
V. Castiglioni and O. Dardha (Eds.): Combined Workshop on

Expressiveness in Concurrency and Structural Operational Semantics

(EXPRESS/SOS 2021)

EPTCS 339, 2021, pp. 43–58, doi:10.4204/EPTCS.339.6

© M. Cimini & B. Mourad

This work is licensed under the

Creative Commons Attribution License.

Language Transformations in the Classroom

Matteo Cimini

University of Massachusetts Lowell
Lowell, Massachusetts, USA

matteo_cimini@uml.edu

Benjamin Mourad

University of Massachusetts Lowell
Lowell, Massachusetts, USA

benjamin_mourad@student.uml.edu

Language transformations are algorithms that take a language specification in input, and return the

language specification modified. Language transformations are useful for automatically adding fea-

tures such as subtyping to programming languages (PLs), and for automatically deriving abstract

machines.

In this paper, we set forth the thesis that teaching programming languages features with the help

of language transformations, in addition to the planned material, can be beneficial for students to

help them deepen their understanding of the features being taught.

We have conducted a study on integrating language transformations into an undergraduate PL

course. We describe our study, the material that we have taught, and the exam submitted to students,

and we present the results from this study. Although we refrain from drawing general conclusions on

the effectiveness of language transformations, this paper offers encouraging data. We also offer this

paper to inspire similar studies.

1 Introduction

Computer Science university curricula include undergraduate courses in programming languages (PLs).

These courses vary greatly in the content they offer, and they may also have various names such as

“Principles of Programming Languages”, and “Organization of Programming Languages”, to make some

examples. Typically, the goal of these courses is not to teach one specific PL. Conversely, students are ex-

posed to the conceptual building blocks from which languages are assembled, the various programming

paradigms that exist, and students are challenged to think about various PL features in their generality.

It is typical for these courses to cover PL features such as subtyping, abstract machines, type in-

ference, parametric polymorphism, as well as many others. Some of these features can be regarded as

variations on a base PL. For example, it is not uncommon to design a PL, and add subtyping afterwards.

It is then interesting to understand what are the modifications that need to take place in order to incor-

porate subtyping in that base language. A good way to analyze this is by looking at how formal typing

rules need to change. Consider, for example, the typing rule of function application below on the left,

and its version with (algorithmic) subtyping on the right.

(T-APP)

Γ ⊢ e1 : T1 → T2

Γ ⊢ e2 : T1

Γ ⊢ e1 e2 : T2

=⇒

(T-APP’)

Γ ⊢ e1 : T11 → T2

Γ ⊢ e2 : T12 T12 <: T11

Γ ⊢ e1 e2 : T2

(T-APP) rejects programs that pass an integer to a function that works on floating points, such as the

program ((λx : float.x) 3), where /0 ⊢ 3 : int. This is because the type T1 in T1 → T2, which is the

http://dx.doi.org/10.4204/EPTCS.339.6
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

44 Language Transformations in the Classroom

domain of the function e1, needs to be the exact same type T1 of the argument e2. If we were to add

subtyping, such a parameter passing would be accepted by the type system.

The first modification that (T-APP’) makes of (T-APP) is to let the domain of the function and the

argument have different types. To do so, (T-APP’) assigns two different variables to the two occurrences

of T1, that is, T11 for the domain of the function, and T12 for the type of the argument. Next, (T-APP’)

needs to understand how T11 and T12 are related by subtyping. As T11 appears in contravariant position

in T11 → T2, it means that T11 describes the type of an input. The argument e2 will be provided as a

value. Therefore, it is the type T12 of the argument that must be a subtype of T11, rather than the other

way around, for example. Hence, the subtyping premise T12 <: T11 is added to (T-APP’).

We can describe these modifications with an algorithm that takes (T-APP), and automatically trans-

forms it into (T-APP’). To summarize, such an algorithm must perform two steps:

• Step 1: Split equal types into fresh, distinct variables, and

• Step 2: Relate these new variables by subtyping according to the variance of types.

This type of algorithm can be formulated over a formal data type for language specifications. In

other words, we can devise a procedure that takes a language specification in input (as a data type), and

returns another language specification (with subtyping added). These algorithms are called language

transformations [18]. One of the benefits of language transformations is that they do not apply just to

one language. Instead, they can apply to several languages. For example, the two steps above can add

subtyping for types other than the function type, such as pairs, lists, option types, and other simple types.

Our Thesis Another benefit of language transformations is that they highlight the central insights be-

hind a feature being added. For example, Step 1 and Step 2 are key aspects of subtyping. Teaching

students the algorithms that automatically apply Step 1 and Step 2 to languages can provide them with

a firmer grasp of the concept of subtyping overall.

The approach is not limited to subtyping. The adding of other PL features can be formulated as

language transformations, and taught to students in class as well. We think that exposing students to the

language transformations for adding PL features may constitute a good addition in the classroom.

In this regard, however, we point out that we do not advocate for teaching PL features exclusively

with the sole help of language transformations. For example, we teach subtyping using the material

in the TAPL textbook [19], and we are skeptical that it would be a good idea to skip this material

before introducing language transformations. This is because language transformations constitute quite

a technical deep dive, and students could benefit from a gentler introduction of PL concepts.

Ultimately, in this paper we set forth the thesis that using language transformations for teaching PL

features, in addition to the planned material, can be beneficial for students to deepen their understanding

of the features being taught.

Contributions of this Paper We have experimented with teaching the language transformations for

adding subtyping and deriving CK abstract machines [14]. We have conducted our study on two instances

of an undergraduate course on programming languages.

In class, we first have introduced subtyping with material from TAPL [19], as mentioned above, and

then we have taught the language transformations for adding subtyping (which we describe in Section

2.1). To evaluate whether our students gained a good understanding of subtyping, the final exam pre-

sented them with a language with operators that are not standard. Then, the exam asked students to add

subtyping to these operators based on the language transformations that they have learned.

M. Cimini & B. Mourad 45

In the context of this study, we have collected information about students’ success in providing a

correct answer to such a task. We describe the final exam in detail in Section 2.3, and we report on the

results of this study in Section 3.

We have taught the topic of CK machines following the notes of Felleisen and Flatt [14]. We then

have taught the language transformations for deriving CK machines (which we describe in Section 2.2).

Analogously to subtyping, the final exam asked our students to derive the CK machine for a language

with operators that are not standard. We then have collected information about students’ exam answers

for this task, and we report on this data in Section 3. In total, the study involved 55 undergraduate

students.

To summarize our contributions, in this paper:

• We set forth the thesis that language transformations can be a beneficial addition in PL courses, as

formulated above.

• We describe the study that we have conducted, which includes the material that we have taught,

and the exam submitted to the students.

• We present the results from our study. Although we explicitly say that we should not consider our

results conclusive, the data that we present is encouraging.

• We offer this paper to inspire similar studies towards gathering evidence for, or against, our thesis.

Roadmap of the Paper Section 2 describes the study that we have conducted, Section 3 presents our

results, Section 4 describes our future work, and Section 5 concludes the paper.

2 Language Transformations in Class

General Details about the Course The course is at the undergraduate level, and is based on the TAPL

textbook [19]. The course covers the typical topics of PL theory on defining syntax (BNF grammars),

operational semantics, and type systems of PLs. The course also covers several other topics such as

parameter passing, scoping mechanisms, subtyping, abstract machines, recursion, exceptions, dynamic

typing, memory management, concurrency, and logic programming. Students are then familiar with the

formalisms of operational semantics and type systems when the course covers the topics of subtyping

and abstract machines.

The evaluations of the course include a long-term programming project in which students develop

an interpreter for a functional language with references in OCaml, and a final exam with questions and

open answers at the end of the course. The final exam tests our students on the topics of subtyping and

abstract machines. We will describe our exam in Section 2.3.

Algorithms in Pseudo-Code Language transformations are algorithms, which begs the question on

what syntax we should use to describe them. We took inspiration from courses in Algorithms and Data

Structures, and from textbooks such as [10], where algorithms are described in pseudo-code. Therefore,

we have used a pseudo-code that, to our estimation, was always intuitive to students, even though we did

not thoroughly and precisely define it (as in [10]).

46 Language Transformations in the Classroom

Language Specifications During the course, students acquire familiarity with formal definitions of

programming languages, which they learn through TAPL. To recap, languages are defined with a BNF

grammar and a set of inference rules. Inference rules are used to define a type system, a reduction

relation, and auxiliary relations, if any. To make an example, we repeat the typical formulation of the

simply-typed λ -calculus. We use a small-step operational semantics and evaluation contexts.

(Below, B is some base type.)

Type T ::= T → T | B

Expression e ::= x | λx:T.e | e e

Value v ::= λx:T.e
Evaluation Context E ::= [·] | E e | v E

Type Environment Γ ::= /0 | Γ,x : T

x : T ∈ Γ

Γ ⊢ x : T

Γ,x : T1 ⊢ e : T2

Γ ⊢ (λx:T1.e) : T1 → T2

(T-APP)

Γ ⊢ e1 : T11 → T12 Γ ⊢ e2 : T11

Γ ⊢ e1 e2 : T12

((λx:T.e) v)−→ e[v/x] e −→ e′

E[e]−→ E[e′]

We allow our pseudo-code to refer to parts of a language specification. For example, if the language

L is the formulation of the simply-typed λ -calculus, then it contains both the grammar and the set of

inference rules above. L.rules retrieves the set of inference rules. Given a rule r, say (T-APP), r.premises

retrieves the set of premises of (T-APP), which are the formulae above the horizontal line. r.conclusion

retrieves the formula below the horizontal line. To our estimation, these references in the pseudo-code,

as well as all other references, are rather intuitive, and they will be clear when we use them. (This is also

the take on pseudo-code that [10] has, where a number of operations are not defined beforehand.)

Roadmap of this Section Below, we describe our experiment on teaching subtyping (Section 2.1)

and CK machines (Section 2.2). We also describe the final exam given to students (Section 2.3). Our

pseudo-code for adding subtyping is based on an algorithm expressed in a domain-specific language in

[18]. We are not aware of any analogous algorithm that corresponds to our pseudo-code for deriving CK

machines. The next sections describe the algorithms that we have taught in class, of which we do not

claim any theoretical results of correctness.

2.1 Language Transformation for Subtyping

In class, we have taught subtyping based on the corresponding chapters in the TAPL textbook [19].

Then, we have taught language transformation algorithms for adding subtyping to simple functional

languages. The task of adding subtyping has been divided into the two steps that we have discussed in

the introduction: 1) Split equal types, and 2) Relate new variables by subtyping according to the variance

of types.

Split Equal Types This step modifies the typing rules of a language so that the variables that occur

more than once in their premises are given different variable names. As we have seen in the intro-

duction, this is the first step to let different expressions have different types. We define the procedure

M. Cimini & B. Mourad 47

SPLIT-EQUAL-TYPES to perform this step. The pseudo-code of SPLIT-EQUAL-TYPES is given below,

which we explain subsequently.

SPLIT-EQUAL-TYPES(P)

1 newPremises = /0,varmap = /0

2 for each p ∈ P

3 if p is of the form Γ ⊢ e : someType

4 for each T ∈ someType s.t. T appears more than once in P

5 T ′ = FRESH(P)
6 p = p where T ′ replaces T in someType

7 varmap(T) = varmap(T)∪{T ′}
8 newPremises = newPremises∪{p}
9 return (newPremises,varmap)

SPLIT-EQUAL-TYPES takes a set of premises P in input, and returns a pair with two components: a

set of premises newPremises, and a map varmap. Here, newPremises is the same set of premises P in

which each variable has been given fresh, distinct names, if occurring multiple times. varmap maps each

of the variables that have been replaced to the set of new variables that replaced them. The reason for

collecting these new variables in varmap is because we need to relate them by subtyping. (This is the

responsibility of the second step, which works based on the information in varmap.)

To make an example, when SPLIT-EQUAL-TYPES is applied to the premises of (T-APP), we have

Input: P = {Γ ⊢ e1 : T1 → T2, Γ ⊢ e2 : T1}
Output = (newPremises,varmap) where

newPremises = {Γ ⊢ e1 : T11 → T2,Γ ⊢ e2 : T12}
varmap = {T1 7→ {T11,T12}}

SPLIT-EQUAL-TYPES produces this output in the following way. Line 1 initializes newPremises to

the empty set, and varmap to the empty map. The loop at lines 2-8 is executed for each premise p of the

set of premises P. For example, with (T-APP) we have two iterations; the first is with p=Γ⊢ e1 : T1 →T2,

and the second is with p = Γ ⊢ e2 : T1. Line 3 extracts the components of the typing premise. It does

so in a style that is reminiscent of pattern-matching. The component that is relevant for the algorithm is

someType, which is the output type of the typing premise. The loop at lines 4-7 applies to each variable T

in someType that appears more than once in the premises of P. We focus on variables that have multiple

occurrences because variables that occur only once do not need to be replaced with new names. For each

of these variables T , we generate a fresh variable that is not used in P. We do so with FRESH(P) at line

5. Line 6 modifies the premise p by rewriting it to use the fresh variable in lieu of T . Line 7 also updates

varmap to add the fresh variable to the set of new variables mapped by T . Line 8 adds p to newPremises.

At that point, p may have been modified with line 6, or may have remained unchanged. Finally, line 9

returns the pair (newPremises,varmap).

Relate New Variables by Subtyping This second step is performed in the context of the procedure

ADD-SUBTYPING. This is our general procedure that takes a language specification in input, and adds

subtyping to it. To do so, ADD-SUBTYPING calls SPLIT-EQUAL-TYPES, and then works on the rules

modified by SPLIT-EQUAL-TYPES to relate the new variables by subtyping.

The pseudo-code of ADD-SUBTYPING is the following.

48 Language Transformations in the Classroom

ADD-SUBTYPING(L)

1 for each rule r ∈ L.rules s.t. r.conclusion is of the form Γ ⊢ e : someType

2 (newPremises,varmap) = SPLIT-EQUAL-TYPES(r.premises)
3 for each mapping (T 7→ setOfNewVars) in varmap

4 if there exists a type in setOfNewVars that is invariant in newPremises

5 for each T1,T2 ∈ setOfNewVars

6 newPremises = newPremises∪{T1 = T2}
7 elseif there is exactly one type T ′ in setOfNewVars that is contravariant in newPremises

8 for each Tnew ∈ (setOfNewVars\T ′)
9 newPremises = newPremises∪{Tnew <: T ′}

10 elseif none in setOfNewVars is contravariant or invariant in newPremises

11 say that setOfNewVars = {T1,T2, . . . ,Tn}
12 newPremises = newPremises∪{T = T1 ∨ T2 ∨ . . . ∨ Tn}
13 else error

14 r.premises = newPremises

The argument L is the language specification in input. The procedure modifies the rules of L in-

place. Line 1 selects only the typing rules of L (leaving out reduction rules, for example). It does so

by selecting only the rules whose conclusion has the form of a typing formula. Lines 2-14 constitute

the body of the loop, and apply for each of these rules. Line 2 calls SPLIT-EQUAL-TYPES , passing

the premises of the typing rule as argument. This call returns the new premises and the map previ-

ously described. Lines 3-13 iterate over the key-value pairs of the map. Key-value pairs are of the

form T 7→ setOfNewVars, where T is the variable that occurred in the original typing rule before call-

ing SPLIT-EQUAL-TYPES . We dub T as the original variable. Also, setOfNewVars contains the new

variables generated by SPLIT-EQUAL-TYPES for T .

Lines 4-6 cover the case for when the original variable appeared in invariant position. In that case,

there exists a variable in setOfNewVars that is in invariant position in newPremises, which we check

with line 4. As the original variable appeared in invariant position, all the new variables must be related

by equality. (We make an example shortly). Therefore, lines 5-6 add an equality premise for every

two variables in setOfNewVars. This case covers operators such as the assignment in a language with

references, as T is invariant in a reference type Ref T . Consider the typing rule for the assignment

operator on the left, and its version with subtyping on the right.

(T-ASSIGN)

Γ ⊢ e1 : Ref T Γ ⊢ e2 : T

Γ ⊢ e1 := e2 : unitType
=⇒

(T-ASSIGN’)

Γ ⊢ e1 : Ref T1 Γ ⊢ e2 : T2 T1 = T2

Γ ⊢ e1 := e2 : unitType

Here, SPLIT-EQUAL-TYPES replaces T with two new variables T1 and T2, but as T is invariant in

(T-ASSIGN), we generate the premise T1 = T2, which is the correct outcome.

Lines 7-9 cover the case for when the original variable appeared in a contravariant position. In that

case, there exists a type T ′ in setOfNewVars that is contravariant in newPremises. We detect such a case

with line 7. Notice that line 7 also checks that the original variable appeared only once in contravariant

position. We address this aspect later when we discuss line 13. As T ′ appears in contravariant position,

this is an input that is waiting to receive values. Therefore, we generate the subtyping premises that set

all the other new variables in setOfNewVars as subtypes of T ′ (lines 8-9). This case covers operators such

M. Cimini & B. Mourad 49

as the function application, which we have discussed previously. Thanks to lines 7-9, ADD-SUBTYPING

generates the typing rule (T-APP’) from (T-APP), which is the correct outcome.

Lines 10-12 cover the case in which variance does not play a role. In this case, all the newly generated

variables are peers. (We will make an example shortly). Therefore, we compute the join ∨ for them [19].

This case applies to operators such as if-then-else. Consider the typing rule of if-then-else below on the

left, and its version with subtyping on the right.

(T-IF)

Γ ⊢ e1 : Bool Γ ⊢ e2 : T Γ ⊢ e3 : T

Γ ⊢ (if e1 e2 e3) : T
=⇒

(T-IF’)

Γ ⊢ e1 : Bool Γ ⊢ e2 : T1 Γ ⊢ e3 : T2

T = T1 ∨T2

Γ ⊢ (if e1 e2 e3) : T

Here, SPLIT-EQUAL-TYPES replaces T with two new variables T1 and T2. Then, line 10 detects that

variance does not play a role for these new variables. Indeed, the two branches of the if-then-else are

peers. Therefore, lines 11 and 12 generate the premise that computes the join of all the new variables,

and assign it to T . Thanks to lines 10-12, (T-IF’) is precisely the typing rule that ADD-SUBTYPING

generates, which is the correct outcome. Another example where variables are peers is with the case

operator of the sum type.

Line 13 throws an error if none of the previous cases apply. This happens, for example, if a variable

appears in contravariant position multiple times in the typing rule. Consider the following typing rule.

Γ ⊢ e1 : T → (T → Bool) Γ ⊢ e2 : T ×T

Γ ⊢ app2 e1 e2 : Bool

Here, T appears in contravariant position twice in the type of e1. However, the typing rule of app2

cannot distinguish how the components of the pair e2 are going to be used. Consider two alternative

reduction rules for app2:

app2 e1 e2 −→ ((e1 (fst e2)) (snd e2)) or app2 e1 e2 −→ ((e1 (snd e2)) (fst e2))

The reduction rule on the left entails that the first component of the pair e2 must be subtype of the

first T of T → (T → Bool), and that the second component of the pair e2 must be subtype of the second

T of T → (T → Bool). Conversely, the reduction rule on the right entails that the second component of

the pair e2 must be subtype of the first T of T → (T → Bool), and that the first component of the pair e2

must be subtype of the second T of T → (T → Bool).
However, ADD-SUBTYPING only analyzes the typing rule of app2, which alone is not informative

enough to tell about the parameter passing to e1. Therefore, we do not know what subtyping premises to

generate. In this case, ADD-SUBTYPING throws an error.

To solve this problem, we could extend ADD-SUBTYPING to analyze the reduction semantics of

app2, but we observe that language designers may specify such semantics in a way that is as complex as

they wish. Reduction rules may not use parameter passing immediately and evidently, in favor of jumping

from operator to operator several times, which makes the analysis hard to do. For these reasons, we have

not investigated this path, also because we may be speaking about cases that are quite uncommon, and

not strictly necessary to cover in detail in our undergraduate class.

50 Language Transformations in the Classroom

Finally, line 14 replaces the premises of r with newPremises. The relations ∨ and <: can be generated

with an algorithm, too, but we omit showing these procedures here. In this paper, we simply want to

illustrate the approach rather than strive for completeness.

2.2 Language Transformation for CK

We have taught abstract machines following the notes of Felleisen and Flatt [14]. To recap, the CK

machine remedies an inefficiency aspect of the reduction semantics. Consider the following reductions:

(hd retrieves the head of a list, t and f are the constants for the true and false boolean, respectively).

(if (hd [f∧ ((λx.x) t) ,t])) e1 e2)−→ (if (hd [f∧t,t])) e1 e2)

(if (hd [f∧t ,t])) e1 e2)−→ . . .

To perform the step at the top, the reduction semantics traverses the term and seeks for the first available

evaluation context, which points to the highlighted subterm. At the second step, the reduction semantics

must seek again for an available evaluation context, and does so by traversing the term again from the

top level if operator, which is inefficient.

To improve on this aspect, and avoid these recomputations, the CK machine carries a continuation

data structure at run-time. The grammar for continuations, and the CK reduction rules for function

application are the following.

(mt is the empty continuation, which denotes machine termination.)

Continuation k ::= mt | (app1 e k) | (app2 v k)

(app e e2),k −→ e,(app1 e2 k) Start

v,(app1 e k)−→ e,(app2 v k) Order

v,(app2 (λx.e) k)−→ e[v/x],k Computation

The reduction relation has the form e,k −→ e,k, where k is built with continuation operators mt, app1,

and app2. There is a continuation operator for each evaluation context. Each continuation operator has

always an argument k, which is the next continuation, and one expression argument less than the operator

because one of the expressions is currently out to be the focus of the evaluation. For example, (app2 v k)
means that the current expression being evaluated returns as the second argument of the application, and

v is the function waiting for such argument.

Below, we show the language transformations for generating the CK machine, except for the proce-

dure that generates the Computation rule above, because that procedure is straightforward.

Generating the Grammar for Continuations The following pseudo-code generates the grammar

Continuation.

CK-GENERATE-GRAMMAR(EvalCtx)

1 create grammar category Continuation, and add grammar item mt to it

2 for each (op t1 . . . tn) ∈ EvalCtx

3 if ti = E

4 add grammar item (opi (t1 . . . tn minus E) k) to Continuation

For each evaluation context, the index where the E appears determines the index of the continuation

operator. The arguments of this operator are all the arguments that are not E . Indeed, the argument at that

position will currently be the focus of the evaluation. Also, the next continuation k is the last argument.

M. Cimini & B. Mourad 51

Generating the Start rule The following pseudo-code generates the reduction rule Start, which

brings the computation of an operator into using continuation operators.

CK-GENERATE-START(Continuations)

1 find (opi t1 . . . tn k) ∈ Continuations with no v

2 add reduction rule (op t1 . . . e . . . tn),k −→ e,(opi t1 . . . tn k)

Here, e appears at position i in op. If a continuation contains some v as arguments, it means that those

arguments must have been the subject of some other evaluation context that evaluated them to a value.

Therefore, that cannot be the starting point. Our starting point, instead, is a continuation that contains

no v. The reduction rule that we add takes the operator into using the continuation operator that we have

just found.

Generating Order rules The following pseudo-code generates the reduction rules Order. These rules

evaluate the arguments of the operator by jumping from one continuation operator to another in the order

established by the evaluation contexts.

CK-GENERATE-ORDER(Continuations,EvalCtx)

1 for each (opi t1 . . . tm k) ∈ Continuations

2 find (op t ′1 . . . t
′
n) ∈ EvalCtx where (tk = t ′k or t ′k = E, for all k)

3 if t ′j = E

4 add reduction rule v,(opi t1 . . . tm k)−→ t j,(op j t1 . . . v . . . tm k)

Here, v appears at position i in op j. After finishing an evaluation in the contexts of the continuation

opi, we need to find the next continuation operator op j. To do so, we find a match between the arguments

of the continuation opi with arguments of an evaluation context. This is because arguments that are values

in the continuation then need to be values, too, in the next evaluation context. Arguments that are simply

expressions e in the continuation then need to be expressions e, too, in the next evaluation context. The

evaluation context will have, however, an argument E (and only one argument E) at some position j,

which identifies the index of the next continuation operator. The reduction rule that we add starts from a

point where a value has been computed, and we are in the context of the continuation opi. In one step, we

extract the j-th argument of the continuation opi because that is the expression that now needs to be in

the focus of the evaluator. The next continuation is then op j, where we placed the value v just computed

among the arguments of op j, and specifically at position i.

Generating Computation rules is rather straightforward, hence we omit showing that simple proce-

dure.

2.3 Final Exam

At the end of the course, students have been evaluated with a final exam. The final exam included ques-

tions about subtyping and CK machines1. The goal is not to test students on the language transformations

per se, but rather on their understanding of subtyping and the CK machine. We therefore tested whether

students would be able to use their understanding in practice. Our questions tested students on whether,

1The final exam also contained questions about other topics of the course. For example, the final exam of the second iteration

contained questions about garbage collection. However, here we focus only on the parts of the exam that concern language

transformations.

52 Language Transformations in the Classroom

if presented with a language with unusual operators, they would be able to add subtyping to it, and derive

its CK machine.

We have delivered two iterations of the course. The final exam took place online on both iterations

due to the COVID-19 pandemic. In the first iteration of the course, we have shared a link to a text file

that contained the content of the exam, and students submitted an updated text file via email. In the

second iteration, the text of the exam was uploaded in the Blackboard system2. Students could insert

their answers on the webpage as text, and submit them with the submit button.

The text of the final exam had two parts:

• The description of a toy language called langFunny.

• The questions that students were asked to answer, which referred to the language langFunny.

Below, we describe these two parts.

The Toy Language langFunny The text of the exam contained a description of langFunny. The text

told the students that langFunny is a λ -calculus with pairs 〈e1,e2〉 and lists [e1, . . . ,en], equipped with

two operators called doublyApply and addToPairAsList, which we describe below. The text of the

exam did not repeat the typing rules and reduction rules of the λ -calculus with pairs and lists because we

have seen them extensively in class, and because they did not play a role in the questions of the exam.

On the contrary, the text of the exam provided the students with the formal semantics of doublyApply

and addToPairAsList, which we will show shortly.

Below, we describe the operators doublyApply and addToPairAsList.

• doublyApply: The text of the final exam contained the following description of doublyApply.

“doublyApply takes two functions f1 and f2 in input, and two arguments a1 and a2, and creates

the pair 〈 f2(f1(a1)), f1(f2(a2))〉. That is, the first component of the pair calls f1 with a1 and passes

the result to f2, and the second component calls f2 with a2 and passes the result to f1.”

The text of the exam also provided the students with the following syntax, evaluation contexts,

typing rule, and reduction rule for doublyApply.

Expression e ::= . . . | (doublyApply e e e e)
Evaluation Context E ::= . . . | (doublyApply E e e e) | (doublyApply v E e e)

| (doublyApply v v E e) | (doublyApply v v v E)

Γ ⊢ e1 : T1 → T2 Γ ⊢ e2 : T2 → T1

Γ ⊢ e3 : T1 Γ ⊢ e4 : T2

Γ ⊢ (doublyApply e1 e2 e3 e4) : T2 ×T1

doublyApply v1 v2 v3 v4 −→ 〈(v2 (v1 v3)),(v1 (v2 v4))〉

• addToPairAsList: The text of the exam contained the following description of addToPairAsList.

“addToPairAsList takes an element a1 and a pair p, and strives to add the element to the pair.

As pairs contain only two elements, it creates a list with three elements: the element a1, the

first component of p, and the second component of p.” To make a concrete example, we have

addToPairAsList a1 〈a2,a3〉= [a1,a2,a3].

2https://www.blackboard.com/

https://www.blackboard.com/

M. Cimini & B. Mourad 53

The text of the exam also provided the students with the following syntax, evaluation contexts,

typing rule, and reduction rule for addToPairAsList.

Expression e ::= . . . | (addToPairAsList e e)
Evaluation Context E ::= . . . | (addToPairAsList E e) | (addToPairAsList v E)

Γ ⊢ e1 : T Γ ⊢ e2 : T ×T

Γ ⊢ (addToPairAsList e1 e2) : List T

addToPairAsList v1 〈v2,v3〉 −→ [v1,v2,v3]

Although these operators are not extremely bizarre, it is unusual to see them as primitive operations.

Questions and their Challenges After the description of the language langFunny, the text of the exam

gave the students three questions that they were asked to answer. We dub these questions “Subtyping of

doublyApply”, “Subtyping of addToPairAsList”, and “CK for doublyApply”, respectively.

The question “Subtyping of doublyApply” asked the students to show the version of the typing rule

of doublyApply with subtyping. This task is not trivial because the typing rule of doublyApply has

three occurrences of T1, and one of them is in contravariant position, which is the input of a function.

Therefore, the other two occurrences of T1 must be subtypes of that. The same scenario occurs for T2.

The correct answer to this question is the following:

(The output type of this typing rule is more restrictive than necessary. The output type could be adjusted

by applying another procedure, but we have omitted this part).

Γ ⊢ e1 : T1 → T ′
2 Γ ⊢ e2 : T2 → T ′

1

Γ ⊢ e3 : T ′′
1 Γ ⊢ e4 : T ′′

2

T ′
1 <: T1 T ′′

1 <: T1 T ′
2 <: T2 T ′′

2 <: T2

Γ ⊢ (doublyApply e1 e2 e3 e4) : T2 ×T1

The question “Subtyping of addToPairAsList” asked the students to show the typing rule of the

operator addToPairAsList with subtyping added. This task is also non-trivial because there are three

occurrences of T that are peers. Therefore, the correct solution is to compute a join type.

The correct answer to this question is the following:

Γ ⊢ e1 : T ′ Γ ⊢ e2 : T ′′×T ′′′

T = T ′∨T ′′∨T ′′′

Γ ⊢ (addToPairAsList e1 e2) : List T

The question “CK for doublyApply” asked the students to derive the CK machine for langFunny

insofar as the reduction rules for doublyApply are concerned. This operator is challenging because it has

a high number of arguments (four). To complete the task, students must understand well the relationship

between continuations and the evaluation order of arguments.

The correct answer to this question is the following:

54 Language Transformations in the Classroom

(doublyApply e1 e2 e3 e4),k −→ e1,(doublyApply1 e2 e3 e4 k) Start

v1,(doublyApply1 e2 e3 e4 k)−→ e2,(doublyApply2 v1 e3 e4 k) Order

v2,(doublyApply2 v1 e3 e4 k)−→ e3,(doublyApply3 v1 v2 e4 k) Order

v3,(doublyApply3 v1 v2 e4 k)−→ e4,(doublyApply4 v1 v2 v3 k) Order

v4,(doublyApply4 v1 v2 v3 k)−→ 〈(v2 (v1 v3)),(v1 (v2 v4))〉,k Computation

The exam could also ask for the CK reduction rules of addToPairAsList. However, this task is

slightly simpler than doublyApply, and we therefore were not interested in requesting those rules.

3 Evaluation

As we have previously said, we have run two iterations of the undergraduate PL course that we have

described. To evaluate the merits of our thesis, we have collected information about students’ success

with the final exam, and more specifically, with their success in answering the questions “Subtyping of

doublyApply”, “Subtyping of addToPairAsList”, and “CK for doublyApply”.

For each question, we have evaluated the answer of each student as “Correct”, “Partially Correct”,

“Partially Incorrect”, and “Incorrect/Missing”. Students’ answers were classified as “Correct” only if

they matched the solution given in the previous section. Answers were classified as “Incorrect/Missing”

if they were missing, or they were completely incorrect. What constitutes a completely incorrect, a

partially incorrect, and a partially correct answer is subjective by nature, therefore we have to draw a line

in the sand, somehow subjectively. Our rationale is the following. A “Partially Correct” answer does not

match the solution but shows that the student was on the way towards a correct solution. A “Partially

Incorrect” answer contains some elements that demonstrates that the student is applying some correct

reasoning principles. A completely incorrect answer (“Incorrect/Missing”) provides no indication that

the student is applying correct reasoning principles.

In total, we have conducted the study on 55 students. The rating of students’ answers is shown in the

following table.

Correct
Partially

Correct

Partially

Incorrect
Incorrect/Missing

Subtyping of doublyApply 15 11 15 14

Subtyping of addToPairAsList 22 10 11 12

CK for doublyApply 18 13 10 14

The question “Subtyping of doublyApply” seems to be the most difficult among the three, as shown

by the lowest number of completely correct answers. Subtyping of doublyApply is indeed a rather

complicated task, as it involves contravariance. Furthermore, many variables are around, and a good

number of them need to be subtype of a same variable. It is not surprising that 29 out of 55 did not

provide a good answer (and were “Partially Incorrect” or “Incorrect/Missing”). On the contrary, it is

rather encouraging to see that 26 out of 55 students could provide a good answer (“Correct” or “Partially

Correct”).

M. Cimini & B. Mourad 55

The question “Subtyping of addToPairAsList” seems to be the easiest among the three, as the high-

est number of students could provide a completely correct answer. Students could detect more easily that

types are treated as peers in the typing rule of addToPairAsList, and perhaps this signals that this case

is simpler to grasp than the contravariant case of doublyApply.

We are surprised by the results of the question “CK for doublyApply”, as such a machine seems

to be rather involved. Regardless, a good number of students (18) could provide a completely correct

answer, and a high number of them could give a good answer (“Correct” or “Partially Correct”). This is

indicative that students could grasp the mechanics of the evaluation order, and translate it well as a CK

machine.

It is safe to imagine that most students have not been exposed to formal semantics until this very

course, and these questions are generally hard for them. It is encouraging to see that a good number of

students could provide good answers. It may be an indication that, by and large, students could gain an

understanding of subtyping and CK machines. However, we would like to explicitly say that we do not

draw any general conclusion from this data.

A Note on Correctness As we have previously said, we do not claim any theoretical results of correct-

ness of the algorithms that we have taught in class. However, we have implemented them as tools ([17])

that take a language specification in input written as a textual representation of operational semantics

(with syntax similar to that of Ott [20]), and output the modified language specification (in the same

textual format). We have applied these tools to several functional languages in order to add subtyping to

them and derive their CK machines, and we have confirmed by inspecting the output languages that we

have obtained the correct formulations.

3.1 Threats to Validity

The following observations keep this paper from drawing general conclusions about the thesis that lan-

guage transformations are beneficial in class.

Further Studies While 55 students is a decent number, we would like to conduct more iterations of

the same course, and have a larger pool of participants. When more data will be gathered, we plan to

report on such data in a journal version of this paper.

Negative Experiments? It would be interesting to run instances of the course with language trans-

formations, and also run instances without language transformations, while keeping the same syllabus

and the final exam. The goal is to see whether there is a significant improvement in the success rate of

exams in those courses that have used language transformations. However, we find pedagogical issues

in implementing this plan. We think that adopting the final exam of Section 2.3 without having taught

language transformations may not be a sensible choice. For example, simply covering subtyping with

TAPL may not provide students with sufficient knowledge to complete the exam, and we may put un-

realistic expectations on students’ ability to generalize and extrapolate general programming languages

principles at the undergraduate level.

Perceived Effectiveness? We have made an attempt to evaluate whether students perceived that using

language transformations was helpful for their learning. At the end of the course, we have given a survey

for them to fill in. The survey contained six statements which, as typical in surveys, required a rating.

56 Language Transformations in the Classroom

For example, to evaluate the task for “Subtyping of doublyApply”, the survey had the statements: “The

language transformation algorithm for adding subtyping to languages helped me understand subtyping

better”, and “The language transformation algorithm for adding subtyping to languages helped me add

subtyping to the language at hand during the exam”. Students could assign a grade among “Strongly

Agree”, “Somewhat Agree”, “Neither Agree nor Disagree”, “Somewhat Disagree” or “Strongly Dis-

agree” to the statement. The survey requested students to rate the equivalent statements for “Subtyping

of addToPairAsList” and “CK for doublyApply”.

Unfortunately, the survey did not receive participation. Our courses have taken place virtually during

the COVID-19 pandemic, which may have been the cause of the experienced lack in participation.

4 Future Work

In this section, we discuss our plans. Our first goal is to evaluate the perceived effectiveness of language

transformations with the survey that we have just described. Hopefully, participation to the survey will

improve in the future. Other venues for future work are the following.

Improving our Current Language Transformations The procedures of Section 2.2 produce CK ma-

chines without environments, which is not typical. Our next step is to extend our procedures to capture

the full Felleisen and Friedman’s CEK machine. Similarly, we plan on developing language transforma-

tions to automatically derive other popular abstract machines such as Landin’s SECD [16], and Krivine’s

KAM [15] machines.

The language transformation that we have used for subtyping works only on simple types (sums,

products, options, etcetera). We would like to extend the algorithm to capture also constructors that

carry maps, such as records and objects. Maps can associate field names to values, and method names

to functions. Maps come with their own subtyping properties such as width-subtyping, and permutation

[19], and we plan on extending our algorithm to cover them. Similarly, we would like to develop language

transformations for automatically adding bounded polymorphism [6, 1], recursive subtyping [2], multiple

inheritance and mixins [4, 5] to languages, to make a few examples.

Language Transformations for Other Features Subtyping and abstract machines are not the only

features that can be taught in a course in the principles of programming languages. We plan on addressing

other features with language transformations, and using them in class.

In teaching the formalism of operational semantics, instructors may begin with a small-step or with

a big-step semantics style. Whichever style has been chosen, it could be beneficial to explain the other

style with language transformations (in addition to the planned material) that turn small-step into big-

step, or big-step into small-step, respectively. Much work has been done to translate one style into

the other [9, 11, 12, 13]3, and we plan on building upon this work. It is worth noting that converting

from one style to the other may come with limitations. For example, it may not be possible to derive an

equivalent big-step semantics from a small-step semantics formulation when parallelism is involved. The

mentioned translation methods are subject to these limitations, and so will our corresponding language

transformations.

We would like to develop a language transformation for automatically generating Milner-style type

inference procedures. Also, we would like to devise a language transformation for adding generic types

3Among these works, [9] seems to be the most suitable for language transformations.

M. Cimini & B. Mourad 57

to languages. Some courses teach dynamic typing and run-time checking in some detail. We would like

to explore the idea of automatically generating the dynamic semantics of dynamically typed languages

based on a given type system. That is, a language transformation which relies on the type system to

inform how the dynamic semantics should be modified in order to perform run-time type checking.

We are not aware of any work that automates the adding of the latter three examples. Developing

such language transformations may be challenging research questions on their own.

Advanced Tasks Language transformations may be integrated in graduate level courses, as well. Some

of these courses have a research-oriented flavour. In such courses, instructors may assign advanced

tasks with language transformations. For example, instructors may ask students to study the work of

Danvy et al. [11, 12, 13] to derive reduction semantics. The approach is rather elaborate, and involves

techniques such as refocusing and transition compression. Instructors may ask students to develop a

series of language transformations that capture this method. Similarly, instructors may ask students

to model the language transformation for generating the pretty-big-step semantics from a small-step

semantics [3]. Another idea is to target the Gradualizer papers [7, 8], for automatically adding gradual

typing to languages.

5 Conclusion

Instructors can integrate language transformations into their undergraduate PL courses. We do not ad-

vocate replacing material, but to use language transformations in addition to the planned material. Our

thesis is that language transformations are beneficial for students to help them deepen their understanding

of the PL features being taught. In this paper, we have presented the study that we have conducted, and

the results from this study. Although we refrain from declaring language transformations unequivocally

beneficial, our numbers are encouraging, and we also offer this paper to open a conversation on the topic,

and to inspire similar studies towards gathering evidence for, or against, our thesis.

Acknowledgements We would like to thank our EXPRESS/SOS 2021 reviewers for their feedback,

which helped improve this paper.

References

[1] Martı́n Abadi & Luca Cardelli (1996): A Theory of Objects, 2nd edition. Monographs in Computer Science,

Springer-Verlag, doi:10.1007/978-1-4419-8598-9.

[2] Roberto M. Amadio & Luca Cardelli (1993): Subtyping Recursive Types. ACM Trans. Program. Lang. Syst.

15(4), pp. 575–631, doi:10.1145/155183.155231.

[3] Casper Bach Poulsen & Peter D. Mosses (2014): Deriving Pretty-Big-Step Semantics from Small-Step Se-

mantics. In: Proceedings of the 23rd European Symposium on Programming Languages and Systems, 8410,

Springer-Verlag, Berlin, Heidelberg, pp. 270–289, doi:10.1007/978-3-642-54833-8_15.

[4] Gilad Bracha & William Cook (1990): Mixin-Based Inheritance. In: Proceedings of the European Confer-

ence on Object-Oriented Programming on Object-Oriented Programming Systems, Languages, and Appli-

cations, OOPSLA/ECOOP ’90, Association for Computing Machinery, New York, NY, USA, pp. 303–311,

doi:10.1145/97945.97982.

[5] Luca Cardelli (1988): A Semantics of Multiple Inheritance. Information and Computation 76(2/3), pp. 138–

164, doi:10.1016/0890-5401(88)90007-7.

http://dx.doi.org/10.1007/978-1-4419-8598-9
http://dx.doi.org/10.1145/155183.155231
http://dx.doi.org/10.1007/978-3-642-54833-8_15
http://dx.doi.org/10.1145/97945.97982
http://dx.doi.org/10.1016/0890-5401(88)90007-7

58 Language Transformations in the Classroom

[6] Luca Cardelli, John C. Mitchell, Simone Martini & Andre Scedrov (1994): An Extension of System F with

Subtyping. Information and Computation 109(1/2), pp. 4–56, doi:10.1006/inco.1994.1013.

[7] Matteo Cimini & Jeremy G. Siek (2016): The Gradualizer: A Methodology and Algorithm for Generating

Gradual Type Systems. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, POPL ’16, Association for Computing Machinery, New York, NY, USA,

pp. 443–455, doi:10.1145/2837614.2837632.

[8] Matteo Cimini & Jeremy G. Siek (2017): Automatically Generating the Dynamic Semantics of Gradually

Typed Languages. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming

Languages, POPL 2017, ACM, New York, NY, USA, pp. 789–803, doi:10.1145/3093333.3009863.

[9] Ştefan Ciobâcă (2013): From Small-Step Semantics to Big-Step Semantics, Automatically. In: Integrated

Formal Methods, 10th International Conference, IFM 2013, Turku, Finland, June 10-14, 2013. Proceedings,

pp. 347–361, doi:10.1007/978-3-642-38613-8_24.

[10] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest & Clifford Stein (2009): Introduction to Algo-

rithms, 3rd edition. The MIT Press.

[11] Olivier Danvy (2005): From Reduction-based to Reduction-free Normalization. Electronic Notes in Theoret-

ical Computer Science 124(2), pp. 79–100, doi:10.1016/j.entcs.2005.01.007.

[12] Olivier Danvy (2008): Defunctionalized Interpreters for Programming Languages. In: Proceedings of the

13th ACM SIGPLAN International Conference on Functional Programming, ICFP ’08, ACM, New York,

NY, USA, pp. 131–142, doi:10.1145/1411204.1411206.

[13] Olivier Danvy & Lasse R. Nielsen (2004): Refocusing in Reduction Semantics. BRICS Report Series 11(26),

doi:10.7146/brics.v11i26.21851.

[14] Matthias Felleisen & Matthew Flatt (2006): Programming Languages and Lambda Calculi. Notes available

at https://www.cs.utah.edu/~mflatt/past-courses/cs7520/public_html/s06/notes.pdf and

last accessed in August 2021.

[15] Jean-Louis Krivine (2007): A Call-by-Name Lambda-Calculus Machine. Higher-Order and Symbolic Com-

putation 20(3), pp. 199–207, doi:10.1007/s10990-007-9018-9.

[16] Peter J. Landin (1965): Correspondence Between ALGOL 60 and Church’s Lambda-Notation: Part I. Com-

munications of the ACM 8, pp. 89–101, doi:10.1145/363744.363749.

[17] Benjamin Mourad (2019): Lang-n-Change Tool. https://github.com/bmourad01/lang-n-change.

[18] Benjamin Mourad & Matteo Cimini (2020): A Calculus for Language Transformations. In: 46th International

Conference on Current Trends in Theory and Practice of Informatics (SOFSEM 2020), Springer, pp. 547–

555, doi:10.1007/978-3-030-38919-2_44.

[19] Benjamin C. Pierce (2002): Types and Programming Languages, 1st edition. The MIT Press.

[20] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit Sarkar & Rok

Strniša (2007): Ott: Effective Tool Support for the Working Semanticist. In: Proceedings of the 12th ACM

SIGPLAN International Conference on Functional Programming, ICFP ’07, ACM, New York, NY, USA, pp.

1–12, doi:10.1145/1291151.1291155.

http://dx.doi.org/10.1006/inco.1994.1013
http://dx.doi.org/10.1145/2837614.2837632
http://dx.doi.org/10.1145/3093333.3009863
http://dx.doi.org/10.1007/978-3-642-38613-8_24
http://dx.doi.org/10.1016/j.entcs.2005.01.007
http://dx.doi.org/10.1145/1411204.1411206
http://dx.doi.org/10.7146/brics.v11i26.21851
https://www.cs.utah.edu/~mflatt/past-courses/cs7520/public_html/s06/notes.pdf
http://dx.doi.org/10.1007/s10990-007-9018-9
http://dx.doi.org/10.1145/363744.363749
https://github.com/bmourad01/lang-n-change
http://dx.doi.org/10.1007/978-3-030-38919-2_44
http://dx.doi.org/10.1145/1291151.1291155

	1 Introduction
	2 Language Transformations in Class
	2.1 Language Transformation for Subtyping
	2.2 Language Transformation for CK
	2.3 Final Exam

	3 Evaluation
	3.1 Threats to Validity

	4 Future Work
	5 Conclusion

