reference to the receiving endpoint. Rule E-CASE retrieves a label

from a buffer, resulting in a function application of the label’s corresponding branch to a reference to

the receiving endpoint. There are no reduction rules for closing sessions, as they are closed silently. We

write C −→k
C

D to denote that C reduces to D in k steps. Also, we write −→+
C

to denote the transitive

closure of −→C (i.e., reduction in at least one step).

We illustrate CGV’s semantics by giving some examples. The following discusses a cyclic thread

configuration which does not deadlock due to asynchrony:

Example 2.2. Consider configuration C1 below, in which two threads are spawned and cyclically con-

nected through two channels. One thread first sends on the first channel and then receives on the second,

while the other thread first sends on the second channel and then receives on the first. Under synchronous

communication, this would determine a configuration that deadlocks; however, under asynchronous com-

munication, this is not the case (cf. the third example in Sec. 1). We detail some interesting reductions:

C1 = � (let( f ,g) = new inlet(h,k) = newinspawn











let f ′ = (send (u, f )) in
let(v′,h′) = (recv h) in (),

letk′ = (send (v,k)) in
let(u′,g′) = (recv g) in ()











)

−→8
C
(νννx[ε〉y)(νννw[ε〉z)(� (spawn

(

let f ′ = (send (u,x)) in
let(v′,h′) = (recv w) in(),

letk′ = (send (v,z)) in
let(u′,g′) = (recv y) in ()

)

) (1)

−→C (νννx[ε〉y)(νννw[ε〉z)(�

(

letk′ = (send (v,z)) in
let(u′,g′) = (recv y) in ()

)

‖♦

(

let f ′ = (send (u,x)) in
let (v′,h′) = (recv w) in()

)

) (2)

−→2
C
(νννx[ε〉y)(νννw[ε〉z)(�

(

(let(u′,g′) = (recv y) in())
⦃send (v,z)/k′⦄

)

‖♦

(

(let (v′,h′) = (recv w) in())
⦃send (u,x)/ f ′⦄

)

) (3)

−→2
C
(νννx[ε〉y)(νννw[ε〉z)(�

(

(let(u′,g′) = (recv y) in())
⦃send′(v,z)/k′⦄

)

‖♦

(

(let (v′,h′) = (recv w) in())
⦃send′(u,x)/ f ′⦄

)

) (4)

≡ (νννx[u〉y)(νννz[v〉w)(� ((let(u′,g′) = (recv y) in ())⦃z/k′⦄)‖♦((let (v′,h′) = (recv w) in())⦃x/ f ′⦄))
(5)

−→2
C
(νννx[u〉y)(νννz[v〉w)(� (let(u′,g′) = (recv y) in())‖♦ (let (v′,h′) = (recv w) in()))

−→2
C
(νννx[ε〉y)(νννz[ε〉w)(� (let(u′,g′) = (v,y) in ())‖♦(let (v′,h′) = (v,w) in ()))−→4

C
� () (6)

Intuitively, reduction (1) instantiates two buffers and assigns the endpoints through explicit substitutions.

Reduction (2) spawns the left term as a child thread. Reduction (3) turns lets into explicit substitutions.

Reduction (4) turns the sends into send′s. Structural congruence (5) equates the send′s with messages in

the buffers. Reduction (6) retrieves the messages from the buffers. Note that many of these steps represent

several reductions that may happen in any order.

The following example illustrates CGV’s flexibility for communicating functions over channels:
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Example 2.3. In the following configuration, a buffer and two threads have already been set up (cf.

Example 2.2 for an illustration of such an initialization). The main thread sends an interesting term to

the child thread: it contains the send primitive from which the main thread will subsequently receive

from the child thread. We give the configuration’s major reductions, with the reducing parts underlined:

(νννx[ε〉y)(�

(

letx′ = send
(

λ z . send ((),z),x
)

in

let(v,x′′) = recv x′ inv

)

‖♦

(

let(w,y′) = recv y in

lety′′ = (w y′) in()

)

)

−→3
C
(νννx[λ z . send ((),z)〉y)

(

�

(

let (v,x′′) = recv x inv
)

‖♦

(

let(w,y′) = recv y in

lety′′ = (w y′) in()

)

)

−→C (νννy[ε〉x)
(

�

(

let(v,x′′) = recv x inv
)

‖♦

(

let(w,y′) = (λ z . send ((),z),y) in

lety′′ = (w y′) in()

)

)

−→C (νννy[ε〉x)
(

�

(

let(v,x′′) = recv x inv
)

‖♦

(

(

lety′′ = (w y′) in()
)

⦃
(

λ z . send ((),z)
)

/w,y/y′⦄
))

−→2
C
(νννy[ε〉x)

(

�

(

let(v,x′′) = recv x inv
)

‖♦

(

lety′′ =
(

(

λ z . send ((),z)
)

y
)

in()
))

−→2
C
(νννy[ε〉x)

(

�

(

let(v,x′′) = recv x inv
)

‖♦

(

lety′′ = send ((),y) in ()
)

)

−→3
C
(νννy[()〉x)

(

�

(

let (v,x′′) = recv x inv
)

)

−→4
C
�()

The following example illustrates why the restricted thread context F̂ is used:

Example 2.4. Consider the configuration C = (νννx[ε〉y)

(

�

(

(

send′(z,x)
)

⦃v/z⦄
)

‖D

)

. Suppose Struc-

tural congruence rule SC-SEND’ were defined on unrestricted thread contexts; then the rule applies

under the explicit substitution of z: C ≡C (νννx[z〉y)
(

�

(

x⦃v/z⦄
)

‖D
)

. Here, C and the right-hand-side are

inconsistent with each other: in C, the variable z is bound by the explicit substitution, whereas z is free

on the right-hand-side. With the restricted thread contexts we are forced to first extrude the scope of the

explicit substitution before applying Rule SC-SEND’, making sure that z remains bound:

C ≡C

(

(νννx[ε〉y)
(

�

(

send′(z,x)
)

‖D
)

)

⦃v/z⦄ ≡C

(

(νννx[z〉y)(� x‖D)
)

⦃v/z⦄.

2.2 Type System

We define a type system for CGV, with functional types for functions and pairs and session types for

communication. The syntax and meaning of functional types (T ,U ) and session types (S) are as follows:

T ,U ::= T ×U (pair) | T ⊸U (function) | 111 (unit) | S (session)

S ::= !T .S (output) | ?T .S (input) |⊕{i : T}i∈I (select) | &{i : T}i∈I (case) | end

Session type duality (S) is defined as usual; note that only the continuations, and not the messages, of

output and input types are dualized.

!T .S = ?T .S ?T .S = !T .S ⊕{i : Si}i∈I = &{i : Si}i∈I &{i : Si}i∈I =⊕{i : Si}i∈I end= end

Typing judgments use typing environments (Γ,∆,Λ) consisting of types assigned to variables (x : T ).

We write /0 to denote the empty environment; in writing ‘Γ,∆’, we assume that the variables in Γ and ∆
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T-VAR

x : T ⊢M x : T

T-ABS

Γ,x : T ⊢M M : U

Γ ⊢M λ x .M : T ⊸U

T-APP

Γ ⊢M M : T ⊸U ∆ ⊢M N : T

Γ,∆ ⊢M MN : U

T-UNIT

/0 ⊢M () : 111

T-PAIR

Γ ⊢M M : T ∆ ⊢M N : U

Γ,∆ ⊢M (M,N) : T ×U

T-SPLIT

Γ ⊢M M : T ×T ′ ∆,x : T ,y : T ′ ⊢M N : U

Γ,∆ ⊢M let(x,y) =M inN : U

T-NEW

/0 ⊢M new : S× S

T-SPAWN

Γ ⊢M M : 111×T

Γ ⊢M spawnM : T

T-ENDL
Γ ⊢M M : T

Γ,x : end ⊢M M : T

T-ENDR

/0 ⊢M x : end

T-SEND

Γ ⊢M M : T × !T .S

Γ ⊢M sendM : S

T-RECV

Γ ⊢M M : ?T .S

Γ ⊢M recv M : T × S

T-SELECT

Γ ⊢M M : ⊕{i : Ti}i∈I j ∈ I

Γ ⊢M select jM : Tj

T-CASE

Γ ⊢M M : &{i : Ti}i∈I ∀i ∈ I. ∆ ⊢M Ni : Ti ⊸U

Γ,∆ ⊢M caseMof {i : Ni}i∈I : U

T-SUB

Γ,x : T ⊢M M : U ∆ ⊢M N : T

Γ,∆ ⊢M M⦃N/x⦄ : U

T-SEND’
Γ ⊢M M : T ∆ ⊢M N : !T .S

Γ,∆ ⊢M send
′(M,N) : S

................................................................................................................................................

T-BUF

/0 ⊢B [ε〉 : S′ > S′

T-BUFSEND

Γ ⊢M M : T ∆ ⊢B [~m〉 : S′ > S

Γ,∆ ⊢B [~m,M〉 : S′ > !T .S

T-BUFSELECT

Γ ⊢B [~m〉 : S′ > S j j ∈ I

Γ ⊢B [~m, j〉 : S′ >⊕{i : Si}i∈I
................................................................................................................................................

T-MAIN

Γ ⊢M M : T

Γ ⊢�

C
�M : T

T-CHILD

Γ ⊢M M : 111

Γ ⊢♦

C
♦M : 111

T-PARL

Γ ⊢♦

C
C : 111 ∆ ⊢

φ
C

D : T

Γ,∆ ⊢
♦+φ
C

C ‖D : T

T-PARR

Γ ⊢
φ
C

C : T ∆ ⊢♦

C
D : 111

Γ,∆ ⊢
φ+♦

C
C ‖D : T

T-RES

Γ ⊢B [~m〉 : S′ > S ∆,x : S′,y : S ⊢
φ
C

C : T

Γ,∆ ⊢
φ
C
(νννx[~m〉y)C : T

T-RESBUF

Γ,y : S ⊢B [~m〉 : S′ > S ∆,x : S′ ⊢
φ
C

C : T

Γ,∆ ⊢
φ
C
(νννx[~m〉y)C : T

T-CONFSUB

Γ,x : T ⊢
φ
C

C : U ∆ ⊢M M : T

Γ,∆ ⊢
φ
C

C⦃M/x⦄ : U

Figure 3: Typing rules for terms (top), buffers (center), and configurations (bottom).

are pairwise distinct. Figure 3 (top) gives the type system for (runtime) terms. Judgments are denoted

Γ ⊢M M : T and have a use-provide reading: term M uses the variables in Γ to provide a behavior of type

T (cf. Caires and Pfenning [1]). When a term provides type T , we often say that the term is of type T .

Typing rules T-VAR, T-ABS, T-APP, T-UNIT, T-PAIR, and T-SPLIT are standard. Rule T-NEW

types a pair of dual session types S×S. Rule T-SPAWN types spawning a 111-typed term as a child

thread, continuing as a term of type T . Rules T-ENDL and T-ENDR type finished sessions. Rule T-

SEND (resp. T-RECV) uses a term of type !T .S (resp. ?T .S) to type a send (resp. receive) of a term of

type T , continuing as type S. Rule T-SELECT uses a term of type ⊕{i : Ti}i∈I to type selecting a label
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j ∈ I, continuing as type Tj. Rule T-CASE uses a term of type &{i : Ti}i∈I to type branching on labels

i ∈ I, continuing as type U—each branch is typed Ti ⊸U . Rule T-SUB types an explicit substitution.

Rule T-SEND’ types sending directly, not requiring a pair but two separate terms.

Figure 3 (bottom) gives the typing rules for configurations. The typing judgments here are annotated

with a thread marker: Γ ⊢
φ
C

C : T . The thread marker serves to keep track of whether the typed configu-

ration contains the main thread or not (i.e. φ = � if so, and φ = ♦ otherwise). When typing the parallel

composition of two configurations, we thus have to combine the thread markers of their judgments. This

combination of thread markers (φ +φ ′) is defined as follows:

�+ ♦ = � ♦+ �= � ♦+ ♦= ♦ (�+ � is undefined)

Typing rules T-MAIN and T-CHILD turn a typed term into a thread, where child threads may only

be of type 111. Rules T-PARL and T-PARR compose configurations: one configuration must be of type 111

and have thread marker ♦ (i.e., it does not contain a main thread), providing the other configuration’s

type. Rule T-RES types buffered restriction, with output endpoint x and input endpoint y used in the

configuration. It is possible to send the endpoint y on x, so there is also a Rule T-RESBUF where y is used

in the buffer. Unlike with usual typing rules for restriction, the types S′ of x and S of y do not necessarily

have to be duals. This is because the restriction’s buffer may already contain messages sent on x but not

yet received on y, such that the restricted configuration only needs to use x according to a continuation

of S. To ensure that S′ is indeed a continuation of S in accordance with the messages in the buffer, we

have additional typing rules for buffers, which we explain hereafter. Finally, Rule T-CONFSUB types an

explicit substitution on the level of configurations.

For typing buffers, in Figure 3 (center), we have judgments of the form: Γ ⊢B [~m〉 : S′ > S. The

judgment denotes that S′ is a continuation of S, in accordance with the messages ~m, which use the

variables in Γ. The idea of the typing rules is that, starting with an empty buffer at the top of the typing

derivation (Rule T-BUF) where S′ = S, Rules T-BUFSEND and T-BUFSELECT add messages to the end

of the buffer. Rule T-BUFSEND then prefixes S with an output of the sent term’s type, and Rule T-

BUFSELECT prefixes S with a selection such that the sent label’s continuation is S.

Example 2.5. Figure 4 (top) shows the typing derivation of a configuration reduced from C1 in Exam-

ple 2.2 (following an alternative path after Reduction (5)). Figure 4 (bottom) shows the typing of the

configuration (νννx[M, ℓ,()〉y)C, which has some messages in a buffer; notice how the type of x in C is a

continuation of the dual of the type of y.

In the configuration (νννx[let (z,y) = recv y iny〉y)C, the endoint y is inside the buffer connecting it

with x; to type it, we need Rule T-RESBUF (omitting the derivation of the buffer):

y : ?end . end ⊢B [let(z,y) = recv y iny〉 : end> !end . end Γ,x : end ⊢
φ
C

C : U

Γ ⊢
φ
C
(νννx[let (z,y) = recv y iny〉y)C : U

Note that such buffers will always deadlock: the message in the buffer can never be received.

Type Preservation Well-typed CGV terms and configurations satisfy protocol fidelity and commu-

nication safety. These properties follow from type preservation: typing is consistent across structural

congruence and reduction. In both cases the proof is by induction on the derivation of the congruence

and reduction, respectively; we include full proofs in the extended version of this paper [14].

Theorem 2.6. If Γ ⊢
φ
C

C : T and C ≡C D or C−→C D, then Γ ⊢
φ
C

D : T .
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/0 ⊢M z′ : end /0 ⊢B [ε〉 : end> end

/0 ⊢B [z
′〉 : end> S

y : S ⊢M y : S

y : S ⊢M revc y : end× end

/0 ⊢M () : 111

y0 : end ⊢M () : 111

z : end,y0 : end ⊢M () : 111

y : S ⊢M let(z,y0) = recv y in () : 111

y′ : end,y : S ⊢M let(z,y0) = recv y in() : 111

y′ : end,y : S ⊢�

C
�(let (z,y0) = recv y in ()) : 111

/0 ⊢�

C
(νννy′[z′〉y)(� (let(z,y0) = recv y in())) : 111

................................................................................................................................................

/0 ⊢M () : 111

Γ ⊢M M : T /0 ⊢B [ε〉 : S′ > S′

Γ ⊢B [M〉 : S′ > !T .S′

Γ ⊢B [M, ℓ〉 : S′ >⊕{ℓ : !T .S′, ℓ′ : S′′}

Γ ⊢B [M, ℓ,()〉 : S′ > !111 .⊕{ℓ : !T .S′, ℓ′ : S′′}

∆,x : S′,y : ?111 .&{ℓ : ?T .S′, ℓ′ : S′′} ⊢
φ
C

C : U

Γ,∆ ⊢
φ
C
(νννx[M, ℓ,()〉y)C : U

Figure 4: Derivation of configurations (cf. Example 2.5): (top) reduced from the initial one in Exam-

ple 2.2 (S = ?end . end); (bottom) a buffer containing several messages.

3 APCP (Asynchronous Priority-based Classical Processes)

APCP [13] is a linear type system for π-calculus processes that communicate asynchronously (i.e., the

output of messages is non-blocking) on connected channel endpoints. The type system assigns to end-

points types that specify two-party protocols, in the style of binary session types [15]. In APCP, well-

typed processes may be cyclically connected: types rely on priority annotations, which enable cyclic

connections while ruling out circular dependencies between sessions. Properties of well-typed APCP

processes are type preservation (Theorem 3.4) and deadlock-freedom (Theorem 3.5).

Syntax and Semantics We write x,y,z, . . . to denote endpoints (or names), and write x̃, ỹ, z̃, . . . to denote

sequences of endpoints. Also, we write i, j,k, . . . to denote labels and I,J,K, . . . to denote sets of labels.

Figure 5 (top) gives the syntax and meaning of processes. In APCP, all endpoints are used strictly

linearly: each endpoint can be used for exactly one communication only. However, we want to assign

session types to endpoints, so we have to be able to implement sequences of communications. Therefore,

each communication action carries an additional continuation endpoint to continue the session on.

The output action x[y,z] sends a message endpoint y and a continuation endpoint z along x. The input

prefix x(y,z) .P blocks until a message and a continuation endpoint are received on x, binding y and z

in P. The selection action x[z] ⊳ i sends a label i and a continuation endpoint z along x. The branching

prefix x(z)⊲{i : Pi}i∈I blocks until it receives a label i ∈ I and a continuation endpoint z on x, binding z in

each Pi. Restriction (νννxy)P binds x and y in P to form a channel for communication. The process P |Q
denotes parallel composition. The process 000 denotes inaction. The forwarder process x↔y is a primitive

copycat process that links together x and y.

Endpoints are free unless they are bound somehow. We write fn(P) for the set of free names of P.
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Process syntax:

P,Q ::= x[y,z] (output) | x(y,z) .P (input)

| x[z]⊳ i (selection) | x(z)⊲ {i : P}i∈I (branching) | (νννxy)P (restriction)

| P |Q (parallel) | 000 (inaction) | x↔y (forwarder)

Structural congruence:

P ≡ P′ (if P ≡α P′) P |Q ≡ Q |P x↔ y ≡ y↔x

P | (Q |R)≡ (P |Q) |R P |000 ≡ P (νννxy)x↔ y ≡ 000

P | (νννxy)Q ≡ (νννxy)(P |Q) (if x,y /∈ fn(P)) (νννxy)000 ≡ 000

(νννxy)(νννzw)P ≡ (νννzw)(νννxy)P (νννxy)P ≡ (νννyx)P

Reduction:

z,y 6= x

(νννyz)(x↔y |P)−→P{x/z}
�ID

(νννxy)(x[a,b] | y(v,z) .P)−→P{a/v,b/z}
�⊗

&

j ∈ I

(νννxy)(x[b]⊳ j | y(z)⊲{i : Pi}i∈I)−→Pj{b/z}
�⊕&

P ≡ P′ P′−→Q′ Q′ ≡ Q

P−→Q
�≡

P−→Q

(νννxy)P−→ (νννxy)Q
�ν

P−→Q

P |R−→Q |R
�|

Figure 5: Definition of APCP’s process language.

Also, we write P{x/y} to denote the capture-avoiding substitution of the free occurrences of y in P for x.

We write sequences of substitutions P{x1/y1} . . .{xn/yn} as P{x1/y1, . . . ,xn/yn}.

The reduction relation for processes (P−→Q) formalizes how complementary actions on connected

endpoints may synchronize. As usual for π-calculi, reduction relies on structural congruence (P ≡ Q),

which relates processes with minor syntactic differences; it is the smallest congruence on the syntax of

processes (Fig. 5 (top)) satisfying the axioms in Figure 5 (center).

We define the reduction relation P −→ Q by the axioms and closure rules in Figure 5 (bottom).

Rule �ID implements the forwarder as a substitution. Rule �⊗

&synchronizes an output and an input

on connected endpoints and substitutes the message and continuation endpoints. Rule �⊕& synchro-

nizes a selection and a branch: the received label determines the continuation process, substituting the

continuation endpoint appropriately. Rules �≡, �ν , and �| close reduction under congruence, restriction,

and parallel composition, respectively. We write −→∗ for the reflexive, transitive closure of −→.

The Type System APCP types processes by assigning binary session types to channel endpoints. Fol-

lowing Curry-Howard interpretations, we present session types as linear logic propositions (cf. Caires et

al. [2] and Wadler [26]) extended with priority annotations. Intuitively, actions typed with lower priority

cannot be blocked by those with higher priority.

We write o,κ ,π,ρ , . . . to denote priorities, and ω to denote the ultimate priority that is greater than

all other priorities and cannot be increased further. That is, ∀o ∈ N. ω > o and ∀o ∈ N. ω +o= ω .
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000 ⊢ /0
EMPTY

P ⊢ Γ

P ⊢ Γ,x : •
•

x↔y ⊢ x : A,y : A
ID

P ⊢ Γ Q ⊢ ∆

P |Q ⊢ Γ,∆
MIX

P ⊢ Γ,x : A,y : A

(νννxy)P ⊢ Γ
CYCLE

x[y,z] ⊢ x : A⊗o B,y : A,z : B
⊗

P ⊢ Γ,y : A,z : B o< pr(Γ)

x(y,z) .P ⊢ Γ,x : A

&

o B

&

j ∈ I

x[z]⊳ j ⊢ x : ⊕o{i : Ai}i∈I,z : A j

⊕
∀i ∈ I. Pi ⊢ Γ,z : Ai o< pr(Γ)

x(z)⊲{i : Pi}i∈I ⊢ Γ,x : &o{i : Ai}i∈I

&

Figure 6: The typing rules of APCP.

Definition 3.1. The following grammar defines the syntax of session types A,B. Let o ∈ N.

A,B ::= A⊗o B (output) | A

&

o B (input) | ⊕o {i : A}i∈I (select) | &o{i : A}i∈I (branch) | • (end)

Note that type • does not require a priority.

Duality, the cornerstone of session types and linear logic, ensures that the two endpoints of a channel

have matching actions. Furthermore, dual types must have matching priority annotations.

Definition 3.2. The dual of session type A, denoted A, is defined inductively as follows:

A⊗o B := A

&

o B ⊕o{i : Ai}i∈I := &o{i : Ai}i∈I • := •

A

&

o B := A⊗o B &o{i : Ai}i∈I :=⊕o{i : Ai}i∈I

The priority of a type is determined by the priority of the type’s outermost connective:

Definition 3.3. For session type A, pr(A) denotes its priority:

pr(A⊗o B) := pr(A

&

o B) := pr(⊕o{i : Ai}i∈I) := pr(&o{i : Ai}i∈I) := o pr(•) := ω

The priority of • is ω : it denotes a “final” action of protocols without blocking behavior. Although

associated with non-blocking behavior, ⊗ and ⊕ do have a non-constant priority: they are connected to

&

and &, respectively, which denote blocking actions.

The typing rules of APCP ensure that actions with lower priority are not blocked by those with higher

priority (cf. Dardha and Gay [3]). To this end, typing rules enforce the following laws:

1. An action with priority o must be prefixed only by inputs and branches with priority strictly smaller

than o—this law does not hold for output and selection, as they are not prefixes;

2. dual actions leading to a synchronization must have equal priorities (cf. Def. 3.2).

Judgments are of the form P ⊢ Γ, where P is a process and Γ is a context that assigns types to endpoints

(x : A). A judgment P ⊢ Γ then means that P can be typed in accordance with the type assignments for

names recorded in Γ. The context Γ obeys exchange: assignments may be silently reordered. Γ is linear,

disallowing weakening (i.e., all assignments must be used) and contraction (i.e., assignments may not be

duplicated). The empty context is written /0. In writing Γ,x : A we assume that x /∈ dom(Γ). We write

pr(Γ) to denote the least priority of all types in Γ (cf. Def. 3.3).

Figure 6 gives the typing rules. Rule EMPTY types an inactive process with no endpoints. Rule •
silently removes a closed endpoint from the typing context. Rule ID types forwarding between endpoints
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JT ×UK = (JTK &

•)⊗ (JUK &

•)

9
9
9 J!T .SK = (JT K⊗•)

&JSK J⊕{i : Ti}i∈IK = &{i : JTiK}i∈I

JT ⊸UK = (JTK⊗•)

&JUK

9
9
9 J?T .SK = (JT K &

•)⊗ JSK J&{i : Ti}i∈IK =⊕{i : JTiK}i∈I

J111K = •

9
9
9 JendK = •

Figure 7: Translation of CGV types into session types.

of dual type. Rule MIX types the parallel composition of two processes that do not share assignments on

the same endpoints. Rule CYCLE types a restriction, where the two restricted endpoints must be of dual

type. Rule ⊗ types an output action; this rule does not have premises to provide a continuation process,

leaving the free endpoints to be bound to a continuation process using MIX and CYCLE. Similarly,

Rule ⊕ types an unbound selection action. Priority checks are confined to Rules

&

and &, which type

input and branching prefixes, respectively. In both cases, the used endpoint’s priority must be lower than

the priorities of the other types in the continuation’s typing context, thus enforcing Law 1 above.

Well-typed processes satisfy protocol fidelity, communication safety, and deadlock-freedom. The

first two properties follow from type preservation. Here we only state these results; see [13] for details.

Theorem 3.4 (Type Preservation). If P ⊢ Γ and P ≡ Q or P−→Q, then Q ⊢ Γ.

Theorem 3.5 (Deadlock-freedom). If P ⊢ /0, then either P ≡ 000 or P−→Q for some Q.

4 Translating CGV into APCP

4.1 The Translation

In this section, we translate CGV into APCP. We translate entire typing derivations, following, e.g.,

Wadler [26]. Given the structure of CGV and its type system, the translation is defined in parts: for (run-

time) terms, for configurations, and for buffers. The translation is defined on well-typed configurations

which may be deadlocked, so our translation does not consider priority requirements. As we will see,

typability in APCP will enable us to identify deadlock-free configurations in CGV (cf. Sec. 4.3).

The translation is informed by the semantics of CGV. It is crucial that subterms may only reduce

when they occur in reduction contexts. For example, M1 and M2 may not reduce if they appear in a

pair (M1,M2). The translation must thus ensure that subterms are blocked when they do not occur in

reduction contexts. Translations such as Wadler’s hinge on blocking outputs and inputs; for example,

the pair (M1,M2) is translated as an output that blocks the translations of M1 and M2. However, outputs

in APCP are non-blocking and so we use additional inputs to disable the reduction of subterms. For

example, the translation of (M1,M2) adds extra inputs to block the translations of M1 and M2.

Figure 7 gives the translation of CGV types into APCP types (JT K), which already captures the oper-

ation of the translation: our translation is similar to the one by Wadler, but includes the aforementioned

additional inputs. It may seem odd that this translation dualizes CGV session types (e.g., an output ‘!’

becomes an input ‘

&

’). To understand this, consider that a variable x typed !T .S represents access to a

session which expects the user to send a term of type T and continue as S, but not the output itself. Hence,

to translate an output on x into APCP, we need to connect the translation of x to an actual output. Since

this actual output would be typed with ⊗, this means that the translation of x would need to be dually

typed, i.e., typed with

&

. A more technical explanation is that the translation moves from two-sided

CGV judgments to one-sided APCP judgments, which requires dualization (see, e.g., [9, 12]).
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Importantly, the translation preserves duality of session types (by induction on their structure):

Proposition 4.1. Given a CGV session type S, JSK = JSK.

We extend the translation of types to typing environments, defined as expected. Similarly, we extend

duality to typing environments: Γ denotes Γ with each type dualized. In this section, we give simplified

presentations of the translations, showing only the conclusions of the source and target derivations; we

include the translations with full derivations in the extended version of this paper [14].

A remark on notation. Some translated terms include annotated restrictions (
↔
ννν xy). These so-called

forwarder-enabled restrictions can be ignored in this subsection, but will be useful later when proving

soundness (one of the correctness properties of the translation; cf. Section 4.2).

We define the translation of (the typing rules of) terms. Since a term has a provided type, the transla-

tion takes as a parameter a name on which the translation provides this type. Figure 8 gives the translation

of terms, denoted JΓ ⊢M M : T Kz, where the type T is provided on z. By abuse of notation, we write JMKz

to denote the process translation of the term M, and similary for configurations and buffers. Notice the

aforementioned additional inputs to block behavior of subterms in rules such as Rule T-PAIR. Before

moving to buffers and configurations, we illustrate the translation of terms by an example:

Example 4.2. Consider the following subterm from Example 2.3:
(

λ z . send ((),z)
)

y. We gradually

discuss how this term translates to APCP, and how the translation is set up to mimick the term’s behavior.

J
(

λ z . send ((),z)
)

yKq = (νννab)
(

Jλ z . send ((),z)Ka | (νννcd)(b[c,q] |d(e, ) . JyKe)
)

The function application translates the function on a, which is connected to b. The output on b serves to

activate the function, which will subsequently activate the functions parameter (JyKe = y↔ e) by means

of an output that will be received on d.

Jλ z . send ((),z)Ka = a( f ,g) . (
↔
ννν hz)((ννν ) f [h, ] | Jsend ((),z)Kg)

The translation of the function is indeed blocked until it receives on a. It then outputs on f to activate the

function’s parameter (which receives on d), while the function’s body appears in parallel.

Jsend ((),z)Kg = (νννkl)
(

J((),z)Kk | l(m,n) . (νννop)
(

(ννν )n[o, ] | (νννrs)(p[m,r] | s↔ g)
)

)

The translation of the send primitive connects the translation of the pair ((),z) on k to an input on l,

receiving endpoints for the output term (m) and the output endpoint (n). Once activated by the input on

l, the term representing the output endpoint is activated by means of an output on n. In parallel, the

actual output (on p) sends the endpoint of the output term (m) and a fresh endpoint (r) representing the

continuation channel after the message has been placed in a buffer (the forwarder s↔g).

J((),z)Kk = (νννtu)(νννvw)(k[t,v] |u(a′, ) . J()Ka′ |w(b′, ) . JzKb′)

The translation of the pair outputs on k two endpoints for the two terms it contains (to be received by

whatever intends to use the pair in the context, e.g., the send primitive on l). The translations of the two

terms inside the pair (J()Ka′ = 000 and JzKb′ = z↔b′) are both guarded by an input, preventing the terms

from reducing until the context explicitly activates them by means of outputs.

Analogously to the reductions from Example 2.3—
(

λ z . send ((),z)
)

y−→3
M
send′((),y)—we have

J
(

λ z . send ((),z)
)

yKq−→5 Jsend′((),y)Kq.
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T-VAR Jx : T ⊢M x : T Kz = x↔ z ⊢ x : JT K,z : JTK T-UNIT J /0 ⊢M () : 111Kz = 000 ⊢ z : •

T-ABS JΓ ⊢M λx .M : T ⊸UKz = z(a,b) . (
↔
ννν cx)((νννe f )a[c,e] | JMKb) ⊢ JΓK,z : (JT K⊗•)

&JUK
T-APP JΓ,∆ ⊢M M N : UKz = (νννab)(JMKa | (νννcd)(b[c,z] |d(e, f ) . JNKe)) ⊢ JΓK,J∆K,z : JUK

T-PAIR

s
Γ,∆ ⊢M (M,N)

: T ×U

{
z =

(νννab)(νννcd)(z[a,c] |b(e, f ) . JMKe |d(g,h) . JNKg)

⊢ JΓK,J∆K,z : (JT K &

•)⊗ (JUK &

•)

T-SPLIT

s
Γ,∆ ⊢M let(x,y)

= M inN : U

{
z =

(νννab)(JMKa |b(c,d) . (
↔
ννν ex)(

↔
ννν f y)(

(νννgh)c[e,g] | (νννkl)d[ f ,k] | JNKz)) ⊢ JΓK,J∆K,z : JUK
T-NEW

q
/0 ⊢M new : S×S

y
z = (νννab)((νννcd)a[c,d] |b(e, f ) . (ννν xy)J(x,y)Kz)

⊢ z : (JSK &

•)⊗ (JSK &

•)

T-SPAWN JΓ ⊢M spawn M : T Kz = (νννab)(JMKa |b(c,d) . ((νννe f )c[e, f ] | (νννgh)d[z,g])) ⊢ JΓK,z : JT K
T-ENDL JΓ,x : end ⊢M M : T Kz = JMKz ⊢ JΓK,x : •,z : JTK T-ENDR J /0 ⊢M x : endKz = 000 ⊢ z : •

T-SEND JΓ ⊢M send M : SKz = (νννab)(JMKa |b(c,d) . (νννe f )((νννgh)d[e,g]

| (νννkl)( f [c,k] | l ↔ z))) ⊢ JΓK,z : JSK
T-RECV JΓ ⊢M recv M : T ×SKz = (νννab)(JMKa |b(c,d) . (νννe f )(z[c,e] | f (g,h) .d ↔g))

⊢ JΓK,z : (JT K &

•)⊗ (JSK &

•)

T-SELECT JΓ ⊢M select j M : TjKz = (νννab)(JMKa | (νννcd)(b[c]⊳ j |d↔ z)) ⊢ JΓK,z : JTjK

T-CASE

s
Γ,∆ ⊢M caseM

of {i : Ni}i∈I : U

{
z = (νννab)(JMKa |b(c)⊲{i : JNi cKz}i∈I) ⊢ JΓK,J∆K,z : JUK

T-SUB JΓ,∆ ⊢M M⦃N/x⦄ : UKz = (
↔
ννν xa)(JMKz | JNKa) ⊢ JΓK,J∆K,z : JUK

T-SEND’

s
Γ,∆ ⊢M send

′

(M,N) : S

{
z =

(νννab)(a(c,d) . JMKc | (νννe f )(JNKe | (νννgh)( f [b,g] |h↔ z)))

⊢ JΓK,J∆K,z : JSK

Figure 8: Translation of (runtime) term typing rules. See [14] for typing derivations.

Figure 9 (top) gives the translation of configurations, denoted JΓ ⊢
φ
C

C : T Kz. We omit the translation

of Rule T-PARR. Noteworthy are the translations of buffered restrictions: the translation of (νννx[~m〉y)C
relies on the translation of [~m〉, which is given the translation of C as its continuation.

The translation of buffers requires care: each message in the buffer is translated as an output in APCP,

where the output of the following messages is on the former output’s continuation endpoint. Once there

are no more messages in the buffer, the translation uses a typed APCP process—a parameter of the

translation—to provide the behavior of the continuation of the lastmost output. The translation has

no requirements for the continuation process and its typing, except for the type of the buffer’s end-

point. With this in mind, Figure 9 (bottom) gives the translation of the typing rules of buffers, denoted

JΓ ⊢B [~m〉 : S′ > SKP⊢∗Λ,x:JS′K
x , where x is the endpoint on which the buffer outputs, and P is the continua-

tion of the buffer’s last message. Note that we never use the typing rules for buffers by themselves: they

always accompany the typing of endpoint restriction, of which the translation properly instantiates the

continuation process.

Because CGV configurations may deadlock, the type preservation result of our translation holds up
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T-MAIN/CHILD

r
Γ ⊢

φ
C

φ M : T
z

z = JMKz ⊢ JΓK,z : JT K

T-PARL

r
Γ,∆ ⊢

♦+φ
C

C ‖D : T
z

z = (νννab)JCKa | JDKz ⊢ JΓK,J∆K,z : JT K

T-RES/T-RESBUF

r
Γ,∆ ⊢

φ
C
(νννx[~m〉y)C : T

z
z = (νννxy)J[~m〉KJCKz

x ⊢ JΓK,J∆K,z : JT K

T-CONFSUB

r
Γ,∆ ⊢

φ
C

C⦃M/x⦄ : U
z

z = (
↔
νννxa)(JCKz | JMKz) ⊢ JΓK,J∆K,z : JUK

T-BUF

q
/0 ⊢B [ε〉 : S′ > S′

yP⊢Λ,x:JS′K
x = P ⊢ Λ,x : JS′K

T-BUFSEND

s
Γ,∆ ⊢B [~m,M〉

: S′ > !T .S

{
P⊢Λ,x:JS′K
x =

(νννab)(νννcd)((νννgh)(x↔ g |h[a,c]) |b(e, f ) . JMKe

| J[~m〉KP{d/x}
d ) ⊢ JΓK,J∆K,Λ,x : (JT K &

•)⊗ JSK

T-BUFSELECT

s
Γ ⊢B [~m, j〉

: S′ >⊕{i : Si}i∈I

{
P⊢Λ,x:JS′K
x =

(νννab)((νννcd)(x↔ c |d[a]⊳ j)

| J[~m〉KP{b/x}
b ) ⊢ JΓK,Λ,x : ⊕{i : JSiK}i∈I

Figure 9: Translation of configuration and buffer typing rules. See [14] for typing derivations.

to priority requirements. To formalize this, we have the following definition:

Definition 4.3. Let P be a process. We write P ⊢∗ Γ to denote that P is well-typed according to the typing

rules in Figure 6 where Rules

&

and & are modified by erasing priority checks.

Hence, if P ⊢ Γ then P ⊢∗ Γ but the converse does not hold. Our translation correctly preserves the

typing of terms, configurations, and buffers:

Theorem 4.4 (Type Preservation for the Translation).

• JΓ ⊢M M : T Kz = JMKz ⊢∗ JΓK,z : JT K • JΓ ⊢
φ
C

C : T Kz = JCKz ⊢∗ JΓK,z : JT K

• JΓ ⊢B [~m〉 : S′ > SKP⊢∗Λ,x:JS′K
x = J[~m〉KP

x ⊢∗ JΓK,Λ,x : JSK
Example 4.5. Consider again the configuration (νννx[M, ℓ,()〉y)C. We illustrate the translation of buffers

into APCP by giving the translation of this configuration (writing 〈x〉[a,b] to denote the forwarded output

(νννcd)(x↔ c |d[a,b])):

J(νννx[M, ℓ,()〉y)CKz = (νννxy)J[M, ℓ,()〉KJCKz
x = (νννxy) (νννab)(νννcx′)(〈x〉[a,c] |b(d, ) .000

| (νννex′′)(〈x′〉[e]⊳ ℓ | (ννν f g)(νννhx′′′)(〈x′′〉[ f ,h] |g(k, ) . JMKk | JCKz{x′′′/x})))

Notice how the (forwarded) outputs are sequenced by continuation endpoints, and how the translation

of C uses the last continuation endpoint x′′′ to interact with the buffer.

4.2 Operational Correctness

Following Gorla [10], we focus on operational correspondence: a translated configuration can repro-

duce all of the source configuration’s reductions (completeness; Theorem 4.6), and any of the translated

configuration’s reductions can be traced back to reductions of the source configuration (soundness; Theo-

rem 4.7). With the soundness result, our translation is stronger than related prior translations [20, 24, 19].

Our completeness result states that the reductions of a well-typed configuration can be mimicked by

its translation in zero or more steps.
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Theorem 4.6 (Completeness). Given Γ ⊢
φ
C

C : T , if C−→C D, then JCKz−→∗ JDKz.

Proof (Sketch). By induction on the derivation of the configuration’s reduction. In each case, we infer

the shape of the configuration from the reduction and well-typedness. We then consider the translation

of the configuration, and show that the resulting process reduces in zero or more steps to the translation

of the reduced configuration. See the extended version of this paper [14] for a full proof.

Soundness states that any sequence of reductions from the translation of a well-typed configuration

eventually leads to the translation of another configuration, which the initial configuration also reduces

to. Asynchrony in APCP requires us to be careful, specifically concerning the semantics of variables in

CGV. Variables can only cause reductions under specific circumstances. On the other hand, variables

translate to forwarders in APCP, which reduce as soon as they are bound by restriction. This semantics

for forwarders turns out to be too eager for soundness. As a result, soundness only holds for an alternative,

so-called lazy semantics for APCP, denoted −→L, in which forwarders may only cause reductions under

specific circumstances. It is here that the forwarder-enabled restrictions (
↔
ννν xy) anticipated in Section 4.1

come into play. As we will see in Section 4.3, this alternative semantics does not prevent us from

identifying a class of deadlock-free CGV configurations through the translation into APCP. Due to space

limitations, the definitions of the lazy semantics only appears in the extended version of this paper [14].

Theorem 4.7 (Soundness). Given Γ ⊢
φ
C

C : T , if JCKz−→∗
L

Q, then C−→∗
C

D and Q−→∗
L
JDKz for some D.

Proof (Sketch). By induction on the structure of C. In each case, we additionally apply induction on

the number k of steps JCKz−→k
L

Q. We then consider which reductions might occur from JCKz to Q.

Considering the structure of C, we then isolate a sequence of k′ possible steps, such that JCKz−→k′

L
JD′Kz

for some D′ where C−→C D′. Since JD′Kz−→k−k′

L
Q, it then follows from the induction hypothesis that

there exists D such that D′−→∗
C

D and JD′Kz−→∗
L
JDKz.

Key here is the independence of reductions in APCP: if two or more reductions are enabled from

a (well-typed) process, they must originate from independent parts of the process, and so they do not

interfere with each other. This essentially means that the order in which independent reductions occur

does not affect the resulting process. Hence, we can pick “desirable” sequences of reductions, postponing

other possible reductions. See the extended version of this paper [14] for a full proof of soundness.

From the proof above we can deduce that if the translation takes at least one step, then so does the source:

Corollary 4.8. Given Γ ⊢
φ
C

C : T , if JCKz−→+
L

Q, then C−→+
C

D and Q−→∗
L
JDKz for some D.

4.3 Transferring Deadlock-freedom from APCP to CGV

In APCP, well-typed processes typable under empty contexts (P ⊢ /0) are deadlock-free. By appealing

to the operational correctness of our translation, we transfer this result to CGV configurations. Each

deadlock-free configuration in CGV obtained via transference satisfies two requirements:

• The configuration is typable /0 ⊢�

C
C : 111: it needs no external resources and has no external behavior.

• The typed translation of the configuration satisfies APCP’s priority requirements: it is well-typed

under ‘⊢’, not only under ‘⊢∗’ (cf. Def. 4.3).

We rely on soundness (Theorem 4.7) to transfer deadlock-freedom to configurations. However,

APCP’s deadlock-freedom (Theorem 3.5) considers standard semantics (−→), whereas soundness con-

siders the lazy semantics (−→L). Therefore, we first must show that if the translation of a configuration
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λsess [8] GV [26] EGV [7] PGV [17, 18] CGV (this paper)

Communication Asynch. Synch. Asynch. Synch. Asynch.

Cyclic Topologies Yes No No Yes Yes

Deadlock-Freedom No Yes (typing) Yes (typing) Yes (typing) Yes (via APCP)

Table 1: The features of CGV compared to its predecessors.

satisfying the requirements above reduces under −→, it also reduces under −→L; this is Theorem 4.9

below. The deadlock-freedom of these configurations (Theorem 4.10) then follows from Theorems 3.5

and 4.9. See the extended version of this paper [14] for detailed proofs of these results.

Theorem 4.9. Given /0 ⊢�

C
C : 111, if JCKz ⊢ Γ for some Γ and JCKz−→Q, then JCKz−→L Q′, for some Q′.

Proof (Sketch). By inspecting the derivation of JCKz−→Q. If the reduction is not derived from �ID, it

can be directly replicated under −→L. Otherwise, we analyze the possible shapes of C and show that a

different reduction under −→L is possible.

Theorem 4.10 (Deadlock-freedom for CGV). Given /0 ⊢�

C
C : 111, if JCKz ⊢ Γ for some Γ, then C ≡ �() or

C−→C D for some D.

Proof (Sketch). By assumption and Theorem 4.4, JCKz ⊢ z : •. Then (νννz )JCKz ⊢ /0. By Theorem 3.5,

(i) (νννz )JCKz ≡ 000 or (ii) (νννz )JCKz−→Q for some Q. In case (i) it follows from the well-typedness and

translation of C that C ≡C � (). In case (ii) we deduce that the reduction of (νννz )JCKz cannot involve the

endpoint z. Hence, JCKz−→Q0 for some Q0. By Theorem 4.9, then JCKz−→L Q′ for some Q′. Then, by

Corollary 4.8, there exists D′ such that C−→+
C

D′. Hence, C−→C D for some D, proving the thesis.

As an example, using Theorem 4.10 we can show that C1 from Example 2.2 is deadlock-free; see [14].

5 Conclusion

We have presented CGV, a new functional language with asynchronous session-typed communication.

As illustrated in Section 1, CGV is strictly more expressive than its predecessors, thanks to a highly asyn-

chronous semantics (compared to GV and PGV), its support for cyclic thread configurations (compared

to EGV), and the ability to send whole terms and not just values (compared to all the mentioned calculi).

Table 1 summarizes the features of CGV compared to its predecessors.

An operationally correct translation into APCP solidifies the design of CGV, and enables identifying

a class of deadlock-free CGV programs. Interestingly, the asynchronous semantics of CGV is reminis-

cent of future/promise programming paradigms (see, e.g., [11, 21, 25]), which have been little studied in

the context of session-typed communication.

The alternative to establishing deadlock-freedom in CGV via translation into APCP would be to

enhance CGV’s type system with priorities (in the spirit of, e.g., work by Padovani and Novara [23]).

Another useful addition concerns recursion / recursive types. We leave these extensions to future work.
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[14] Bas van den Heuvel & Jorge A. Pérez (2022): Asynchronous Functional Sessions: Cyclic and Concurrent

(Extended Version), doi:10.48550/arXiv.2208.07644. arXiv:2208.07644.

[15] Kohei Honda (1993): Types for Dyadic Interaction. In Eike Best, editor: CONCUR’93, Lecture Notes in

Computer Science, Springer, Berlin, Heidelberg, pp. 509–523, doi:10.1007/3-540-57208-2_35.

[16] Naoki Kobayashi (2006): A New Type System for Deadlock-Free Processes. In Christel Baier & Holger

Hermanns, editors: CONCUR 2006 – Concurrency Theory, Lecture Notes in Computer Science, Springer

Berlin Heidelberg, pp. 233–247, doi:10.1007/11817949_16.

[17] Wen Kokke & Ornela Dardha (2021): Prioritise the Best Variation. In Kirstin Peters & Tim A. C. Willemse,

editors: Formal Techniques for Distributed Objects, Components, and Systems, Lecture Notes in Computer

Science, Springer International Publishing, Cham, pp. 100–119, doi:10.1007/978-3-030-78089-0_6.

[18] Wen Kokke & Ornela Dardha (2021): Prioritise the Best Variation, doi:10.48550/arXiv.2103.14466.

arXiv:2103.14466.

https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1007/978-3-319-89366-2_5
https://doi.org/10.1007/978-3-319-89366-2_5
https://doi.org/10.4204/EPTCS.190.1
https://arxiv.org/abs/1508.06707
https://doi.org/10.1016/j.jlamp.2021.100717
https://doi.org/10.1145/3290341
https://doi.org/10.1145/3290341
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1016/0168-0072(93)90093-S
https://doi.org/10.1016/j.ic.2010.05.002
https://doi.org/10.1145/4472.4478
https://doi.org/10.4204/EPTCS.314.1
https://doi.org/10.4204/EPTCS.314.1
https://arxiv.org/abs/2004.01320
https://arxiv.org/abs/2111.13091
https://arxiv.org/abs/2110.00146
https://doi.org/10.48550/arXiv.2208.07644
https://arxiv.org/abs/2208.07644
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/11817949_16
https://doi.org/10.1007/978-3-030-78089-0_6
https://doi.org/10.48550/arXiv.2103.14466
https://arxiv.org/abs/2103.14466


94 Asynchronous Functional Sessions: Cyclic and Concurrent

[19] Sam Lindley & J. Garrett Morris (2015): A Semantics for Propositions as Sessions. In Jan Vitek, editor:

Programming Languages and Systems, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, pp.

560–584, doi:10.1007/978-3-662-46669-8_23.

[20] Robin Milner (1989): Communication and Concurrency. Prentice Hall International Series in Computer

Science, Prentice Hall, New York, USA.

[21] Gerald K. Ostheimer & Antony J. T. Davie (1993): Pi-Calculus Characterizations of Some Practical Lambda-

Calculus Reduction Strategies. Technical Report CS/93/14, Department of Computing Sciences, University

of St Andrews.

[22] Luca Padovani (2014): Deadlock and Lock Freedom in the Linear π-Calculus. In: Proceedings of the Joint

Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-

Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, ACM, New

York, NY, USA, pp. 72:1–72:10, doi:10.1145/2603088.2603116.

[23] Luca Padovani & Luca Novara (2015): Types for Deadlock-Free Higher-Order Programs. In Susanne

Graf & Mahesh Viswanathan, editors: Formal Techniques for Distributed Objects, Components, and Sys-

tems, Lecture Notes in Computer Science, Springer International Publishing, Cham, pp. 3–18, doi:10.1007/

978-3-319-19195-9_1.

[24] Davide Sangiorgi & David Walker (2003): The Pi-Calculus: A Theory of Mobile Processes. Cambridge

University Press.

[25] G. Tremblay & B. Malenfant (2000): Lenient Evaluation and Parallelism. Computer Languages 26(1), pp.

27–41, doi:10.1016/S0096-0551(01)00007-8.

[26] Philip Wadler (2012): Propositions As Sessions. In: Proceedings of the 17th ACM SIGPLAN International

Conference on Functional Programming, ICFP ’12, ACM, New York, NY, USA, pp. 273–286, doi:10.1145/

2364527.2364568.

https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1145/2603088.2603116
https://doi.org/10.1007/978-3-319-19195-9_1
https://doi.org/10.1007/978-3-319-19195-9_1
https://doi.org/10.1016/S0096-0551(01)00007-8
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.1145/2364527.2364568

	1 Introduction
	2 Concurrent GV
	2.1 Syntax and Semantics
	2.2 Type System

	3 APCP (Asynchronous Priority-based Classical Processes)
	4 Translating CGV into APCP
	4.1 The Translation
	4.2 Operational Correctness
	4.3 Transferring Deadlock-freedom from APCP to CGV

	5 Conclusion

