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Spatial constraint systems (scs) are semantic structures for reasoning about spatial and epistemic

information in concurrent systems. They have been used to reason about beliefs, lies, and group

epistemic behaviour inspired by social networks. They have also been used for proving new results

about modal logics and giving semantics to process calculi. In this paper we will discuss the theory

and main results about scs.

1 Introduction

Epistemic, mobile and spatial behavior are common place in today’s distributed systems. The intrinsic

epistemic nature of these systems arises from social behavior. Most people are familiar with digital sys-

tems where agents (users) share their beliefs, opinions and even intentional lies (hoaxes). Also, systems

modeling decision behavior must account for those decisions’ dependance on the results of interactions

with others within some social context. The courses of action stemming from some agent decision result

not only from the rational analysis of a particular situation but also from the agent beliefs or information

that sprang from the interactions with other participants involved in that situation. Appropriate perfor-

mance within these social contexts requires the agent to form beliefs about the beliefs of others. Spatial

and mobile behavior is exhibited by apps and data moving across (possibly nested) spaces defined by, for

example, friend circles and shared folders. We therefore believe that a solid understanding of the notion

of space and spatial mobility as well as the flow of epistemic information is relevant in any model of

today’s distributed systems.

The notion of group is also fundamental in distributed systems. Since the early days of multi-user

operating systems, information was categorized into that available to one user, some group of users, or

everyone. Information was thus separated into “spaces” with boundaries defined by accessibility. In

these systems we could say that, from the restrictive point of view of information “permissions”, the

notion of group was reified as another agent of the system.

In current distributed systems such as social networks, actors behave more as members of a certain

group than as isolated individuals. Information, opinions, and beliefs of a particular actor are frequently

the result of an evolving process of interchanges with other actors in a group. This suggests a reified

notion of group as a single actor operating within the context of the collective information of its members.

It also conveys two notions of information, one spatial and the other epistemic. In the former, information

is localized in compartments associated with a user or group. In the latter, it refers to something known

or believed by a single agent or collectively by a group.

Furthermore, in many real life multi-agent systems, the agents are unknown in advance. New agents

can subscribe to the system in unpredictable ways. Thus, there is usually no a-priori bound on the number
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of agents in the system. It is then often convenient to model the group of agents as an infinite set. In

fact, in models from economics and epistemic logic [17, 16], groups of agents have been represented as

infinite, even uncountable, sets. This raises interesting issues about the distributed information of such

groups. In particular, that of group compactness: information that when obtained by an infinite group

can also be obtained by one of its finite subgroups.

Spatial constraint systems (scs)1 are semantic structures for the epistemic behaviour of multi-agent

systems. These structures single out the notions we previously discussed: Namely, space, beliefs, and

distributed information of potentially infinite groups. In this paper we will describe the theory of scs and

highlight its main results from [8, 10, 11, 12, 9].

2 Overview

In this section we will give a brief description and motivate scs in the context of space, extrusion, and

distributed information.

Declarative formalisms of concurrency theory such as process calculi for concurrent constraint pro-

gramming (ccp) [24] were designed to give explicit access to the concept of partial information and, as

such, have close ties with logic. This makes them ideal for the incorporation of epistemic and spatial

concepts by expanding the logical connections to include multi-agent modal logic [19]. In fact, the sccp

calculus [18] extends ccp with the ability to define local computational spaces where agents can store

epistemic information and run processes.

Constraint systems (cs) are algebraic structures for the semantics of ccp [24, 2, 18, 5, 22, 20]. They

specify the domain and elementary operations and partial information upon which programs (processes)

of these calculi may act.

A cs can be formalized as a complete lattice (Con,⊑). The elements of Con represent partial infor-

mation and we shall think of them as being assertions. They are traditionally referred to as constraints

since they naturally express partial information (e.g., x > 42). The order ⊑ corresponds to entailment

between constraints, c ⊑ d, often written d ⊒ c, means c can be derived from d, or that d represents

as much information as c. The join ⊔, the bottom true, and the top false of the lattice correspond to

conjunction, the empty information, and the join of all (possibly inconsistent) information, respectively.

Constraint systems provide the domains and operations upon which the semantic foundations of ccp

calculi are built. As such, ccp operations and their logical counterparts typically have a corresponding

elementary construct or operation on the elements of the constraint system. In particular, parallel compo-

sition and conjunction correspond to the join operation, and existential quantification and local variables

correspond to a cylindrification operation on the set of constraints [24].

Space. Similarly, the notion of computational space and the epistemic notion of belief in sccp [18]

correspond to a family of join-preserving maps si : Con→ Con called space functions. A cs equipped

with space functions is called a spatial constraint system (scs). From a computational point of view si(c)
can be interpreted as an assertion specifying that c resides within the space of agent i. From an epistemic

point of view, si(c) specifies that i considers c to be true. An alternative epistemic view is that i interprets

c as si(c). All these interpretations convey the idea of c being local or subjective to agent i.

In the spatial ccp process calculus sccp [18], scs are used to specify the spatial distribution of infor-

mation in configurations 〈P,c〉 where P is a process and c is a constraint, called the store, representing

the current partial information. E.g., a reduction 〈 P,s1(a)⊔ s2(b) 〉 −→ 〈 Q,s1(a)⊔ s2(b⊔ c) 〉 means

1For simplicity we use scs for both spatial constraint system and its plural form.
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that P, with a in the space of agent 1 and b in the space of agent 2, can evolve to Q while adding c to the

space of agent 2.

Extrusion. An extrusion function for the space si is a map ei : Con→Con that satisfies si(ei(c)) = c.

This means that we think of extrusion as the right inverse of space. Intuitively, within a space context

si(·), the assertion ei(c) specifies that c must be posted outside of agent i’s space. The computational

interpretation of ei is that of a process being able to extrude any c from the space si. The extruded

information c may not necessarily be part of the information residing in the space of agent i. For example,

using properties of space and extrusion functions we shall see that si( d⊔ ei(c))= si(d)⊔c specifying that

c is extruded (while d is still in the space of i). The extruded c could be inconsistent with d (i.e., c⊔d =
false), it could be related to d (e.g., c⊑ d), or simply unrelated to d. From an epistemic perspective, we

can use ei to express utterances by agent i and such utterances could be intentional lies (i.e., inconsistent

with their beliefs), informed opinions (i.e., derived from the beliefs), or simply arbitrary statements (i.e.,

unrelated to their beliefs).

Distributed Information. Let us consider again the sccp reduction 〈 P,s1(a)⊔s2(b) 〉 −→ 〈 Q,s1(a)⊔
s2(b⊔ c) 〉. Assume that d is some piece of information resulting from the combination (join) of the

three constraints above, i.e., d = a⊔ b⊔ c, but strictly above the join of any two of them. We are then

in the situation where neither agent has d in their spaces, but as a group they could potentially have d

by combining their information. Intuitively, d is distributed in the spaces of the group I = {1,2}. Being

able to predict the information that agents 1 and 2 may derive as group is a relevant issue in multi-agent

concurrent systems, particularly if d represents unwanted or conflicting information (e.g., d = false).

In [9] we introduced the theory of group space functions ∆I : Con→Con to reason about information

distributed among the members of a potentially infinite group I. We refer to ∆I as the distributed space

of group I. In our theory c⊒ ∆I(e) holds exactly when we can derive from c that e is distributed among

the agents in I. E.g., for d above, we should have s1(a)⊔ s2(b⊔ c) ⊒ ∆{1,2}(d) meaning that from the

information s1(a)⊔s2(b⊔ c) we can derive that d is distributed among the group I = {1,2}. Furthermore,

∆I(e)⊒ ∆J(e) holds whenever I ⊆ J since if e is distributed among a group I, it should also be distributed

in a group that includes the agents of I.

Distributed information of infinite groups can be used to reason about multi-agent computations with

unboundedly many agents. For example, a computation in sccp is a possibly infinite reduction sequence γ

of the form 〈 P0,c0 〉 −→ 〈 P1,c1 〉 −→ ·· · with c0 ⊑ c1 ⊑ ·· ·. The result of γ is
⊔

n≥0 cn, the join of all the

stores in the computation. In sccp all fair computations from a configuration have the same result [18].

Thus, the observable behaviour of P with initial store c, written O(P,c), is defined as the result of any

fair computation starting from 〈P,c〉. Now consider a setting where in addition to their sccp capabilities

in [18], processes can also create new agents. Hence, unboundedly many agents, say agents 1,2, . . ., may

be created during an infinite computation. In this case, O(P,c)⊒ ∆N(false), where N is the set of natural

numbers, would imply that some (finite or infinite) set of agents in any fair computation from 〈P,c〉 may

reach contradictory local information among them. Notice that from the above-mentioned properties of

distributed spaces, the existence of a finite set of agents H ⊆ N such that O(P,c) ⊒ ∆H(false) implies

O(P,c) ⊒ ∆N(false). The converse of this implication will be called group compactness and we will

discuss meaningful sufficient conditions for it to hold.

In the next sections we will describe the above spatial and epistemic notions in more detail.
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3 Background

We presuppose basic knowledge of domain and order theory [3, 1, 7] and use the following notions. Let

C be a poset (Con,⊑), and let S ⊆ Con. We use
⊔

S to denote the least upper bound (or supremum or

join) of the elements in S, and
d

S is the greatest lower bound (glb) (infimum or meet) of the elements in

S. An element e ∈ S is the greatest element of S iff for every element e′ ∈ S, e′ ⊑ e. If such e exists, we

denote it by max S. As usual, if S = {c,d}, c⊔d and c⊓d represent
⊔

S and
d

S, respectively. If S = /0,

we denote
⊔

S = true and
d

S = false. We say that C is a complete lattice iff each subset of Con has a

supremum in Con. The poset C is distributive iff for every a,b,c ∈ Con, a⊔ (b⊓ c) = (a⊔ b)⊓ (a⊔ c).
A non-empty set S ⊆ Con is directed iff for every pair of elements x,y ∈ S, there exists z ∈ S such that

x ⊑ z and y ⊑ z, or iff every finite subset of S has an upper bound in S. Also c ∈ Con is compact iff for

any directed subset D of Con, c ⊑
⊔

D implies c ⊑ d for some d ∈ D. A self-map on Con is a function

f from Con to Con. Let (Con,⊑) be a complete lattice. The self-map f on Con preserves the join of

a set S ⊆ Con iff f (
⊔

S) =
⊔
{ f (c) | c ∈ S}. A self-map that preserves the join of finite sets is called

join-homomorphism. A self-map f on Con is monotonic if a ⊑ b implies f (a) ⊑ f (b). We say that f

distributes over joins (or that f preserves joins) iff it preserves the join of arbitrary sets. A self-map f on

Con is continuous iff it preserves the join of any directed set.

Constraint systems [24] are semantic structures to specify partial information. They can be formal-

ized as complete lattices [2].

Definition 3.1 (Constraint Systems [2]). A constraint system (cs) C is a complete lattice (Con,⊑). The

elements of Con are called constraints. The symbols ⊔, true and false will be used to denote the least

upper bound (lub) operation, the bottom, and the top element of C.

The elements of the lattice, the constraints, represent (partial) information. A constraint c can be

viewed as an assertion. The lattice order ⊑ is meant to capture entailment of information: c ⊑ d, al-

ternatively written d ⊒ c, means that the assertion d represents at least as much information as c. We

think of d ⊒ c as saying that d entails c or that c can be derived from d. The operator ⊔ represents join

of information; c⊔ d can be seen as an assertion stating that both c and d hold. We can think of ⊔ as

representing conjunction of assertions. The top element represents the join of all, possibly inconsistent,

information, hence it is referred to as false. The bottom element true represents empty information. We

say that c is consistent if c 6= false, otherwise we say that c is inconsistent. Similarly, we say that c is

consistent/inconsistent with d if c⊔d is consistent/inconsistent.

Constraint Frames. One can define a general form of implication by adapting the corresponding

notion from Heyting Algebras to cs. A Heyting implication c→ d in our setting corresponds to the

weakest constraint one needs to join c with to derive d.

Definition 3.2 (Constraint Frames [8]). A constraint system (Con,⊑) is said to be a constraint frame iff

its joins distribute over arbitrary meets. More precisely, c⊔
d

S =
d
{c⊔ e | e ∈ S} for every c ∈ Con

and S ⊆ Con. Define c→ d as
d
{e ∈ Con | c⊔ e⊒ d}.

The following properties of Heyting implication correspond to standard logical properties (with→,

⊔, and ⊒ interpreted as implication, conjunction, and entailment).

Proposition 3.3 ([8]). Let (Con,⊑) be a constraint frame. For every c,d,e ∈ Con the following holds:

(1) c⊔ (c→ d) = c⊔d, (2) (c→ d)⊑ d, (3) c→ d = true iff c⊒ d.
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4 Space and Beliefs

The authors of [18] extended the notion of cs to account for distributed and multi-agent scenarios with a

finite number of agents, each having their own space for local information and their computations. The

extended structures are called spatial cs (scs). Here we adapt scs to reason about possibly infinite groups

of agents.

A group G is a set of agents. Each i ∈ G has a space function si : Con→ Con satisfying some

structural conditions. Recall that constraints can be viewed as assertions. Thus given c ∈ Con, we can

then think of the constraint si(c) as an assertion stating that c is a piece of information residing within a

space of agent i. Some alternative epistemic interpretations of si(c) is that it is an assertion stating that

agent i believes c, that c holds within the space of agent i, or that agent i interprets c as si(c). All these

interpretations convey the idea that c is local or subjective to agent i.

In [18] scs are used to specify the spatial distribution of information in configurations 〈P,c〉 where P

is a process and c is a constraint. E.g., a reduction 〈 P,si(c)⊔ s j(d) 〉 −→ 〈 Q,si(c)⊔ s j(d⊔ e) 〉 means

that P with c in the space of agent i and d in the space of agent j can evolve to Q while adding e to the

space of agent j.

We now introduce the notion of space function.

Definition 4.1 (Space Functions). A space function over a cs (Con,⊑) is a continuous self-map f :

Con→ Con s.t. for every c,d ∈ Con (S.1) f (true) = true, (S.2) f (c⊔ d) = f (c)⊔ f (d). We shall use

S (C) to denote the set of all space functions over C = (Con,⊑).

The assertion f (c) can be viewed as saying that c is in the space represented by f . Property S.1 states

that having an empty local space amounts to nothing. Property S.2 allows us to join and distribute the

information in the space represented by f .

In [18] space functions were not required to be continuous. Nevertheless, continuity comes naturally

in the intended phenomena we wish to capture: modelling information of possibly infinite groups. In

fact, in [18] scs could only have finitely many agents.

In [9] we extended scs to allow arbitrary, possibly infinite, sets of agents. A spatial cs is a cs with a

possibly infinite group of agents each having a space function.

Definition 4.2 (Spatial Constraint Systems). A spatial cs (scs) is a cs C = (Con,⊑) equipped with a

possibly infinite tuple s= (si)i∈G of space functions from S (C).
We shall use (Con,⊑,(si)i∈G) to denote an scs with a tuple (si)i∈G. We refer to G and s as the group

of agents and space tuple of C and to each si as the space function in C of agent i. Subsets of G are also

referred to as groups of agents (or sub-groups of G).

Let us illustrate a simple scs that will be used throughout the paper.

Example 4.3. The scs (Con,⊑,(si)i∈{1,2}) in Fig.1 is given by the complete lattice M2 and two agents.

We have Con = {p∨¬p, p,¬p, p∧¬p} and c ⊑ d iff c is a logical consequence of d. The top element

false is p∧¬p, the bottom element true is p∨¬p, and the constraints p and ¬p are incomparable

with each other. The set of agents is {1,2} with space functions s1 and s2: For agent 1, s1(p) = ¬p,

s1(¬p) = p, s1(false) = false, s1(true) = true, and for agent 2, s2(p) = false = s2(false), s2(¬p) = ¬p,

s2(true) = true. The intuition is that the agent 2 sees no difference between p and false while agent 1

interprets ¬p as p and vice versa.

More involved examples of scs include meaningful families of structures from logic and economics

such as Kripke structures and Aumann structures (see [18]). We illustrate scs with infinite groups in the

next section.
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p∨¬p

p ¬p

p∧¬p

s1

s1

s1

s1 s2

s2

s2

s2

Figure 1: Cs given by lattice M2 ordered by implication and space functions s1 and s2.

5 Extrusion and Utterances

We can also equip each agent i with an extrusion function ei : Con→ Con. Intuitively, within a space

context si(·), the assertion ei(c) specifies that c must be posted outside of agent i’s space. This is captured

by requiring the extrusion axiom (E.1) si(ei(c)) = c. In other words, we view extrusion/utterance as the

right inverse of space/belief (and thus space/belief as the left inverse of extrusion/utterance).

Definition 5.1 (Extrusion). Given an scs (Con,⊑,(si)i∈G), we say that ei is an extrusion function for the

space si iff ei is a right inverse of si, i.e., iff si(ei(c)) = c.

From the above definitions it follows that si(c⊔ ei(d)) = si(c)⊔d. From a spatial point of view, agent

i extrudes d from its local space. From an epistemic view this can be seen as an agent i that believes c

and utters d to the outside world. If d is inconsistent with c, i.e., c⊔d = false, we can see the utterance

as an intentional lie by agent i: The agent i utters an assertion inconsistent with their own beliefs.

Example 5.2. Let e = si(c⊔ ei(s j(a)))⊔ s j(d). The constraint e specifies that agent i has c and wishes

to transmit, via extrusion, a addressed to agent j. Agent j has d in their space. Indeed, with the help of

E.1 and S.2, we can derive e⊒ s j(d⊔a) thus stating that e entails that a will be in the space of j.

The Extrusion Problem. A legitimate question is: Given space si can we derive an extrusion function

ei for it ? From set theory we know that there is an extrusion function (i.e., a right inverse) ei for si iff si

is surjective. Recall that the pre-image of y ∈ Y under f : X → Y is the set f−1(y) = {x ∈ X | y = f (x)}.
Thus the extrusion ei can be defined as a function, called choice function, that maps each element c to

some element from the pre-image of c under si.

The existence of the above-mentioned choice function assumes the Axiom of Choice. The next propo-

sition from [8] gives some constructive extrusion functions. It also identifies a distinctive property of

space functions for which a right inverse exists.

Proposition 5.3 ([8]). Let f be a space function over (Con,⊑). Then

1. If f (false) 6= false then f does not have any right inverse.

2. If f is surjective then g : c 7→
⊔

f (c)−1 is a right inverse of f that preserves arbitrary infima.

3. If f is surjective and preserves arbitrary infima then h : c 7→
d

f (c)−1 is a right inverse of f that

preserves arbitrary suprema.
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p∨¬p

p ¬p

p∧¬p

s1

s1

s1

s1 e1

e1

e1

e1

Figure 2: Cs given by lattice M2 ordered by implication and the space function s1 with extrusion e1.

The following example illustrates an application of Prop.5.3 to obtain an extrusion function for the

space function s1 from Ex.4.3. Notice that the space function s2 from Ex.4.3 is not surjective thus it does

not have an extrusion function.

Example 5.4. Fig.2 shows an extrusion function for the space function s1 in Ex.4.3. This extrusion

function can be obtained by applying Prop.5.3.2.

6 Groups and Distributed Knowledge

In [9] we introduced the notion of collective information of a group of agents. Roughly speaking, the

distributed (or collective) information of a group I is the join of each piece of information that resides

in the space of some i ∈ I. The distributed information of I w.r.t. c is the distributive information of I

that can be derived from c. We wish to formalize whether a given e can be derived from the collective

information of the group I w.r.t. c.

The following examples, which we will use throughout this section, illustrate the above intuition.

Example 6.1. Consider an scs (Con,⊑,(si)i∈G) where G = N and (Con,⊑) is a constraint frame. Let

c
def
= s1(a)⊔ s2(a→ b)⊔ s3(b→ e). The constraint c specifies the situation where a,a→ b and b→ e

are in the spaces of agent 1, 2 and 3, respectively. Neither agent necessarily holds e in their space in c.

Nevertheless, the information e can be derived from the collective information of the three agents w.r.t.

c, since from Prop.3.3 we have a⊔(a→ b)⊔(b→ e)⊒ e. Let us now consider an example with infinitely

many agents. Let c′
def
=

⊔
i∈N si(ai) for some increasing chain a0 ⊑ a1 ⊑ . . . . Take e′ s.t. e′ ⊑

⊔
i∈N ai.

Notice that unless e′ is compact (see Section 3), it may be the case that no agent i ∈ N holds e′ in their

space; e.g., if e′ ⊐ ai for any i ∈ N. Yet, from our assumption, e′ can be derived from the collective

information w.r.t. c′ of all the agents in N, i.e.,
⊔

i∈N ai.

The above example may suggest that the distributed information can be obtained by joining individual

local information derived from c. Individual information of an agent i can be characterized as the i-

projection of c defined thus:

Definition 6.2 (Agent and Join Projections [9]). Let C = (Con,⊑,(si)i∈G) be an scs. Given i ∈ G, the

i-agent projection of c ∈ Con is defined as πi(c)
def
=

⊔
{e | c⊒ si(e)}. We say that e is i-agent derivable



46 Semantic Structures for Spatially-Distributed Multi-Agent Systems

from c iff πi(c)⊒ e. Given I⊆G the I-join projection of a group I of c is defined as πI(c)
def
=

⊔
{πi(c) | i∈

I}. We say that e is I-join derivable from c iff πI(c)⊒ e.

The i-projection of an agent i of c naturally represents the join of all the information of agent i in c.

It turns out that projections are extrusion functions: If si admits extrusion then πi is an extrusion function

for the space si (see Def.5.1). More precisely,

Proposition 6.3 (Projection as extrusion). If si is surjective then si(πi(c)) = c for every c ∈ Con.

The I-join projection of group I joins individual i-projections of c for i ∈ I. This projection can be

used as a sound mechanism for reasoning about distributed-information: If e is I-join derivable from c

then it follows from the distributed-information of I w.r.t. c.

Example 6.4. Let c be as in Ex.6.1. We have π1(c) ⊒ a, π2(c) ⊒ (a→ b), π3(c) ⊒ (b→ e). Indeed e

is I-join derivable from c since π{1,2,3}(c) = π1(c)⊔π2(c)⊔π3(c) ⊒ e. Similarly we conclude that e′ is

I-join derivable from c′ in Ex.6.1 since πN(c
′) =

⊔
i∈N πi(c)⊒

⊔
i∈N ai ⊒ e′.

Nevertheless, I-join projections do not provide a complete mechanism for reasoning about distributed

information as illustrated below.

Example 6.5. Let d
def
= s1(b)⊓s2(b). Recall that we think of ⊔ and ⊓ as conjunction and disjunction of

assertions: d specifies that b is present in the space of agent 1 or in the space of agent 2 though not exactly

in which one. Thus from d we should be able to conclude that b belongs to the space of some agent in

{1,2}. Nevertheless, in general b is not I-join derivable from d since from π{1,2}(d) = π1(d)⊔ π2(d)
we cannot, in general, derive b. To see this consider the scs in Fig.3a and take b = ¬p. We have

π{1,2}(d) = π1(d)⊔π2(d) = true⊔ true = true 6⊒ b. One can generalize the example to infinitely many

agents: Consider the scs in Ex.6.1. Let d′
def
=

d
i∈N si(b

′). We should be able to conclude from d′ that b′

is in the space of some agent in N but, in general, b′ is not N-join derivable from d′.

6.1 Distributed Spaces

In the previous section we illustrated that the I-join projection of c, πI(c), the join of individual projec-

tions, may not project all distributed information of a group I. To solve this problem we shall develop

the notion of I-group projection of c, written as ΠI(c). To do this we shall first define a space function

∆I called the distributed space of group I. The function ∆I can be thought of as a virtual space including

all the information that can be in the space of a member of I. We shall then define an I-projection ΠI in

terms of ∆I much like πi is defined in terms of si.

Recall that S (C) denotes the set of all space functions over a cs C. For notational convenience, we

shall use ( fI)I⊆G to denote the tuple ( fI)I∈P(G) of elements of S (C).

Set of Space Functions. We begin by introducing a new partial order induced by C. The set of space

functions ordered point-wise.

Definition 6.6 (Space Functions Order). Let C = (Con,⊑,(si)i∈G) be an scs. Given f ,g ∈S (C), define

f ⊑s g iff f (c) ⊑ g(c) for every c ∈ Con. We shall use Cs to denote the partial order (S (C),⊑s); the

set of all space functions ordered by ⊑s.

A very important fact for the design of our structure is that the set of space functions S (C) can be

made into a complete lattice.

Lemma 6.7 ([9]). Let C = (Con,⊑,(si)i∈G) be an scs. Then Cs is a complete lattice.
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6.2 Distributed Spaces as Maximum Spaces

Let us consider the lattice of space functions Cs=(S (C),⊑s). Suppose that f and g are space functions

in Cs with f ⊑s g. Intuitively, every piece of information c in the space represented by g is also in the

space represented by f since f (c) ⊑ g(c) for every c ∈ Con. This can be interpreted as saying that the

space represented by g is included in the space represented by f ; in other words the bigger the space, the

smaller the function that represents it in the lattice Cs.

Following the above intuition, the order relation ⊑s of Cs represents (reverse) space inclusion and

the join and meet operations in Cs represent intersection and union of spaces. The biggest and the

smallest spaces are represented by the bottom and the top elements of the lattice Cs, here called λ⊥ and

λ⊤ and defined as follows.

Definition 6.8 (Top and Bottom Spaces). For every c∈Con, define λ⊥(c)
def
= true, λ⊤(c)

def
= true if c=

true and λ⊤(c)
def
= false if c 6= true.

The distributed space ∆I of a group I can be viewed as the function that represents the smallest space

that includes all the local information of the agents in I. From the above intuition, ∆I should be the

greatest space function below the space functions of the agents in I. The existence of such a function

follows from completeness of (S (C),⊑s) (Lemma 6.7).

Definition 6.9 (Distributed Spaces [9]). Let C be an scs (Con,⊑,(si)i∈G). The distributed spaces of C

is given by ∆ = (∆I)I⊆G where ∆I
def
= max{ f ∈S (C) | f ⊑s si for every i ∈ I}. We shall say that e is

distributed among I ⊆ G w.r.t. c iff c⊒ ∆I(e). We shall refer to each ∆I as the (distributed) space of the

group I.

It follows from Lemma 6.7 that ∆I =
d
{si | i ∈ I} (where

d
is the meet in the complete lattice

(S (C),⊑s)). Fig.3b illustrates an scs and its distributed space ∆{1,2}.

Compositionality. Distributed spaces have pleasant compositional properties. They capture the intu-

ition that the distributed information of a group I can be obtained from the the distributive information

of its subgroups.

Theorem 6.10 ([9]). Let (∆I)I⊆G be the distributed spaces of an scs (Con,⊑,(si)i∈G). Suppose that

K,J ⊆ I ⊆ G. (1) ∆I = λ⊤ if I = /0, (2) ∆I = si if I = {i}, (3) ∆J(a)⊔ ∆K(b) ⊒ ∆I(a⊔b), and (4)

∆J(a)⊔∆K(a→ c)⊒ ∆I(c) if (Con,⊑) is a constraint frame.

Recall that λ⊤ corresponds to the empty space (see Def.6.8). The first property realizes the intuition

that the empty subgroup /0 does not have any information whatsoever distributed w.r.t. a consistent c:

for if c ⊒ ∆ /0(e) and c 6= false then e = true. Intuitively, the second property says that the function ∆I

for the group of one agent must be the agent’s space function. The third property states that a group can

join the information of its subgroups. The last property uses constraint implication, hence the constraint

frame condition, to express that by joining the information a and a→ c of their subgroups, the group I

can obtain c.

Let us illustrate how to derive information of a group from smaller ones using Thm.6.10.

Example 6.11. Let c = s1(a)⊔s2(a→ b)⊔s3(b→ e) as in Ex.6.1. We want to prove that e is distributed

among I = {1,2,3} w.r.t. c, i.e., c ⊒ ∆{1,2,3}(e). Using Properties 2 and 4 in Thm.6.10 we obtain c ⊒
s1(a)⊔s2(a→ b) =∆{1}(a)⊔∆{2}(a→ b)⊒ ∆{1,2}(b), and then c⊒ ∆{1,2}(b)⊔s3(b→ e) =∆{1,2}(b)⊔
∆{3}(b→ e)⊒ ∆{1,2,3}(e) as wanted.
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Figure 3: Projections (a) and Distributed Space function (b) over lattice M2.

Remark 6.1 (Continuity). The example with infinitely many agents in Ex.6.1 illustrates well why we

require our spaces to be continuous in the presence of possibly infinite groups. Clearly c′ =
⊔

i∈N si(ai)⊒⊔
i∈N ∆N(ai). By continuity,

⊔
i∈N ∆N(ai) = ∆N(

⊔
i∈N ai) which indeed captures the idea that each ai is in

the distributed space ∆N.

We conclude this subsection with an important family of scs from mathematical economics: Aumann

structures. We illustrate that the notion of distributed knowledge in these structures is an instance of a

distributed space.

Example 6.12. Aumann Constraint Systems. Aumann structures [16] are an event-based approach to

modelling knowledge. An Aumann structure is a tuple A = (S,P1, . . . ,Pn) where S is a set of states

and each Pi is a partition on S for agent i. The partitions are called information sets. If two states t and

u are in the same information set for agent i, it means that in state t agent i considers state u possible,

and vice versa. An event in an Aumann structure is any subset of S. Event e holds at state t if t ∈ e. The

set Pi(s) denotes the information set of Pi containing s. The event of agent i knowing e is defined as

Ki(e) = {s ∈ S |Pi(s) ⊆ e}, and the distributed knowledge of an event e among the agents in a group I

is defined as DI(e) = {s ∈ S |
⋂

i∈I Pi(s)⊆ e}.
An Aumann structure can be seen as a spatial constraint system C(A ) with events as constraints,

i.e., Con = {e | e is an event in A }, and for every e1,e2 ∈ Con, e1 ⊑ e2 iff e2 ⊆ e1. The operators join

(⊔) and meet (⊓) are intersection (∩) and union (∪) of events, respectively; true = S and false = /0. The

space functions are the knowledge operators, i.e., si(c) = Ki(c). From these definitions and since meets

are unions one can easily verify that ∆I(c) =DI(c) which shows the correspondence between distributed

information and distributed knowledge.

6.3 Group Projections

As promised in Section 6.1 we now give a definition of Group Projection. The function ΠI(c) extracts

exactly all information that the group I may have distributed w.r.t. c.

Definition 6.13 (Group Projection [9]). Let (∆I)I⊆G be the distributed spaces of an scs C = (Con,⊑

,(si)i∈G). Given the set I ⊆G, the I-group projection of c∈Con is defined as ΠI(c)
def
=

⊔
{e | c⊒∆I(e)}.

We say that e is I-group derivable from c iff ΠI(c)⊒ e.
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Much like space functions and agent projections, group projections and distributed spaces also form

a pleasant correspondence: a Galois connection [3].

Proposition 6.14 ([9]). Let (∆I)I⊆G be the distributed spaces of C = (Con,⊑,(si)i∈G). For every c,e ∈
Con, (1) c⊒ ∆I(e) iff ΠI(c)⊒ e, (2) ΠI(c)⊒ΠJ(c) if J ⊆ I, and (3) ΠI(c)⊒ πI(c).

The first property in Prop.6.14, a Galois connection, states that we can conclude from c that e is in

the distributed space of I exactly when e is I-group derivable from c. The second says that the bigger

the group, the bigger the projection. The last property says that whatever is I-join derivable is I-group

derivable, although the opposite is not true as shown in Ex.6.5.

6.4 Group Compactness

Suppose that an infinite group of agents I can derive e from c (i.e., c ⊒ ∆I(e)). A legitimate question is

whether there exists a finite sub-group J of agents from I that can also derive e from c. The following

theorem provides a positive answer to this question provided that e is a compact element and I-join

derivable from c.

Theorem 6.15 (Group Compactness [9]). Let (∆I)I⊆G be the distributed spaces of an scs C = (Con,⊑
,(si)i∈G). Suppose that c⊒ ∆I(e). If e is compact and I-join derivable from c then there exists a finite set

J ⊆ I such that c⊒ ∆J(e).

We conclude this section with the following example of group compactness.

Example 6.16. Consider the example with infinitely many agents in Ex.6.1. We have c′ =
⊔

i∈N si(ai)
for some increasing chain a0 ⊑ a1 ⊑ . . . and e′ s.t. e′ ⊑

⊔
i∈N ai. Notice that c′ ⊒ ∆N(e

′) and πN(c
′)⊒ e′.

Hence e′ is N-join derivable from c′. If e′ is compact, by Thm.6.15 there must be a finite subset J ⊆ N

such that c′ ⊒ ∆J(e
′).

7 Computing Distributed Information

Let us consider a finite scs C = (Con,⊑,(si)i∈G) with distributed spaces (∆I)I⊆G. By finite scs we mean

that Con and G are finite sets. Let us consider the problem of computing ∆I: Given a set {si}i∈I of space

functions, we wish to find the greatest space function f such that f ⊑ si for all i ∈ I (see Def.6.9).

Because of the finiteness assumption, the above problem can be rephrased in simpler terms: Given

a finite lattice L and a finite set S of join-homomorphisms on L, find the greatest join-homomorphism

below all the elements of S. Even in small lattices with four elements and two space functions, finding

such greatest function may not be immediate, e.g., for S = {s1,s2} and the lattice in Fig.1 the answer is

given Fig.3b.

A brute force approach would be to compute ∆I(c) by generating the set { f (c) | f ∈S (C) and f ⊑
si for all i ∈ I} and taking its join. This approach works since (

⊔
S)(c) =

⊔
{ f (c)| f ∈ S}. However, the

number of such functions in S (C) can be at least factorial in the size of Con. For distributive lattices,

the size of S (C) can be non-polynomial in the size of Con.

Proposition 7.1 ([9]). For every n≥ 2, there exists a lattice C = (Con,⊑) such that |S (C)| ≥ (n−2)!
and n = |Con |. For every n≥ 1, there exists a distributed lattice C = (Con,⊑) such that |S (C)| ≥ nlog2 n

and n = |Con |.

Nevertheless, we can exploit order theoretical results and compositional properties of distributive

spaces to compute ∆I in polynomial time in the size of Con.
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Theorem 7.2 ([9]). Suppose that (Con,⊑) is a distributed lattice. Let J and K be two sets such that

I = J∪K. Then the following equalities hold:

1. ∆I(c) =
l
{∆J(a)⊔∆K(b) | a,b ∈ Con and a⊔b⊒ c}. (1)

2. ∆I(c) =
l
{∆J(a)⊔∆K(a→ c) | a ∈ Con}. (2)

3. ∆I(c) =
l
{∆J(a)⊔∆K(a→ c) | a ∈ Con and a⊑ c}. (3)

The above theorem characterizes the information of a group from that of its subgroups. It bears wit-

ness to the inherent compositional nature of our notion of distributed space, and realizes the intuition that

by joining the information a and a→ c of their subgroups, the group I can obtain c. This compositional

nature is exploited by the algorithms below.

Given a finite scs C = (Con,⊑,(si)i∈G), the recursive function DELTAPART3(I,c) in Algorithm 1

computes ∆I(c) for any given c in Con. Its correctness, assuming that (Con,⊑) is a distributed lattice,

follows from Thm.7.2(3). Termination follows from the finiteness of C and the fact the sets J and K in

the recursive calls form a partition of I. Notice that we select a partition (in halves) rather than any two

sets K,J satisfying the condition I = J∪K to avoid significant recalculation.

Algorithm 1 Function DELTAPART3(I,c) computes ∆I(c)

1: function DELTAPART3(I,c) ⊲ Computes ∆I(c)
2: if I = {i} then

3: return si(c)
4: else

5: {J,K} ← PARTITION(I) ⊲ returns a partition {J,K} of I s.t., |J|= ⌊|I|/2⌋
6: return

d
{DELTAPART3(J,a)⊔DELTAPART3(K,a→ c) | a ∈ Con and a⊑ c}.

Algorithms. Notice DELTAPART3(I,c) computes ∆I(c) using Thm.7.2(3). By modifying Line 6

with the corresponding meet operations, we obtain two variants of DELTAPART3 that use, instead of

Thm.7.2(3), the Properties Thm.7.2(1) and Thm.7.2(2). We call them DELTAPART1 and DELTAPART2.

Worst-case time complexity. We assume that binary distributive lattice operations ⊓, ⊔, and → are

computed in O(1) time. We also assume a fixed group I of size m = |I| and express the time complexity

for computing ∆I in terms of n = |Con |, the size of the set of constraints. The above-mentioned algo-

rithms compute the value ∆I(c). The worst-case time complexity for computing the function ∆I is in

O(mn1+2log2 m) using DELTAPART1, and O(mn1+log2 m) using DELTAPART2 and DELTAPART3 [9].

8 Conclusions and Related Work

We have highlighted some results about scs as semantic structures for spatially-distributed systems ex-

hibiting epistemic behaviour. Our work in scs have been inspired by the seminal work on epistemic logic

for knowledge and group knowledge in [15, 6, 16]. Meaningful families of structures from logic and eco-

nomics such as Kripke structures and Aumann structures have been shown to be instances of scs [18].

Furthermore scs have been used to give semantics to modal logics and process calculi [18, 8, 12].

In [18] we introduced a spatial and epistemic process calculus, called sccp, for reasoning about spatial

information and knowledge distributed among the agents of a system. In this work scs were introduced

as the domain-theoretical structures to represent spatial and epistemic information. These structures are
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also used in the denotational and operational semantics of sccp processes. In [18] we also provided

operational and denotational techniques for reasoning about the potentially infinite behaviour of spatial

and epistemic processes.

In [8, 12] we developed the theory of spatial constraint systems (scs) with extrusion to specify in-

formation and processes moving from a space to another. In [11, 10] scs with extrusion are used to

give a novel algebraic characterization of the notion of normality in modal logic and to derive right in-

verse/reverse operators for modal languages. These results were applied to derive new expressiveness

results for bisimilarity and well-established modal languages such as Hennessy-Milner logic, and linear-

time temporal logic.

In [8, 10, 11, 12] scs are used to reason about beliefs, lies and other epistemic utterances but also

restricted to a finite number of agents and individual, rather than group, behaviour of agents.

In [9] we developed semantic foundations and provided algorithms for reasoning about the distributed

information of possibly infinite groups in multi-agents systems. We plan to develop similar techniques

for reasoning about other group phenomena in multi-agent systems from social sciences and computer

music such as group polarization [4] and group improvisation [23].

We have recently learnt that the fundamental operations of dilation and erosion from digital images

and mathematical morphology [25] are space and projection functions, respectively. Dilations are applied

to figures. Intuitively, figures that are very lightly drawn get thick when dilated. We are currently

studying potential applications of distributed spaces in mathematical morphology: E.g., for computing

the greatest dilation under a given set of dilations. Similarly, we are also studying scs interpretations of

other fundamental operations from mathematical morphology such as opening and closing.

We conclude with some applications of scs in the development of ccp tools and languages. In [14, 13]

we described D-SPACES, an implementation of scs that provides property-checking methods as well as

an implementation of a specific type of constraint systems (boolean algebras). In [21] we used rewriting

logic for specifying and analyzing ccp processes combining spatial and real-time behavior. These pro-

cesses can run processes in different computational spaces while subject to real-time requirements. The

real-time rewriting logic semantics is fully executable in Maude with the help of rewriting modulo SMT:

partial information (i.e., constraints) in the specification is represented by quantifier-free formulas on the

shared variables of the system that are under the control of SMT decision procedures. The approach is

used to symbolically analyze existential real-time reachability properties of process calculi in the pres-

ence of spatial hierarchies for sharing information and knowledge. We also developed dspacenet, a

multi-agent spatial and reactive ccp language for programming academic forums2. The fundamental

structure of dspacenet is that of space: A space may contain spatial and reactive ccp programs or

other spaces. The fundamental operation of dspacenet is that of program posting: In each time unit,

agents (users) can post spatial reactive ccp programs in the spaces they are allowed to do so. Currently

dspacenet is used at Univ. Javeriana Cali for teaching spatial reactive declarative programming.
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