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We present an alternative translation from CCS to an extension of CSP based on m-among-n syn-

chronisation (called CSPmn). This translation is correct up to strong bisimulation. Unlike the g-star

renaming approach ([4]), this translation is not limited by replication (viz., recursion with no nested

parallel composition). We show that m-among-n synchronisation can be implemented in CSP based

on multiway synchronisation and renaming.

1 Introduction

In [4], the authors present a translation from CCS [1] into CSP [22, 20], ccs2csp, which is correct up to

strong bisimulation (cf. [10]). This means that a CCS process is strong bisimilar to its CSP translation.

ccs2csp has been implemented in Haskell (cf. [23]), which allows using the model-checker FDR [7] for

analysing translated CCS terms. In the course of the same work, the authors have proposed an alternative

translation, ccs2csp2, correct up to failure equivalence. Both translations differ in the translation of the

prefix term τ .P, translated into (tau → ccs2csp(P))\
csp
{tau} in the first case, and ccs2csp2(P) in the

second case.

In this paper we present yet a third alternative, ccs2csp3, achieved by first extending CSP with m-

among-n synchronisation [9], from which we can derive multiway (or n-among-n) synchronisation, the

default CSP synchronisation mechanism, and binary syncronisation (used in CCS). Then, we translate

CCS parallel composition into the binary version of CSP parallel operator. The resulting translation is

correct up to strong bisimulation.

The translations in [4] were achieved by hard coding binary synchronisation into CCS before going

to CSP. Using a renaming function, g∗, the translations generated unique pairs of indices between any

two pairs of complementary prefixes in a parallel composition, e.g., (a, ā) 7→ {(a12, ā12),(a13, ā13)}. This

effectively made synchronising prefix pairs unique. Although these indices were generated in CCS, the

g∗-renaming approach shows how to enforce binary synchronisation even in CSP: given a CSP process

P ‖
a

Q ‖
a

R, to ensure binary synchronisations on a, assign unique indices to a accordingly, through re-

naming. E.g., P[{a12,a13}/a] ‖ Q[a12/a] ‖ R[a13/a] ensures that pairs of processes (P,Q) and (P,R) can

synchronise respectively, but not (Q,R). This approach, which we call the Gstar approach, has been

encoded in the translation tool and the resulting CSP terms can be analysed in FDR immediately.

m-among-n synchronisation [9] demands adding new rules to CSP, hence it would require updating

FDR first. In other words, the CSP terms resulting from our new translation, ccs2csp3, cannot immedi-

ately be analysed in FDR. Nonetheless, function g∗ implements binary synchronisation, hence, can be

taken for an implementation of 2-among-n synchronisation.

The Gstar approach does not allow translating recursive terms with nested parallelism (or replica-

tion). That is because function g∗ needs to generate every synchronisation index so the translation can
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terminate. With m-among-n synchronisation, we need only one index to separate interleaving from syn-

chronisation, i.e., we map every CCS name unto two CSP events, e.g., a 7→ {a,aS}, where aS is the

synchronisation event. Therefore, this new translation is not limited by parallel under recursion.

Our main contribution in this paper hence is a new translation from CCS into CSP which is correct

up to strong bisimulation, is not limited by parallel under recursion, but cannot be immediately anal-

ysed with FDR. As a byproduct, we define m-among-n synchronisation for CSP processes. We call the

corresponding extension CSPmn. We show that CSPmn preserves CSP axioms by defining m-among-n

sysnchronisation in terms of both multiway synchronisation and renaming. The translation from CSPmn

into CSP is limited by parallel under recursion as it requires generating unique indices for all possible

combinations of synchronising processes.

2 Correct Translation, CCS(Tau), CSP, CCS-to-CSP

2.1 Correct Translations

A correct translation of one language into another is a mapping from the valid expressions in the first

language to those in the second, that preserves their meaning (for some definition of meaning). Below

we recall the two main definitions of correctness from [10].

Let L =(TL ,JKL ) denote a language as a pair of a set TL of valid expressions in L and a surjective

mapping JKL : TL →DL from TL to some set of meanings DL . Candidate instances of JKL are traces

and failures (cf. [14, 21]).

Definition 1 (Correct Translation up to Semantic Equivalence [10]). A translation T : TL → TL ′ is

correct up to a semantic equivalence ≈ on DL ∪DL ′ when JEKL ≈ JT(E)KL ′ for all E ∈ TL .

Operational correspondence allows matching the transitions of two processes, which can help deter-

mine the appropriate relation (semantic equivalence) between a term and its translation. Let the opera-

tional semantics of L be defined by the labelled transition system (TL ,ActL ,−→L ), where ActL is the

set of labels and E
λ
−→L E ′ defines transitions with E,E ′ ∈ TL and λ ∈ ActL .

Definition 2 (Labelled Operational Correspondence, [8, 19]). Let T : TL → TL ′ be a mapping from

the expressions of a language L to those of a language L ′, and let f : ActL → ActL ′ be a mapping

from the labels of L to those of L ′. A translation 〈T, f〉 is operationally corresponding w.r.t. a semantic

equivalence ≈ on DL ∪DL ′ if it is:

• Sound: ∀E,E ′ : E
λ
−→L E ′ imply that ∃F : T(E)

f(λ)
−−→L ′ F and F ≈ T(E ′)

• Complete: ∀E,F : T(E)
λ ′

−→L ′ F imply that ∃E ′ : E
λ
−→L E ′ and F ≈ T(E ′) ∧ λ ′ = f(λ )

The previous two definitions coincide when the semantic equivalence ≈ is strong bisimulation (Def.3)

and f is the identity.

2.2 CCS, CCSTau

CCS. CCS (Calculus of Communicating Systems) [17, 1] is a process algebra that allows reasoning

about concurrent systems. CCS represents programs as processes, whose behaviour is determined by
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Table 1: SOS rules for CCS

Pre f ix : α .P
α
−→ P Sum :

P
α
−→ P′

P+Q
α
−→ P′

Par :
P

α
−→ P′

P|Q
α
−→ P′|Q

Com :
P

a
−→ P′ Q

a
−→ Q′

P|Q
τ
−→ P′|Q′

Res :
P

α
−→ P′ α /∈ B

P ↾ B
α
−→ P′ ↾ B

Rec :
P[µX .P/X ]

α
−→ P′

µX .P
α
−→ P′

rules specifying their possible execution steps. The syntax of CCS processes is defined by the following

BNF:

CCS ::= 0 |α .P |P+Q |P|Q |P ↾ B |µX .P

α ::= τ |a |a

Let N denote an infinite set of names; let a,b,c, ... range over N . Let N = {ā|a ∈ N } denote

the set of conames. Let a = a. Let L = N ∪N denote the set of all possible labels. The set of labels

of a process P is denoted by L (P) ([17, Def.2, p52]). Let τ denote the silent or invisible action. Let

Act = N ∪N ∪{τ} denote the set of all possible actions that a process can perform. Let α ,β , .. range

over Act. The SOS semantics of CCS are given in Table 1.

Informally: 0 (or NIL) is the process that performs no action. α .P is the process that performs an

action α and then behaves like P. P+Q is the process that behaves either like P or like Q. P|Q is the

process that executes P and Q in parallel: if both P and Q can engage in an action a then, their execution

corresponds to interleaving, e.g. a.0|a.0 ≡ a.a.0; if P can engage in action a, Q in the complementary

action ā, then, either P and Q interleave on a or they synchronise and the result of synchronisation is the

invisible action τ , e.g. a.0|ā.0 ≡ a.ā.0+ ā.a.0+ τ .0. P ↾ B is the process that cannot engage in actions

in B except for synchronisation, e.g., (a.0|ā.0) ↾ {a} ≡ τ .0, (a.0) ↾ {a} ≡ 0. µX .P is the process that

executes P recursively.

Equivalence based on bisimulations is the preferred choice for discriminating among CCS processes.

We will use strong bisimulation to prove the correctness of our translation.

Definition 3 (Strong Bisimulation [21, 17]). A strong bisimulation is a symmetric binary relation R on

processes satisfying the following: PRQ and P
α
−→ P′ imply that

∃Q′ : Q
α
−→ Q′ ∧ P′

RQ′

P is strong bisimilar to Q, written P ∼ Q, if PRQ for some strong bisimulation R.

CCSTau. CCSTau [4] extends CCS with visible synchronisations, viz., the result of synchronisation

on a pair (a, ā) is the visible action τ [a, ā] instead of the visible action τ . This makes it easier to guarantee

that when two processes synchronise in CCS(Tau), their CSP translation also synchronises. The syntax
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of CCSTau processes is defined by the following grammar:

P,Q,R ::= 0 | α .P | P+Q | P|
T
Q | P ↾ B | µ X .P | P\

T
B | X

α ::= τ | a | a

β ::= α | τ [a|a]

The parallel operator in CCSTau is denoted |
T
. CCSTau also defines a hiding operator, denoted \

T
, which

can hide all actions including τ [a, ā] actions. The restriction operator behaves as in CCS, does not apply

to τ [a, ā] actions. Rules for these operators are given hereafter:

Par :
P

β
−→ P′

P|
T
Q

β
−→ P′|

T
Q

Com :
P

a
−→ P′ Q

a
−→ Q′

P|
T
Q

τ [a|a]
−−−→ P′|

T
Q′

Res :
P

β
−→ P′ β = τ [a|a] or β /∈ B

P ↾ B
β
−→ P′ ↾ B

Hide :
P

β
−→ P′ β /∈ B

P\
T
B

β
−→ P′\

T
B

P
β
−→ P′ β ∈ B

P\
T
B

τ
−→ P′\

T
B

All other CCS operators are also CCSTau operators.

CCS-to-CCSTau. Translation function c2ccsτ [4] translates CCS processes into CCSTau, is correct

up to strong bisimulation. For any CCS process P other than CCS-parallel operator, c2ccsτ(P) = P. For

the parallel operator: 1

c2ccsτ(P|Q) =̂ (c2ccsτ(P)|
T
c2ccsτ(Q))\

T
{τ [a|a] |a ∈ L (P), ā ∈ L (Q)} (c2ccsτ-par-def)

2.3 CSP

CSP (Communicating Sequential Processes) [14, 22] is a process algebra that allows reasoning about

concurrent systems. In CSP, a (concurrent) program is represented as a process, whose behaviour is

entirely determined by the possible actions of the program, represented as events. The set of events that

a process P can possibly perform is denoted by A (P). Event τ denotes invisible actions, hidden from

the environment; event X denotes successful termination, by opposition say to deadlock and abortion.

Both denotational and operational semantics have been defined for CSP processes, in terms of traces.

The syntax of some CSP processes is defined by the following BNF:

CSP ::= SKIP |STOP |α ❀ P |P ⊓ Q |P ✷ Q |P ‖
B

Q | f (P) |P\B |µX .P

α ::= a |a?x |a!m

The SOS semantics of CSP processes are given in Table 2. Informally: SKIP is the process that

refuses to engage in any event, terminates immediately, and does not diverge. STOP is the process that is

unable to interact with its environment. α ❀ P is the process that first engages in event α then behaves

like P. P ✷ Q is the process that behaves like P or Q, where the choice is decided by the environment.

1The set of labels of a CCS process P, L (P), corresponds to the set of events A (Q) for a CSP process Q.
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Table 2: SOS rules for CSP [22]

Pre f ix : (a ❀ P)
a
−→ P Skip : SKIP

X
−→ STOP

IntChoice : P1 ⊓ P2
τ
−→ P1 P1 ⊓ P2

τ
−→ P2

ExtChoice :
P1

a
−→ P′

P1 ✷ P2
a
−→ P′

P1
τ
−→ P′

P1 ✷ P2
τ
−→ P′ ✷ P2

I f acePar :
P1

a
−→ P′ [a /∈ BX]

P1 ‖
B

P2
a
−→ P′ ‖

B

P2

P1
a
−→ P′

1 P2
a
−→ P′

2 [a ∈ BX]

P1 ‖
B

P2
a
−→ P′

1 ‖
B

P′
2

Hide :
P

a
−→ P′ [a /∈ B]

P\B
a
−→ P′ \B

P
a
−→ P′ [a ∈ B]

P\B
τ
−→ P′ \B

FwdRen :
P

a
−→ P′

f (P)
f (a)
−−→ f (P′)

P
τ
−→ P′

f (P)
τ
−→ f (P′)

Rec :
P

µ
−→ P′ [N = P]

N
µ
−→ P′

P ‖
B

Q behaves like the parallel execution of P and Q where the latter must both synchronise on the set

of events B. When B = {}, we say that P and Q interleave, denoted by P ||| Q; if B = A (P)∩A (Q) we

also write P ‖ Q. f (P) engages in f (a) whenever P engages in a. P\B is the process that engages in all

events of P except those in B. µX .P is the process that executes P recursively.

Equivalence based on (enriched versions of) traces is the preferred choice for distinguishing CSP

processes. We kindly refer the reader to [14, 22] for details.

2.4 CCS-to-CSP Translation

Notation. Given two functions, say f1 and f2, f1 ◦ f2 denotes functional composition, viz., f1( f2).

In this section, we present ccs2csp [4], the translation from CCS-to-CSP, correct up to strong bisim-

ulation.

Definition 4 (ccs2csp [4]). Let P be a CCS process. Then:

ccs2csp(P) =̂ ai2a◦ (t2csp◦ c2ccsτ(P))\
csp
{ai j|ai j ∈ A

(
t2csp(c2ccsτ(P))

)
}

t2csp(P) =̂ (tl ◦ conm◦g∗{} ◦ ix(P))\
csp
{tau}

g∗S =̂ {τ 7→ τ ,ai 7→ {ai}∪{ai j|ā j ∈ S, i < j}∪{a ji|ā j ∈ S, j < i}}

conm =̂ {τ 7→ τ ,ai 7→ ai, āi 7→ āi,ai j 7→ ai j, āi j 7→ ai j}

ai2a =̂ {ai 7→ a}

where ix generates unique indexed prefixes such that a name b maps to a set of indexed names bi, i ≥
1; g∗ generates unique double-indexed names for every pair of synchronising names; conm renames every
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synchronising coname into the corresponding name (so they can synchronise in CSP); and tl translates

CCS operators into corresponding CSP operators. We kindly refer the reader to [4] for details.

Example 1 ([4]). The translation of CCS binary synchronisation into CSP can be illustrated succinctly

as follows:

ccs2csp(a.0|ā.0) (ccs2csp-def)

=ai2a◦ t2csp
(
c2ccsτ(a.0|ā.0)

)
\

csp
{ai j|..} (c2ccsτ-par-def)

=ai2a◦ t2csp
(
(a.0|

T
ā.0)\

T
{τ [a|ā]}

)
\

csp
{ai j|..} (t2csp-def)

=ai2a◦ tl ◦ conm◦g∗({}, ix
(
(a.0|

T
ā.0)\

T
{τ [a|ā]}

)
)\

csp
{tau}\

csp
{ai j|..} (ix-def)

=ai2a◦ tl ◦ conm◦g∗
(
(a1.0|T ā2.0)

)
\

csp
{tau}\

csp
{ai j|..} (gstar-def)

=ai2a◦ tl ◦ conm
(
(a1.0+a12.0)|T (ā2.0+ ā12.0)

)
\

csp
{tau}\

csp
{a12} (conm-def)

=ai2a◦ tl
(
(a1.0+a12.0)|T (ā2.0+a12.0)

)
\

csp
{tau,a12} (tl-def)

=ai2a◦
(
(a1 ✷ a12 ❀ STOP) ‖

{a12}

(ā2 ✷ a12 ❀ STOP)
)
\

csp
{tau,a12} (ai2a-def)

=
(
(a ✷ a12 ❀ STOP) ‖

{a12}

(ā ✷ a12 ❀ STOP)
)
\

csp
{tau,a12}

In CCS, a name can be used both for interleaving and for synchronisation. This is reflected in the

translation above by generating indexed names a1 and ā2 for interleaving; then for the synchronisation

pair (a1, ā2), a unique synchronisation name a12 is generated. More generally, there will be as many ai j

synchronisation names as there are of synchronisation on name a.

In the next section, we extend CSP with m-among-n synchronisation, then derive 2-among-n (binary)

synchronisation. In the end, we will be able to translate CCS binary synchronisation into CSP binary

synchronisation.

3 CSP plus m-among-n Synchronisation

Multiway synchronisation in CSP is maximal, viz., all processes that can synchronise must synchronise.

This is also called the maximal (or n-ary) coordination paradigm ([9]): if n processes are ready to syn-

chronise on event a, then all n processes must synchronise together. Can we generalise this to allow only

m-among-n (2 ≤ m ≤ n) processes to synchronise instead? If the answer is yes then binary synchroni-

sation can be defined as 2-among-n coordination and n-ary synchronisation as n-among-n coordination.

Garavel and Sighireanu [9] define m/n coordination for the language E-LOTOS.

First, let us generalise CSP (n-ary) interface parallel operator ([22]).

IndxI f acePar :
Pj

a
−→ P′ [a /∈ BX,k 6= j]

‖
B

Pi
a
−→ (‖

B

Pk) ‖
B

P′

P1
a
−→ P′

1 ... Pn
a
−→ P′

n [a ∈ BX]

‖
B

Pi
a
−→‖

B

P′
i

Definition 5 (a#m clause [9]). Let I = {1, ..,n},n ∈ N,n ≥ 2. Let m be a natural number in the range

2, ..,n associated to an a-event such that a clause a#m denotes that m processes are allowed to synchro-

nise on event a at once. Each clause #m is optional: if omitted, m has default value n.



66 CCS to CSPmn

The rules for m/n indexed interface paralell composition are given hereafter.2

M/N−IndxI f acePar :
Pj

a
−→ P′ [a#m /∈ BX×{2, ..,n},k 6= j]

‖
B×{2,..,n}

Pi
a
−→ ( ‖

B×{2,..,n}

Pk) ‖
B×{2,..,n}

P′

P1
a
−→ P′

1 ... Pn
a
−→ P′

n [a#m ∈ BX×{2, ..,n}, j ∈ J,k 6= j]

‖
B×{2,..,n}

Pi
a
−→ ⊓

{J⊆I|card(J)=m}

(
( ‖

B×{2,..,n}

Pk) ‖
B×{2,..,n}

( ‖
B×{2,..,n}

P′
j)

)

We can then derive binary-only synchronisation by imposing that every event in set B allows 2(only)-

among-n processes to synchronise.

2/N−IndxI f acePar :
P1

a
−→ P′

1 ... Pn
a
−→ P′

n [a#2 ∈ AX×{2}, j ∈ J,k 6= j]

‖
B×{2}

Pi
a
−→ ⊓

{J⊆I|card(J)=2}

(
( ‖

B×{2}

Pk) ‖
B×{2}

( ‖
B×{2}

P′
j)

)

Similarly, we derive n-ary-only synchronisation by imposing that every event in set B allows n-among-n

processes to synchronise. We easily verify that rules N/N-IndxIfacePar and IndxIfacePar (synchronisa-

tion) are the same.

N/N−IndxI f acePar :
P1

a
−→ P′

1 ... Pn
a
−→ P′

n [a#n ∈ BX×{n}]

‖
B×{n}

Pi
a
−→ ‖

B×{n}

P′
i

Correctness of M/N-IndxIfacePar rule. Let us call CSPmn the extension of CSP with m-among-n

synchronisation. We argue here that CSPmn is a conservative extension of CSP, i.e., CSPmn preserves

the axioms of CSP.

The proof method is suggested to us by function g∗ [4]. For binary synchronisation, select process

pairs that must synchronise and assign them a unique synchronisation index. E.g.,

a ‖
a#2

a ‖
a#2

a maps to (a12 ✷ a13) ‖ (a12 ✷ a23) ‖ (a13 ✷ a23)

Then, for m processes to synchronise among n, generate a unique index for all possible combinations of

m processes among n, e.g.,

a ‖
a#2

a ‖
a#2

a ‖
a#2

a maps to (a12 ✷ a13 ✷ a14) ‖ (a12 ✷ a23 ✷ a24) ‖ (a13 ✷ a23 ✷ a34) ‖

(a14 ✷ a24 ✷ a34)

a ‖
a#3

a ‖
a#3

a ‖
a#3

a maps to (a123 ✷ a124 ✷ a134) ‖ (a123 ✷ a124 ✷ a234) ‖ (a123 ✷ a134 ✷ a234) ‖

(a124 ✷ a134 ✷ a234)

a ‖
a#4

a ‖
a#4

a ‖
a#4

a maps to a1234 ‖ a1234 ‖ a1234 ‖ a1234

2The rules in [9] use a different rule format than CSP rules: they use predicates.
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From what precedes, there exists a relational renaming, say G, such that

‖
a#m, j

Pj ∼ ‖
G(a), j

Pj[G(a)/a]

We can thus define (CSPmn parallel operator) ‖
a#m

in terms of both (CSP parallel operator) ‖
a

and (CSP

relational renaming) G(a). Therefore, CSPmn is a conservative extension of CSP, viz., preserves CSP

axioms (cf. Appendix A for a full proof).

4 CCSTau Transformations

CCS
c2ccsτ
−−−→ CCSTau

g2

−→
conm
−−−→ CCSTau

tl3−→
\{tau}
−−−→

\{aS}
−−−→ CSPmn

Figure 1: CCS-to-CSPmn Translation workflow

The different stages of our translation are shown in Fig. 1.

Pairwise vs. Multiway Synchronisation Recall, a CCSTau name has both interleaving and synchro-

nisation semantics. We hence have to generate two distinct CSP events for a single CCS name. Also,

it is possible to hide τ [a|ā] synchronisation actions in CCSTau (typically, to obtain a CCS process—cf.

Def.c2ccsτ-par-def). Then, it will be convenient to ignore them. Let g2 define the function that generates

a synchronisation name for any CCS name.

Definition 6 (g2(α)).

g2(S,τ) =̂ τ g2(S,a) =̂ {a}∪{aS | ā ∈ S}

g2(S,τ [a|ā]) =̂ {τ [a, ā]} g2(S,B) =̂ {g2(S,a) |a ∈ B, ā ∈ S}

Given a set of names generated by g2, a-names denote interleaving, whilst aS-names denote synchro-

nisation. The application of g2 to processes is given hereafter.

Definition 7 (g2(P)). Let P be a CCS process. Let g2(P) =̂ g2({},P).

g2(S,0) =̂ 0

g2(S,α .P) =̂ Σ
b∈g2(S,α)

b.g2(S,P)

g2(S,P+Q) =̂ g2(S,P)+g2(S,Q)

g2(S,P|
T
Q) =̂ g2(S∪A (Q),P)|

T
g2(S∪A (P),Q)

g2(S,P ↾ B) =̂ g2(S,P) ↾ g2(S,B)

g2(S,P\
T
B) =̂ g2(S,P)\

T
g2(S∪B,B)

g2(S,µ X .P) =̂ µ X .g2(S,P)

g2(S,X) =̂ X

Note the difference between restriction and hiding. Names g2(S,B) are generated between a process

and its environment. Only those names will be restricted, understood that (restricted) B names cannot

interact with their environment. Internal synchronisation on B names, however, will not be restricted

(until later in CSP). In contrast, for hiding, internal synchronisation on B must be hidden as well, hence

we hide names g2(S∪B,B) instead.
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Example 2. Let us illustrate the translation of restriction.

g2
(
{},(a.0|

T
ā.0) ↾ {a}

)
(g2-def)

= g2
(
{},a.0|

T
ā.0

)
↾ g2({},{a}) (g2-res-def)

=
(
g2({ā},a.0)|

T
g2({a}, ā.0)

)
↾ {a} (g2-par-def)

=
(
(a.0+aS.0)|T (ā.0+ āS.0)

)
↾ {a}

Contrast with hiding, which hides both a and aS. (Recall \
T
{a}=\

T
{a, ā}.)

g2
(
{},(a.0|

T
ā.0)\

T
{a}

)
(hide-def)

= g2
(
{},(a.0|

T
ā.0)\

T
{a, ā}

)
(g2-def)

= g2
(
{},a.0|

T
ā.0

)
\

T
g2({a, ā},{a, ā}) (g2-hide-def)

=
(
g2({ā},a.0)|

T
g2({a}, ā.0)

)
\

T
{a, ā,aS, āS} (g2-par-def, hide-def)

=
(
(a.0+aS.0)|T (ā.0+ āS.0)

)
\

T
{a,aS}

Finally, consider hiding the synchronisation action τ [a|ā], this turns out to be vacuous.

g2
(
{},(a.0|

T
ā.0)\

T
{τ [a|ā]}

)
(g2-def)

= g2
(
{},a.0|

T
ā.0

)
\

T
g2({a},{τ [a|ā]}) (g2-hide-def)

=
(
g2({ā},a.0)|

T
g2({a}, ā.0)

)
\

T
{τ [a|ā]} (g2-par-def)

=
(
(a.0+aS.0)|T (ā.0+ āS.0)

)
\

T
{τ [a|ā]}

Parallel Composition. In CSP, synchronisation pairs (aS, āS) will not be able to synchronise. We hence

update the coname function to translate conames into names.

Definition 8 (conm). conm =̂ {τ 7→ τ ,a 7→ a, ā 7→ ā,aS 7→ aS, āS 7→ aS}.

Link CCSTau-to-CSPmn In [4], function tl translates CCSTau operators into CSP operators, without

consideration for differences in their respective alphabets. Hereafter, we define tl3, to map CCS binary

synchronisation into CSPmn binary synchronisation. All other operators are translated as before, viz.,

tl3(P) = tl(P) for all process expressions other than parallel composition. Additionally, because of the

possibility to hide τ [a, ā] synchronisation actions in CCSTau, we translate CCSTau hiding operator also,

translation which was not needed for tl.

Definition 9 (tl3). Let tau be a CSP event that cannot synchronise.

tl3(0) =̂ STOP

tl3(τ .P) =̂ tau ❀ tl3(P)

tl3(a.P) =̂ a ❀ tl3(P)

tl3(P ↾ B) =̂ tl3(P) ↾csp B

tl3(P\T
B) =̂ tl3(P)\csp

B

tl3(P+Q) =̂ tl3(P) ✷ tl3(Q)

tl3(P|T Q) =̂ tl3(P) ‖
{a#2|a∈A (P)∩A (Q)}

tl3(Q)

tl3(µ X .P) =̂ µ X .tl3(P)

tl3(X) =̂ X

Note that tl3(P\T
{τ [a|ā]}) = tl3(P)\csp

{τ [a|ā]} = tl3(P), since τ [a|ā] actions do not occur in the

translated term, tl3(P). This is necessary, as illustrated subsequently.
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Example 3. CCS process a | ā |a, by c2ccsτ , corresponds to CCSTau process

(
(a|

T
ā)\

T
{τ [a|ā]}|

T
a
)
\

T
{τ [a, ā]}

By g2, this becomes process

(
((a+aS)|T (ā+ āS))\T

{τ [a|ā]}|
T
(a+aS)

)
\

T
{τ [a|ā]}

Then, by tl3, it becomes

(
((a ✷ aS) ‖

aS#2

(ā ✷ āS))\csp
{τ [a|ā]} ‖

aS#2

(a ✷ aS)
)
\

csp
{τ [a|ā]}

= (a ✷ aS) ‖
aS#2

(ā ✷ āS) ‖
aS#2

(a ✷ aS)

Thanks to \
csp
{τ [a, ā]} being vacuous, there will be two possible synchronisations on aS, corresponding

to the original CCS behaviour.

The following abbreviation translates CCSTau into CSPmn.

Definition 10 (CCSTau to CSPmn). Let P be a CCSTau process. Then:

t2csp3(P) =̂ (tl3 ◦ conm◦g2(P))\
csp
{tau}

Link CCS-to-CSPmn. We obtain the translation from CCS to CSP by translating CCS into CCSTau

first, using c2ccsτ (Def.c2ccsτ-par-def), then translating CCSTau into CSPmn, using t2csp3 (Def.10),

and finally hiding every aS synchronisation event.

Definition 11 (CCS to CSPmn). Let P denote a CCS process. Then:

ccs2csp3(P) =̂ (t2csp3 ◦ c2ccsτ(P))\
csp
{aS|aS ∈ A (t2csp3 ◦ c2ccsτ(P))}

Example 4. The translation of CCS binary synchronisation into CSPmn can be illustrated succinctly as

follows:

ccs2csp3(a.0|ā.0) (ccs2csp3-def.11)

=
(
t2csp3 ◦ c2ccsτ(a.0|ā.0)

)
\

csp
{aS|..} (c2ccsτ-par-def)

= t2csp3

(
(a.0|

T
ā.0)\

T
{τ [a|ā]}

)
\

csp
{aS} (t2csp3-def.10)

= tl3 ◦ conm◦g2({},(a.0|
T
ā.0)\

T
{τ [a|ā]})\

csp
{tau}\

csp
{aS} (g2-def.6)

= tl3 ◦ conm
((

(a.0+aS.0)|T (ā.0+ āS.0)
)
\

T
{τ [a|ā]}

)
\

csp
{tau}\

csp
{aS} (conm-def.8)

= tl3

((
(a.0+aS.0)|T (ā.0+aS.0)

)
\

T
{τ [a|ā]}

)
\

csp
{tau}\

csp
{aS} (tl3-def.9, CSP)

=
(
(a ✷ aS ❀ STOP) ‖

{aS#2}

(ā ✷ aS ❀ STOP)
)
\

csp
{tau,aS}

Example 5. The translation of recursion with nested parallel can be illustrated as follows.

Let P =̂ µ X .(a|ā.X) (or equiv. P =̂ a.0 | ā.P) be a CCS process. Then, ix(P) = a1 |a2.ix{3..}(P), where

ix{3..} denotes that indexing excludes indices 1 and 2. Let us unfold P one step, then:

P = a | ā.(a | ā.P)

ix(P) = a1 | ā2.(a3 | ā4.ix{5..}(P))
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The synchronisation pairs are thus (a1, ā2),(a1, ā4), .., that is, the set {(a1, ā2k)|k ≥ 1}. Then:

g∗(P) = (a1 + Σ
k≥1

a1∗2k) |(ā2 + ā12).g
∗(P)

We will not be able to generate all the a1∗2k indices since recursion is unbounded. For closure, we give

the temptative translation of P with ccs2csp: 3

ccs2csp(P) =
(
(a ✷ ✷

k≥1

a1∗2k) ‖
{a1∗2k |k≥1}

(ā2 ✷ a12)❀ ai2a◦ t2csp◦ c2ccsτ(P)
)
\

csp
{ai j|..}

In contrast, let us define ccs2csp3(P). Then:

g2(P) = (a+aS) |(ā+ āS).g
2(P)

= (a+aS) |(ā+ āS).
(
(a+aS) |(ā+ āS).g

2(P)
)

We can unfold P multiple times, we only ever generate a single name for synchronisation. Then:

ccs2csp3(P) =
(
(a ✷ aS) ‖

aS#2

(ā ✷ aS)❀ t2csp3 ◦ c2ccsτ(P)
)
\

csp
{aS}

5 Gstar Implements 2/n-Synchronisation

We discuss here the relation between g∗-renaming ([4]) and m-among-n synchronisation (§3) approaches.

Recall, function g∗ (Def.4, [4]) computes for a CCSTau process P all the substitute names corre-

sponding to distinct synchronisation possibilities of P with its environment, plus interleaving. We have

proposed an alternative solution based on extending CSP with 2-among-n synchronisation, derived from

first extending CSP with m-among-n synchronisation. Whilst this second solution is more elegant than

the gstar-renaming one, the problem of its immediate implementability in a tool like FDR has been raised.

Given the current version of FDR, m-among-n synchronisation cannot be implemented directly. We

remark, however, that one effect of m-among-n synchronisation is to select, using non-deterministic

choice, the m processes that are allowed to synchronise; effect which is precisely what function g∗

achieves through renaming. We discuss how to relate both results.

Let us refer by CSPgstar the CSP process expressions resulting from translation ccs2csp. We can

translate CSPgstar expressions into CSPmn expressions as follows.

Definition 12 (gstar2m/n). Let ai j be an g∗ name, aS an g2 name. Then: g∗2g2 =̂ {τ 7→ τ ,ai j 7→ aS}

While g∗2g2 is a simple renaming function, its application to CSP processes is modified specifically

for the parallel operator such as to map ‖
{ai j}

unto ‖
{aS#2}

(instead of ‖
{aS}

).

Definition 13. Let P be a CSP process.

g∗2g2(STOP) =̂ STOP

g∗2g2(α ❀ P) =̂ g∗2g2(α)❀ g∗2g2(P)

g∗2g2(P ⊓ Q) =̂ g∗2g2(P) ⊓ g∗2g2(Q)

g∗2g2(P ‖
{ai j}

Q) =̂ g∗2g2(P) ‖
{aS#2}

g∗2g2(Q)

g∗2g2(P\
csp

B) =̂ g∗2g2(P)\
csp

g∗2g2(B)

g∗2g2(P ✷ Q) =̂ g∗2g2(P)✷ g∗2g2(Q)
3We are lucky that we can tell in advance what the synchronisation indices are, because process P is a simple case.
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Theorem 1. Let P be a CCS processes. Then: g∗2g2 ◦ ccs2csp(P) = ccs2csp3(P).

Proof. By induction on the structure of CCS processes. When P does not mention CCS parallel, the

proof is straightforward. We develop the proof for the parallel case only. We have:

g∗2g2 ◦ ccs2csp(P |Q) (ccs2csp-def.4)

=g∗2g2 ◦ai2a◦ (t2csp(P) ‖
{ai j}

t2csp(Q))\
csp
{tau,ai j} (CSP hide law)

=g∗2g2 ◦ (ai2a◦ t2csp(P)\
csp
{tau} ‖

{ai j}

ai2a◦ t2csp(Q)\
csp
{tau})\

csp
{ai j} (g*2g2-def.12)

=
(
g∗2g2 ◦ai2a◦ t2csp(P)\

csp
{tau} ‖

{aS#2}

g∗2g2 ◦ai2a◦ t2csp(P)\
csp
{tau}

)
\

csp
{aS}

(Induction Hyp., ccs2csp3-def.11)

=ccs2csp3(P |Q)

We say that g∗ implements 2-among-n synchronisation.

6 Conclusion and Future Work

[4] proposes a translation of CCS into CSP based on the g∗-renaming approach whereby if two processes

can synchronise on an action b, then a name unique to these two processes, say bi j , is generated to

substitute b. Thus, if more than two processes could initially synchronise on b, only two processes will

ever be able to synchronise on bi j after application of g∗.

In this paper, we propose an alternative, the m-among-n synchronisation approach, whereby we

first extend CSP multiway synchronisation (or n-among-n) to m-among-n synchronisation (extension

called CSPmn), from which we derive 2-among-n or binary synchronisation for CSP processes. We

then translate CCS binary synchronisation into CSPmn binary synchronisation. Unlike the g∗-renaming

approach, the m/n-approach is not limited by parallel under recursion since we can generate a single

synchronisation name, say aS, independently of the number of processes meant to synchronise on aS.

We have also shown that CSPmn is a conservative extension of CSP (viz., preserves CSP axioms)

by defining (CSPmn) m-among-n synchronisation in terms of both (CSP) multiway (or n-among-n) syn-

chronisation and relational renaming.

We are tempted to affirm that m-among-n synchronisation is more expressive than both 2-among-

n and n-among-n synchronisation. However, Hatzel et al. [11] propose an encoding from CSP into

CCS whereby they encode CSP multiway synchronisation based on CCS binary synchronisation. Our

work suggests that in trying to translate CSP into CCS, it would be easier to extend CCS with multiway

synchronisation, as we have done here for CSP. Other works on the translation from CSP into CCS

include [2], [3], [12], and [10].
We have proposed here the translation from CCS to CSP only. The main reason for this is our interest

in using CSP tools such as FDR for reasoning about CCS processes. With regard to this concern, the
g∗-renaming approach is more readily implementable than the m/n-approach. The latter would require
extending FDR with semantics (viz. rules) for m-among-n synchronisation. Alternatively, m-among-n
synchronisation can be implemented using function g∗# (Def.15), however, with the limitation on parallel
under recursion similar to g∗ (cf. [4]). Mechanising our results in Isabelle theorem prover is also to be
explored in the future.
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A Proof that CSPmn is a Conservative Extension

In order to prove that CSPmn is conservative, we need to define some auxillary functions. First, we

uniquely index the prefixes of CSP processes.

Property 1. Let P be a CSP process.

ix(ST OP) = STOP

ix(a ❀ P) = ai ❀ ix−i(P)

ix(P ⊓ Q) = ix1(P) ⊓ ix2(Q)

ix(P ✷ Q) = ix1(P)✷ ix2(Q)

ix(P ‖
a#m

Q) = ix1(P) ‖
B

ix2(Q)

B =̂ {ai#m|ai ∈ A (ix1(P))∪A (ix2(Q))}

ix(P\
csp
{a}) = ix(P)\

csp
{ai|ai ∈ A (ix(P))}

ix(µ X .P) = µ X .ix(P)

ix(X) = X

where ix−i is some indexing scheme which does not assign the i-index, and ix1, ix2 are indexing schemes

that assign disjoint indices.

Then, using ix-generated indices we generate unique synchronisation indices. Given a set {ai} of

parallel prefixes and a number m of processes meant to synchronise together, g∗ai#m generates a unique

synchronisation index ai1..im .

Definition 14. Let S,B denote sets of indexed events.

g∗ai1
#m(S,ai1) =̂ {ai1 ..im | i1 < .. < im,{aik |1 < k ≤ m} ⊆ S} ∪{aim..i1 | im < .. < i1,{aik |1 < k ≤ m} ⊆ S}

g∗{ak#mk|k∈N}(S,ai) =̂

{
ai ai /∈ {ak |k ∈ N}

g∗ai#mi
(S,ai)

Although g∗a#m denotes relational renaming, we overload its application to processes such that it

translates ‖
a#m

into ‖
a

. This corresponds to the following.

Definition 15. Let P be an ix-indexed CSP processes. Let S be a set of ix-indexed events. Let a#m denote

the set {ak#mk |k ∈ N}, b#n the set {b j#n j | j ∈ N}. Let g∗a#m(P) =̂ g∗a#m({},P).

g∗a#m(S,STOP) =̂ STOP g∗a#m(S,a ❀ P) =̂ Σ
b∈g∗a#m(a)

b ❀ g∗a#m(S,P)

g∗a#m(S,P ⊓ Q) =̂ g∗a#m(S,P) ⊓ g∗a#m(S,Q) g∗a#m(S,P ✷ Q) =̂ g∗a#m(S,P) ✷ g∗a#m(S,Q)

g∗a#m(S,µ X .P) =̂ µ X .g∗a#m(S,P) g∗a#m(S,X) =̂ X

g∗a#m(S,P\csp
{a}) =̂ g∗a#m(S,P)\csp

g∗a#m(S,a)

g∗a#m(S,P ‖
b#n

Q) =̂ g∗a#m∪b#n(S∪A (Q),P) ‖
B

g∗a#m∪b#n(S∪A (P),Q)

B =̂
⋃
{g∗a#m∪b#n(S∪A (Q),b j)|b j ∈ A (P)} ∪

⋃
{g∗a#m∪b#n(S∪A (P),b j)|b j ∈ A (Q)}

When a#m denotes the empty set, we write g∗# for the corresponding function g∗a#m. Then, the trans-

lation of CSPmn into CSP is given by the following.
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Definition 16. Let P be a CSPmn process. mn2csp(P) =̂ g∗# ◦ ix(P)

The following theorem establishes a labelled operational correspondence (Def. 2), which turns out a

strong bisimulation (Def. 3), between CSPmn and CSP.

Theorem 2. Let P be a CSPmn process. Let I denote a given sequence of natural numbers.

1. If P
a
−→ P′ then ∃ I : mn2csp(P)

a
I−→ Q and Q ≡ mn2csp(P′)

2. If mn2csp(P)
a

I−→ Q then ∃!P′ : P
a
−→ P′ and Q ≡ mn2csp(P′)

Proof. When P does not mention ‖
a#m

, mn2csp behaves like the identity function, hence the theorem

holds. By induction, we prove the case for parallel.

(Thrm.2.1.) [Induction step:Parallel]. Let P1
a
−→ P′

1. Let P2, ..,Pn denote processes such that m−1 among

them can perform an a-transition. For ease, we select one such combinations, P2..Pm. The following

result applies for all possible combinations. —(Hyp-combine)— Then, by M/N-IndxIfacePar rule (§3),

P1 ‖
a#m

.. ‖
a#m

Pn
a
−→ P′

1 ‖
a#m

P′
2.. ‖

a#m

P′
m ‖

a#m

Pm+1 ‖
a#m

.. ‖
a#m

Pn

Assume for each Pi that every occurrence of a in Pi is indexed into ai. (The following applies even if we

separate i into distinct indices, e.g., i1, i2, .., as many as there are of instances of a in Pi.) —(Hyp-indx)—

Then, by (Hyp-combine), (Hyp-indx), and Def.15, g∗#(a) = a12..m and:

mn2csp(P1 ‖
a#m

.. ‖
a#m

Pn) = P1[a12..m/a] ‖
a12..m

.. ‖
a12..m

Pm[a12..m/a] ‖
{}

Pm+1 ‖
{}

.. ‖
{}

Pn

By IndxIfacePar rule (§3) and definition of renaming (Tab.2):

P1[a12..m/a] ‖
a12..m

.. ‖
a12..m

Pm[a12..m/a] ‖
{}

Pm+1 ‖
{}

.. ‖
{}

Pn
a12..m−−−→

P′
1[a12..m/a] ‖

a12..m

.. ‖
a12..m

P′
m[a12..m/a] ‖

{}

Pm+1 ‖
{}

.. ‖
{}

Pn

Then, by induction hypothesis.

(Thrm.2.2.) [Induction step: Prallel.] Let mn2csp(P)
a

I−→ Q. By Par rule, mn2csp(P) ‖
a

I

mn2csp(P2)
a

I−→

Q ‖
a

I

mn2csp(P2), a
I
/∈ A (mn2csp(P2)). By induction hypothesis, ∃!P′ : P

a
−→ P′ and Q ≡ mn2csp(P′).

Then, by Par rule, P ‖
a#m

P2
a
−→ P′ ‖

a#m

P2. Moreover, Q ‖
a

I

mn2csp(P2) ≡ mn2csp(P′) ‖
a

I

mn2csp(P2) =

mn2csp(P′ ‖
a#m

P2), by Def.16.

As a consequence, when m-among-n CSPmn processes, ‖
a#m, j

Pj, will synchronise on a, m-among-n

CSP processes, ‖
a12..m, j

Pj[a12..m/a], will synchronise on a12..m, where 12..m denotes any combination of

m potential synchronising processes. We say that mn2csp implements m-among-n synchronisation.
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