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Jay and Given-Wilson have recently introduced the Fa@tas (or SF-) calculus as a minimal
fundamental model oihtensionalcomputation. It is a combinatory calculus containing a s&dec
combinatorF, which is able to examine the internal structure of its firgiuaent. The calculus is
significant in that as well as being combinatorially compiétlso exhibits the property of structural
completeness, i.e. it is able to represent any function mmge&lefinable using pattern matching on
arbitrary normal forms. In particular, it admits a term thah decide the structural equality of any
two arbitrary normal forms.

Since SF-calculus is combinatorially complete, it is digat least as powerful as the more
familiar and paradigmatic Turing-powerful computationaddels ofA-calculus and Combinatory
Logic. Its relationship to these models in the conversectiva is less obvious, however. Jay and
Given-Wilson have suggested that SF-calculus is strictyaerpowerful than the aforementioned
models, but a detailed study of the connections betweee theslels is yet to be undertaken.

This paper begins to bridge that gap by presenting a faiirfiabding of the Factorisation Cal-
culus into theA -calculus preserving both reduction and strong normadisafrhe existence of such
an encoding is a new result. It also suggests that there syrime sense, an equivalence between
the former model and the latter. We discuss to what extentesult constitutes an equivalence by
considering it in the context of some previously defined famrks for comparing computational
power and expressiveness.

1 Introduction

Mathematical models of computation are useful in studyirgformal properties of programming prac-
tice. Indeed, the field of computing today arose partly ouhefstudy of such abstract models: namely
Turing Machines[[33], th& -calculus [8], and Combinatory Logic [10], which are consectly consid-
ered to be archetypal computational models. It is standactipe to qualify the abilities, or expressive-
ness, of a formal model of computation by demonstratingitmay simulate(and be simulated by) the
operation of other formal models. This is the very essendbahotion ofTuring-completenessvhich
encapsulates the intuition that a model may carry out anyatipe that is ‘effectively computable’. To
construct such a simulation one must first give an injectia@pmg, showing how the terms of the source
model may be represented by terms of the target. For exaitimigeis the basis behind the process of
Godelization and the Church encoding of natural numhe2ks [Bvo basic properties are then required:
that each atomic operational step of the source model ictefldy one or more steps of the target, and
that a program of the target moderminateswhenever the corresponding source program does. The
former is a key ingredient of Landin’s influential work on cpafing languages [25], while the latter is
used as a criterion for comparing expressiveness by, elgjsen[12]. Formal definitions of encodings
incorporating these properties, referred to as “faithfafe already in use by the 90s, e.g.lih [2], and are
now common (see e.q. [15]).
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Recently, Jay’s work on formal models of generic patterncmat [17] have led, in collaboration
with Given-Wilson, to the formulation of thBactorisation Calculus This is a combinatory calculus
comprising two combinators: ttiecombinator, familiar from Combinatory Logic; and a néveombi-
nator. The purpose of the latter is to enable arbitrary (headmal terms to béactorised that is split
into their constituent parts, thereby allowing the exartigmaof the internal structure of terms. This en-
dows Factorisation Calculus with an interesting and powenfoperty: that ofstructure completeness
This means that any function on terms themselves definabpatdgrn matching ovearbitrary normal
forms isrepresentable Thus, Factorisation Calculus can be viewed as a minimatjdmental model
characterising not only the abstract notiorpattern matchindgut alsointensional computatian

Jay and Given-Wilson show that Factorisation Calculus rnfdcomplete, demonstrating a straight-
forward simulation of Combinatory Logic in their calculidoreover, due to its structural completeness,
there is a term of Factorisation Calculus which can decidetiuctural equality of any two arbitrary nor-
mal forms. Conversely, factorisation and structural eitpuaf normal formscannotbe so represented in
A-calculus and Combinatory Logic, thus these modelsatstructure complete. This hints at some sort
of disparity in the expressivity of the two models. In thailginal and subsequent researchl[18,/14, 19],
Jay and Given-Wilson speculate that the added expresswerponay manifest itself in a non-existence
result for simulations of Factorisation Calculusiircalculus, but this is not pursued in detail.

We show that therdoesexist a simulation of Factorisation Calculus witiircalculus. The existence
of such a simulation has not been demonstrated before, &nigd the primary contribution of our paper.
The simulation is made possible by a construction due torBecai and Bohm, which shows how to
encode a certain class of term rewriting systems wiliticalculus. We show that Factorisation Calculus
can be simulated by such a term rewriting system, whencesthatifollows. In the classical framework,
our result signifies that Factorisation Calculus is no maregrful thani -calculus. Thus there appears to
be a mismatch between our result and the structure compkgroperty that the standard simulation-
based notion of equivalence does not account for. To begirytand resolve this, we consider some
research in the literature which refines the concept of caatipmal equivalence and discuss how our
result relates to this.

Outline The rest of this paper is organised as follows. Sedtion dlsegay and Given-Wilson's Fac-
torisation Calculus and its basic properties. Sedtlon ritess Berarducci and Bohm's construction
for encoding so-called canonical rewrite systems withim Ahcalculus. In Sectiof] 4 we present our
technical contribution: a simulation of the Factorisat@alculus in the\ -calculus via this construction.
SectiorﬂS then discusses, in light of our results, how tredivel expressiveness of Factorisation Calculus
andA -calculus may be characterised. Sectibn 6 concludes ararkeron areas for future work.

2 Factorisation Calculus

We begin by presenting Jay and Given-Wilson’s Factoria@i@iculus itself, and review its principal
properties. Factorisation Calculus, or more accurately:SEqu, is a combinatory calculus whose
terms are those of the free algebra over the two-elemenatsigm containing the combinatofsand
F, which each reduce upon being applied to three arguments. fdrimer is the familiar combinator
from Combinatory Logic[[10] which applies its first and sedaarguments to duplicates of its third.
The F combinator, on the other hand, introduces new capabilitiethe form of factorisation it is

1We may say that any combinatory calculus that is structunepbete isa factorisation calculus.
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able to examine thiaternal structure of its first argument and process its second andi ithidifferent
ways depending on whether that argumergt@mic(i.e. itself a combinator) ocompoundi.e. a partial
application). To illustrate this, consider how theombinator reduces in the following two instances:

FSMN — M F(SX)MN — NSX

Observe that when the first argument is atomic, it eliminasatird argument and returns its second. On

the other hand, when the first argument is compound it elitegias second argument afattorisesthe

first into its left- and right-hand constituent componepisssing thesseparatelyto its third argument.
Formally, SF-calculus is defined as follows.

Definition 2.1 (SF-calculus[[1835 4]). The SF-calculus is a combinatory rewrite system over terms
(ranged over by uppercase roman letters M, N, etc.) giveméydllowing grammar:

M,N:=S | F | MN

Terms of the fornd, F, SM, FM, SMN, or FMN (i.e. partially applied combinators) are callddc-
torable forms Reduction of terms is the smallest contextually closedrirelation — ¢ on terms (with
the reflexive transitive closure denoted-y,) satisfying:

SMNX —¢ MX(NX)
FOMN—«+M ifOisSorF
FIPQMN —=;NPQ if PQ is a factorable form

Reduction of SF-calculus is confluent, and theombinator of Combinatory Logic can be repre-
sented in SF-calculus biyF (also, indeed, by S). Thus, there is a trivial encoding of Combinatory
Logic in SF-calculus which preserves reduction and strargalisation([14].

The behaviour of th& combinator gives SF-calculus amensionalquality: one may define higher
order functions in SF-calculus which discriminate betwéamctions whosemplementationsare dif-
ferent even when those functions amgensionallyequal (i.e. produce identical outputs for identical
inputs). For example, for any normal forky the termlx = S (FF) X implements the identity function
(i.e.IxM —Z. M for all M) and thus all such terms are extensionally equal. HowenegFatermT can
be constructed which distinguishes them (by behaving lks—:: X). Moreover, one can construct an
SF-term that can decide the equality of any tavbitrary normal forms.

The intensional behaviour of SF-calculus is formally cltgased by a property callestructure
completenessvhich captures the notion that evesymbolic computatiofi.e. Turing-computable sym-
bolic function) on normal forms is represented by some term.

Definition 2.2 (Structure Completeneds [187-8]). Let% be a confluent combinatory calculus whose
terms include variables, with reduction relatien?,. Definepatternsto be thelinear normal forms
(i.e. containing no more than one occurrence of each vaeljgbhndmatchable formgo be partially
applied combinators.
1. Amatch{U /P} of a pattern P against a term U may be definedtmceedvith a substitution of
terms for variables, offail as follows (wherdd denotes the identity function andthe disjoint
union of substitutions with match failure as an absorbingneént):

{U/x} =[U/X {A/A} =1Id (if A atomic)
{UV/PQ} ={U/P}tu{V/Q} (if UV a compound)
{U/P} =fail (otherwise, if U matchable)
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2. Acaseis an equation of the form B M where P is a pattern and M an arbitrary term, which
defines asymbolic function on terms by¢ (U ) = o (M) if {U /P} succeeds with substitutiam,
and¥(U) =U if it fails.

3. A confluent combinatory calculusstucture completé for every pattern P and term M, there is
some term G such that GU:, ¥ (U) for every term U on whicl/ is defined; i.e. the symbolic
function defined by every case is represented by some term.

Structure completeness subsumes combinatorial compktesincél x.M is given by the case= M.
Theorem 2.3([18|, Cor. 8.4]) SF-calculus is structure complete.
TheF combinator itself represents a symbolic computat®nnamely that of factorisation:

F(AM;N)=M if Ais atomic
FPQAUM,N)=NPQ if PQis compound

A significant (and arguably remarkable) fact is ti#atcannot be represented in Combinatory Logic (for
definitions of atomic and compound appropriate thereto).

Theorem 2.4([18, Thm. 3.2]) Factorisation of SK-combinators is a symbolic computatioat is not
representable in Combinatory Logic.

The equality predicate on normal forms also has no reprasentin Combinatory Logic. Thus,
there exist (symbolic) functions, which are clearly ‘cortghale’ from an empirical point of view, that
are not (directly) representable in Combinatory Logic iighis also a similar result fok-calculus [4]).
This result clearly points towards some form of added exgivitg possessed by SF-calculus over the
archetypal computational models. It is to this issue thatllereturn in Section.b.

3 Strongly Normalising Solutions of Equational Systems im -calculus

We now reiterate the interpretation result of Berarducd Bihm [5], upon which our technical contri-
bution rests. Essentially, this result says that systenegjohtions for a particular class of term algebras
can be given solutions in thee-calculus such that the representation of each atomic téthealgebra
is strongly normalisinghus having anormal form Moreover, when the set of equations is interpreted as
a rewrite system the encoding of terms preserves reduatidstaong normalisation.

We assume the usual definitions of thecalculus without further explanation (readers may reder t
[4] for details), withA denoting the set of lambda terms,E denoting the (multi-step-reduction rela-
tion, and=g denotingB-equality (i.e. the equivalence relation on lambda terrda@ed by3-reduction).
Furthermore, we also assume the familiar algebraic notidcheoset TefZ) of (Z-)termsover the signa-
ture (set offunction symbolseach with an associated arity) We can then also consider the #€¢&)
of extendedambda terms (i.e. lambda terms which may coniaierms); notice that both Tex) andA
are (strict) subsets @f(X).

Definition 3.1 (Canonical Systems of Equationdjix a signatureZ and let& be a set of equations
between terms4 Ter(Z). We say that’ is canonicalif = can be partitioned into two disjoint subsetg
and; (i.e.X = £pUZ;) such that: each equation ifi is of the formf (c(xy,...,Xm),Y1,-..,¥n) =t with
ce 2gand fe X; and where the variables x .., Xm, Y1, .- -, Yn are all distinct and form a superset of the
variables in the term t; and for each distinct pdi, f) € X9 x X there is at most one equation & of
this form. We say thaf’ is completeif for each distinct pair(c, f) € Zg x Z; there is exactly one such
equation in&’.
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Canonical systems of equations, then, partition the sigaahto a sety of (algebraic datatype)
constructorsand; of programsdefined by pattern matching over the constructors on theafigsiment.
Notice that any incomplete canonical system of equatiomstidaially be made complete by adding
equations for the missing cases which simply project onbefinction’s argume

As an example of a canonical system of equations, we maywb#eat the usual recursive definition
of addition over the datatype of (Peano) natural numbensds a system:

add (zero,X) = X add (succ(x),y) = succ (add (X,Y))

We have a signature containing one function symdafel, one nullary constructatero, and one unary

constructorsucc; moreover in this simple case, the equation system is atreachplete. In fact, every

partial recursive function (on natural numbers) can be ddflny a canonical system of equations [5, 6].
Given an equational systeghover a signatur&, we can also take it to define a term rewriting system

on TelZ) by reading each equation aseavrite rule, i.e.fi(Cj(X1,...,Xm),Y1,---,Yn) — t. We will write

— ¢ for the (one-step) reduction relation of the rewrite systifined by#’ in this way (i.e. the smallest

binary relation on terms satisfying the rewrite rules am$etl under substitution and contexts), angl

for its reflexive, transitive closure (i.e. multi-step retlan). Ultimately, the aim is to interpret equational

systems (and their associated rewrite systems) withimlculus.

Definition 3.2 (Interpretations) A representatiorf the signature is a functiong : ~ — A from the
function symbols df to (closed) lambda terms, and induces a nggff : A(X) — A in the obvious way,
namely by = X, (Ax.M)? = AxM?, (MN)® = M?N?, and for fc Z, f(t1,...,t))? = @(f)t1? ... t,%.
We say that a representatiop satisfies(or solveg & if for each equationit=t, (and corresponding
rewrite rule § — t2) in & we have1? =g to? (and correspondingly alsq ¥ —>2§ t29). When a represen-
tation @ satisfiess’, we say thatp is aninterpretation(or a solution) of & within A-calculus.

The following construction gives a special kind of repregagan for canonical systems of equations.

Definition 3.3 (Canonical Representationd)et & be a canonical system of equations that partitions
the signatureX into constructorsZy = {cy,...,c } and programsz; = {fi,..., fx}. Without loss of
generality we may assume thétis complete, and so for eadh<i <k andl < j <r let b(i,i) denote
the term t such that; fcj (X1, ...,Xm),Y1,...,Yn) =t € &.
We will make use of the following notational abbreviations:
- Let(ts,...,t,) denote the Church n-tuple, i.&x.xt; ...t,.
- Lety (wherel <k < n) be the n-ary K projection function, i.eAx; ... Xn.X.
- Fork>i>1lett,... t,...,t_1 denote the cyclic permutation aft, ... tx beginning with
(in an abuse of notation we may also take.t ,ty,...,ti_1 =t1,to,...,t when i=1).
We now define two disjoint representatichsand { for constructors and programs respectively.
(Representation of Constructorgpr eachl <i <r, we define the representation of the constructor
¢; as follows (where n is the arity of)c

9(ci) =Axg.. X f fMXg. . . X f

(Representation of Program¥Ye choose k distinct fresh variables v, vk hot occurring ing and
fix a ‘pre-representation’ s, of ¥, defined byy(fi) = (vi,...,V,...,Vvi—1) for eachl <i <k.

“Alternatively, one might want to introduce a new nullary sonctor (denoting an ‘error’ value) and add equationstier t
missing cases that simply return this value.
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Using this representation, and the representation of cotbrs defined above, we then define
kxrlambdaterms ;) (1 <i<k,1<j<r), using the equations i# as follows:

t(i7j) =AX1... XmVi... V.. Vic1iyl .. .yn.(b(u)l’u)g

where f(cj(xt,...,%m),Y1,-..,¥n) = by j) € & is the equation defining the behaviour gfmhen
given a datum constructed using as its first argument. We now define k terms, each one a
Church r-tuple collating the bodies of all the cases for ohéhe programs irk,, as follows:

ti= (i1, Lir)

(wherel <i < k). Each program is then represented by a Church k-tupleainimy the collated
representations of each program defintion, beginning wittown. That is{ is defined by:

(fi)=(ti,... ..., i) (1<i<K)

The representatiokp = 3 U { is called acanonicalrepresentation ok with respect ta?.

To gain some insight into the construction defined above,caneobserve that it is related to an en-
coding of data attributed to SdB(Iand thus commonly referred to in the literature as the Sewbding),
which has subsequently been developed by others (eld. T3@6231]). In the more familiar ‘standard’
encoding of functions, a fixed-point combinator is used taesany recursion in the definition. This has
the effect of making recursioexplicit, and thus the representations of recursive functions hdirate
expansions consisting of a ‘list’ of distinct instances loé function body, one for each recursive call
that may be made. Applying the function to a datum then cpoeds to dold of the datum over this
list, which discards the remaining infinity of recursivelsaince the base case is reached. Therefore, as
described by Bohm et al. [[§3], in this scheme functions are ‘diverging objects whichgw applied to
data, may “incidentally” converge’. In encodings of the Beariety, the recursive nature of functions is
keptimplicit and, while still triggered by application to a datum, onlpneduced ‘on demand’. Hence
we obtain finite objects which now ‘may “incidentally” divgg’ when applied to ddfa

To explicate the particular encoding specified by Defini, we point out that the representation
of a constructor is a (lambda) function that takes in the apfiate number of arguments (tbab-data
of the datum that is subsequently constructed) and thers walie given a function, which will be the
program to be executed. Now, looking at how the construeiprasentation uses this function argument,
we see that programs should expect to be given a projectioctifun, followed by a number of sub-
data, and then they are also passecbpy of themselvedlt is this final element which is the key to
Scott-type encodings, and allows recursion to be kept titpliLooking now at the representation of
programs we see that they are Chuketuples containing an element for each program defined’ by
(each of which is a Churchtuple, where each element is a representation of one ofabescof that
program’s definition). Thus the representation of each pamogcontains the definition @veryprogram
defined by#’; in particular it will contain the definition of each programhich it may itself invoke. To
illustrate in more detail how the encoding works, we can m@rsthe general reduction sequence of a
term representing the application of some progpaog; to some arguments, the first of which is a datum
constructed as; (dy,...,dm):

(prog; (; (c, .., ) argy - arge)® = (6,1} (€; (Chs-. ch) Parg? ... arg

3The citation can be found in Curry, Hindley and Seldin [11504].
4This reversed form of the slogan is also due to Bohm et all jlarstrates the dual nature of the Scott and Church engsdin
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-5 ()\X.X'[,-...ti,l)()\f.fl'lﬁdl...dmf)argf...argr“{’1 (1)
—p ()\f.fl'lﬁdl...dmf)ti...ti_largqlo...argr“{’1 (2)
—p t; I'Iﬁdl...dmtiti“...ti,largf ...arg® (3)
= (ti’l,...,ti’r>l'lgd1...dmtiti“...ti,largf... arg® 4)
= ()\X.Xt,-71...tivr)I'Iﬁdl...dmtiti+1...ti_1argf... arg® (5)
—p Mitig.. tir di...dmtitiy1.. . tiqargy ... arg? (6)
—p tijd...Omtitiig...tigarg] ... argh 7)
= (AXL. . XVi Vi Vicaya e Yo (0. ) ¥) P ) di . Ot tioqarg? .. arg

—>E (b [y /X1, ..., 0m/Xm,argy /Y1, . ..,arg,/yn])? (8)

When the program is applied to a datum (Eﬂh. (1)), its repteien arranges to apply the datum first to
the representations of each program beginning with its @nd,then to the remainder of the arguments
(Eq. (2)). Then, the particular structure of the datum veitluce the expression to pick out the appropriate
case of the program definition to be executed, and apply ihéostib-data and the representations of
each program, having duplicated the program being exed¢kigsl EB) to lﬂ7)). This then reduces to the
representation of the appropriate substitution instafdleecfunction body (EqHS)).

The result of Berarducci and Bohm says that a canonicabsgpitation gives an interpretation that
also preserves strong normalisation.

Theorem 3.4 (Interpretation Theorem [5, Thm 3.4]).et = be a signature an@’ a canonical set of
equations forz; then any canonical representatiapfor = with respect tof’ is an interpretation o’
within A-calculus. In addition(-)? preserves strong normalisation of closed terms.

4 Encoding the Factorisation Calculus

In this section, we present our novel technical contributian encoding of SF-calculus icalculus.
We believe that this is the first such encoding presenteddritérature. Our encoding is a faithful
simulation; it preserves both the reduction behaviour whte(thus als@-equality) and their termination
behaviour (i.e. strong normalisation). In this section Wallsmake use of standard notation and results
for term rewriting systems, details of which may be found24][

The key step to the encoding is to define a rewrite system lmmirally equivalent to SF-calculus that
is also canonical, in the sense of Definitlon 3.1. It is thenpdy a matter of applying the construction
of Berarducci and Bohm to obtain the encoding. Thus it is tanslation of SF-calculus into this
intermediate rewrite system that is the primary novelty wf @ontribution.

We are aiming to derive a set of rewrite rules thatdsonicaland so we must translate the schematic
definition of Jay and Given-Wilson, as presented in Sedfiointd one consisting of algebraic rewrite
rules. There are two salient features of Definifion 3.1 thatmaust take into account: that the rewrite
rules must make a distinction betweprogramsand constructors and that the left-hand side of each
rewrite rule must contain exactly one program symbol and aomestructor. To obtain rewrite rules of
the required form, we recast SF-calculus asumyfied applicativeterm rewriting system. That is, we
first introduce an explicit program symbapp to denote application and use the symtibEndF solely
asconstructors Secondly we stratify the combinato€se {S,F} into sets{Cp, C1,C>} of constructors,
each of which represent successpaetial applications of their underlying combinat6r Although this
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‘currying’ process is well-known from the world of functiahprogramming, the reader may refer to
[20,[3] for a formal definition of this process in the contekeneral term rewriting.

We may take the rewrite rules for tftecombinator directly from the standard curryfied applicativ
formulation of Combinatory Logic (see e.al [3]):

app(So, X) = S1(X)  app(S1(X),y) = S2(xy) app(S2(%Y), 2) — app(app (X 2),app(Y; 2))

The rules for producing the partial applications of theombinator are similarly straightforward:

app (Fo, X) = F1(x) app(F1(x),y) = F2(x,y)

The rewrite rule for the full application of tHecombinator is more tricky because we must find a way of
implementing its two possible reductions. As in the origfieamulation of SF-calculus, since the choice
of which reduction to make is determined by the structurdneffirst argument we should like to be able
to use the pattern-matching capabilities inherent in tha tewriting discipline, e.g. by giving rewrite
rules such as:

app(F2(So,Y),2) =y app (F2 (F1(X),Y),2) — app(app(z Fo), X)

However these rules amot canonical since they contain two occurrences of a construchey are
pattern-matching ‘too deeply’. We can circumvent this birdaducing an auxiliaryprogram symbol
f-reduce and then having the rewrite rule for tke case ofpp delegate to this new program:

app (F2 (Xa y)v Z) — f-reduce (X> Y, Z)

Sincef-reduce is an independent program symbol, and only needs to pattatchnon its first argument
to determine which result to compute, we may give canonmatite rules for it, such as the following:

f-reduce(So,y,2) =y f-reduce (F1 (X), Y, 2) — app (app(z Fo), X)

We now have all the components to be able to present a cahoeigdte system that faithfully
implements SF-calculus.
Definition 4.1 (Currified Applicative SF-Calculus)Let >sF = 29U X3 be the signature comprising the
setXg = {So,S1,S2,Fo,F1,F2} of constructors and the s& = {app, f-reduce} of programs.Curryfied
Applicative SF-calculuss the term rewriting systerﬁF‘é defined by the rewrite rules given in Figlﬂe 1

over the signature sr. We denote its one-step and many-step reduction relatipnss% and e
@

Notice that the rewrite rules &F%, are canonical, in the sense of Definitlon] 3.1, and that theyakso
complete We also remark th&iF g is anorthogonalterm rewriting systemi [24, Def. 2.1.1].

It is interesting to observe that our implementation of @fewglus as a canonical applicative term
rewriting system has involved an application of tisitor design patte& [13]. When it comes to
reducing a complete application of tikecombinator, the computation must proceed based on the par-
ticular identity of some object (i.e. the first argument)t Without having any knowledge of that iden-
tity. The solution is to apply the visitor pattern, which invavavoking a new visit’ operation (that
we callf-reduce) on the object, which in response executes the approprétaviour based on itself-
knowledge of its own identity. We do not think it is entirelgiocidental that the visitor pattern has arisen
in our work: its connection with structural matching hagalty been noted [28], and investigating this
connection further is an avenue for future research.

There is a straightforward translation from SF—caIcquSE@

5In fact, the encoding that we are presenting in this papeseass a direct result of considering how the Factorisation
Calculus could be implemented in (Featherweight) Java.
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app (So, X) = S1(X) app (Fo, X) = F1(X)
app(S1(x),y) = S2(x,y) app(F1(X),y) = Fa(x,y)
app(S2(x,y), 2) — app(app (X, 2), app (Y, 2)) app(F2(x,y), z2) — f-reduce (X, Y, 2)
f-reduce(So,y,2) —y f-reduce (S1 (X), Y, 2) — app(app(z So), X)
f-reduce (Fo,y,2) —y f-reduce (F1 (X), Y, 2) — app(app(z Fo), X)
f-reduce (S2 (p, d), ¥; 2) — app (app (2 app(So, P)), d)
f-reduce (F2 (p, d), Y, 2) — app (app (2 app (Fo, P)), )

Figure 1: A Complete Set of Canonical Rewrite Rules for Giawli Applicative SF-calculus

Definition 4.2 (Translation of SF-calculus tBF%). The translation]-]g from SF-terms tFg-terms
is defined bS] @ = So. [Fl@ = Fo. and[MN] @ = app ([M]@. [N]@)-

We now show thaSFCg faithfully implements SF-calculus.

Lemma 4.3([[-] @ Preserves Reduction)et M and N be SF-terms; if M>5. N then[M]l@ =« [N]e-
@

Proof. It is sufficient to consider the basic reduction rules of @fealus. In the interests of clarity, we
underline the redex that is contracted at each step. Thd@aSés straightforward:

[SMNX]@ = app (app (app (So, [M]@); [Nll@), [X]@) = app(app(S1 ([M]e), [N]@), [X]e)

55 3PP (52 (M@, [N]@), [XJ@) —<rz app(app ([M]@: [X]@), app ([N]@; [X]@))
=[MX(NX)]e

The case foF with S the first argument (i.e. atomic) is as follows (the other atorase is symmetric):
[FSMN]@ = app (app (app (Fo, So), [M]@); [N]@) s app(app (F1(So0), [M]@). [N]e)
sz apP(F2 (So, [Ml@), [NJ@) =z f-reduce(So, [M]@, [NJa@) —< (M@

When the first argument tb is a factorable form, we must further consider its structdree case for
when the first argument X (for some ternX) is as follows:

[F(SX)MN]@ = app (app (app (Fo, 2pP (So; [X]@)), [M] @), [N]@)
—ee app (app (app (Fo, S1 ([X] @), [M] @), [N]e)
sz app (app (F1 (51 ([X]@)), [MJ@); [NJ@) —<rz app (F2 (S1 ([X]l@), [M]e@), [N]@)
(51 ([X]@), [M]@, [Nl@) —s app(app([N]@: So), [XJe) = [NSX]e

Again, the case for when the first argumenE s (for some termX) is symmetric and can be obtained
from the above sequence by replacing each occurrensg mf F; and each occurrence 8§ by F;.
The case for when the first argumen6iX Y (for some terms andY) is as follows:

—rge f-reduce
@

[F(SXY)MN]@ = app(app (app (Fo, app (app (So, [X]@), [Y]@)), [M]@), [N]@)
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—sr¢ app (app (app (Fo, app (S1 ([X] @), [Y] @), [M]e@); [N]e)
—5r¢ app(app (app (Fo, 52 ([X] @, [Y]@)): [M]@): [Nle)
—s aPP (3PP (F1 (52 ([X] @, [Y]@)), [Mlle), [N]e)

—se aPP(F2 (S2([X] @ [Y]@): [M]@). [N]@)

—spg f-reduce (Sz ([X]@: [Y]@): [M]e: [N]@)

—se¢ app(app ([N] @, app (So, [Xl@)), [Y]@) = [N(5X)Y]@

Once more, the case for when the first argumehRt{sy (for some terms andY) is symmetric and can
be obtained from the above sequence by replacing each encerofSg by Fy, each occurrence &
by F1, and each occurrence $% by F». O

To show thaf]-] @ preserves strong normalisation, we will rely on the notiba perpetual reduction
sequence We recall the relevant definitions of perpetual reductiand their properties [21]. A term
t is called anco-term (also denotedo(t)) if it has an infinite reduction sequence. A reductistep
t — sis calledperpetualif oo(t) implies«(s), that is it preserves divergence, and a reduction sequence
t1 — ... = t, is perpetual if every stepp — t;.1 is perpetual. Clearly, a perpetual reduction sequence
t —* t’ also preserves divergence.rédex uis called perpetual if its contraction in every context gigeh
perpetual reduction step. Let— t be a substitution instance of a rewrite rulésou is a redex and its
r-contraction), then call the subtermsuwfhat are those substituted for the variables the arguments
of u. Such an argument is said to &masedif it corresponds to a variable that dagst occur in the right-
hand side of. It is the case that for orthogonal rewrite systems evergxaehose erased arguments are
strongly normalising and closed (i.e. containing no vdegpis perpetual [21, Cor. 5.1].

We first prove a couple of auxiliary lemmas.

Lemma 4.4. Let N be an SF-normal form, theilN] @ is strongly normalising.

Proof. We characterise the normal forms as terms taking one of tleviog forms: S, F, SX, FX,
SXY or FXY, in which each subterm is also a normal form. We then procgedduction on the size of
terms. The base cases, i.e. wihers eitherS of F are trivial since thefffN] g is itself a normal form. For
the inductive cases, notice that the teSa$[X]|@), F1 ([X]l@). S2 ([X]@: [Y]@) andF2 ([X] @, [Y]@)
are strongly normalising since they are head normal and @yciion [X]j@ and [Y]@ are strongly
normalising as andY are by definition normal forms (smaller th&f). It is then straightforward to
show in each case that the (unique) reduction fidfijg to its corresponding head normal form given
above is perpetual since it does not erase any argument§,F%1i$ an orthogonal rewrite system. The
result then follows. O

Lemma 4.5. Let X, M and N be SF-normal forms, and O an operator (i.e. eith@r F) such that
OXMN —4 R; thenZ[[OXMN] @] — SFF ¢[[Rl@] is a perpetual reduction sequence for aﬁv;'/‘g)-

term contexts’.

Proof. We show that there is a reduction sequefo&X MN]g@ —_, [R]e@ Which contracts a perpetual
redex at each step, from which the result immediately fadlown fact, the reduction sequences that
witness this are exactly those that are used to show preaiena reduction. In each case notice that,
in the reduction sequence demonstrated in the proof of LethBahe only erased argument (when it
exists) is in the final reduction step and in each case thisnaegt is eithef[M] @ or [N]j@ which by
Lemma 4.1 is strongly normalising siné& andN are normal forms (and also closed since we do not
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consider SF-terms with variables). Thus, sinScF% is an orthogonal rewrite system, it follows that the
redex contracted at each step is perpetual. O

We can now prove the following result.

Lemma 4.6 ([-]@ Preserves Strong Normalisatiorilet M be a strongly normalising SF-term; then
[M]l@ is strongly normalising.

Proof. We use the same technique as used in the prodf]of [5, Thm.)B.4fd proceed by (strong)
induction on the length of the longest reduction sequence frirto its normal form. Whem = 0, then
we have thaM is a (SF-)normal form and thiyi/] g is strongly normalising w.r4+7_, by Lemmd 414

Whenn > 0 thenM must contain at least one redé&XY Z Consider arinnerm%stredex, whose
contractum is the terrR. ThusM = €[OXY 4 — ¢'[R] = N (for some (SF-)term context) and X,

Y andZ are normal forms (since the redex is innermost). Now, sMde strongly normalising so too is
N, and the length of its longest reduction sequence mustio#ystess tham (otherwisen would not be
maximum). Thus by the inductive hypothe§i¥] g is strongly normalising. Consider now the structure
of [M]@: we have[M]g = ¢’[[OXY Zg] for some SF@ yterm contexts”. SinceX,Y andZ are
normal forms, by Lemma 4.5 there is a perpetual reductionesgze from[M]@ = ¢’'[[OXY Zg| to
[NJe = ¢"'[[R]@], i-e. one which preserves divergence. Therefore, sjhdgy is strongly normalising
so too is[M]|@ (if it were not, neither wouldN] @ be). O

Using Berarducci and Bohm’s construction, outlined intEmdg, we obtain an encoding of SF-
calculus in thel -calculus.

Definition 4.7 (Translation of SF-calculus td-calculus) Fix a canonical representatiopse of s
w.r.t. the rewrite rules oSF‘é. The mapping-]|, = (-)%F o [-] @ translates SF-calculus td-calculus.

We leave it as an exercise to the reader to compute such aicahm@presentatiosg.
We now present our main result: tHal, is a faithful encoding of SF-calculus icalculus.

Theorem 4.8(Faithful Encoding of SF-calculus ih-calculus) The translation]-]|, of SF-calculus into
A-calculus preserves reduction and strong normalisation.

Proof. The result foIIows directly from the fact that the two traatg&ns that are composed to obtain

[-1a, namely[-] -)%F, each satisfy both these properties. In the case of the formeerefer to
Lemma.B an 6 for the latter to the results of Beraridarmd Bohm, cf. Theoremn 3.4 (note that all
terms are closed, since we do not consider SF-calculus arihhies). O

5 Expressiveness of Factorisation: Discussion & Related Wio

We now turn out attention to the question of the expressa®é SF-calculus relative to-calculus and
Combinatory Logic. On one hand our results, i.e. The@mﬂrﬁlg with those of Jay and Given-Wilson
[18], show that SF-calculus amd-calculus simulate the same executions. On the other, Bhlos is
structure complete whereascalculus is not. Is this a contradiction and, if so, how mteyei resolved?
Notwithstanding the long tradition of using simulationsdmaracterise computational equivalence, it
has since been realised that a refinement of this notion isssacty to draw richer, more meaningful
comparisons. While a complete and in-depth analysis is mbirwthe scope of the current paper, by
discussing our results with reference to some of this worlkaime to draw some concrete conclusions
about the how the expressiveness of structure completanesSF-calculus may be characterised.
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The ‘Standard’ Notion of Equivalence. From the earliest research into computability, two aspects
of abstract notions of computation were identified as reiet@the idea of expressiveness. Firstly, one
wants to compare the respective sefwictionsthat each model computes. For example, in recursion
theory it was shown that the set of primitive recursive fiored (on natural numbers) is a strict subset
of the recursive functions (see e.g.[[32]). At the same tithete is a requirement to compare models
that operate, at a fundamental level, in diverse domainsndiachinesA -calculus and Combinatory
Logic are, operationally, quite different ways to computéwas shown however that via particular
(and now canonical) representations of numbers, each noageicompute’ the same set of functions
on natural numbers, namely the partial recursive functi@mversely, Godelization allows each of the
computations in these models to simulatedby a partial recursive function [22].

This idea of simulation extends to the operation of the nottemselves: each model may simulate
the operational behaviour of the others. Such simulatides @ppear to abstract away the problem of
representation often we do want to compute functions of natural numbersyaver more often we
desire to compute functions over different domains; it @imbent upon us to represent elements of the
desired domain of discourse as terms of the computationdemd he initial characterisation of the set
of ‘computable’ functions was over the domain of natural ben@, but what is the set of ‘computable’
functions over some other given domain? With simulationsvben models it seems that one may at
least lay this question aside by observing that whatevebeamrpresented in one model may then also
be represented in the other, and therefore whatever funsctitey do compute it is the same in both
cases. A stronger conclusion would be that the set of corbfgutanctions over arbitrary domains is
isomorphic to the computable functions on natural numbers.

This simulation method has long since become the standarshdw two models are of equivalent
computational power, demonstrate simulations of eachdrother. One model of computation is only
more powerful than another, then, if itn®t possible to simulate the former in the latter. The approach
has been cemented over the years, notably in Landin’s nownakmork [25]. As the search space of
formal computation has been explored the notion of simutatias been adapted accordingly, and there
are now a number of sophisticated simulations between d# sbmodels, both sequential and concur-
rent (e.g.[[1] 20]). In this tradition, Theordm 4.8 is a reshlowing thatA -calculus is computationally
as powerful assF-calculus.

Refining the Notion of Expressiveness. It was already noted over two decades ago that despite the
broad applicability and application of the simulation negthit is not actually a fine-grained enough
notion to provide a complete and universal characterisatioexpressiveness. Felleisen observed that
since the languages we wish to compare are (usually) Twangplete, other methods (than simulation)
must be found in order to verify claims of relative (in-)egpsiveness [12]. He proposed a framework
based on the concept, from logic, efminability of symbols from conservative extensions|[23]. One
logical system is a conservative extension of another systéfhif the expressions (formulae) and
theorems of the latter are subsets of those of the formermbsyof £ (which is not inZ”) is eliminable

if there is a homomorphism (i.e. a map preserving the syistattucture)¢ : Exp(.¢) — Exp(¢”’) from

the expressions of” to the expressions af’’, which acts as identity for expressions.gf, such that

an expressiott is a theorem of? if and only if ¢(t) is a theorem of#’. Felleisen extends this to
programming languages by analogy - formulae are (syntdlstivalid) programs and the theorems are
the terminating programs. Then we may say that langu#de moreexpressive than languagé’ when

5Turing’s work is different in this respect, since he deldtety embarked on a characterisation of computable funstio
over a different domain, namely that of strings of arbitreyymbols.
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the former adds someon-eliminablesyntactic construct, i.e. one which cannot be ‘translaidya
Thus the standard simulation approach is refined by impaamngxtra criterion when one language is a
superset of another: can the larger one be built from thelen@ie usingnacro®

To place SF-calculus in this framework we can consider SKIEtgus, i.e. the extension of SF-
calculus by including an additional atomic term: the faarilk combinator. Since SKF-calculus is a
proper extension of Combinatory Logic, obtained by addieftcombinator, we can apply the expres-
siveness test of Felleisen. That is, we ask igliminable? The answer to this questiomiy indeed
this is guaranteed by Theoréml2.4. In this sense, Jay ana@Wilson's resultglo justify the claim that
SF-calculus is more expressive than Combinatory Logic/aedlculus.

More Abstract Notions of Computational Equivalence. The simulation method, and its refinement
described above, are still firmly grounded in gerationalview of computation, but recent work has
sought to anchor formal comparisons of expressiveness inra generalabstractbasis. A notable
contribution to this effort is the work of Boker and Dershai7]. They abstract the notion of compu-
tational model as simply itextensioni.e. the set of functions over its inherent domain that ihpates,
and consider simulations (encodings) between them. Theyedidne remarkable result that combining
the standard simulation approach with the natural contairtiraf one extensionality within another leads
to a paradox: some computational models can simulate modeth arestrictly more powerful in the
sense that they have larger extensionalities (i.e. compote functions). Thus, some representations
add more computational power

This result begs the question: do we consider simulaticamsweh ‘active’ mappings to constitute an
equivalence? One may suspect that the problem lies in alfpimjective mappings between domains,
and that imposing stricter conditions (e.g. bijections)uldoensure ‘passiveness’. This is indeed the
case, but adopting such restrictions is useless for mospaosons since the passive encodings are
ones which are “almost identity”. We have no choice but tovalsuch encodings, although we do
have the option of considering a hierarchy of equivalenesgt on the properties of the encodings used.
Boker and Dershowitz define four increasingly stricter oragi of (in-)equivalence based on, respectively:
injective encodings (power equivalence), correspondinthé¢ standard approach; injective encodings
for which the images are computable in the simulating mof#dgeent power equivalence); bijective
encodings (bijective power equivalence); and bijectidra aire inverses of each other (isomorphism).
Boker and Dershowitz also show that there are models (imgud@iuring Machines and the recursive
numeric functions) which cannot simulate any stronger ndeey areinterpretation complete

We may also gain insight into the relative expressivenesSFotalculus and -calculus using this
framework. Our result shows that they grewer equivalent Theorenl 2]4 shows that they cannot be
bijectively power equivalent (nor, therefore, isomorprsice that would imply thah -calculus could
distinguish arbitrary normal forms. Thus, in this sensey thiee not equivalent. We do not know if SF-
calculus ishijectively strongethanA -calculus; this would require demonstrating a bijectiveagting of
the latter in the former. Also, we do not knowAfcalculus is decently power equivalent to SF-calculus;
we consider it at least a possibility. We would also expeat,tbue to its intensional capabilities, SF-
calculus is interpretation complete.

Related to the work of Boker and Dershowitz, is that of Coclatl Hofstra[[9], and Longley [26]
which are both concerned with category-theoretic desonptof abstract computational models. In these
frameworks model equivalence is interpreted by categoiscanorphism, and so akin to the strongest
notion of equivalence considered by Boker and Dershowitz.
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6 Conclusions & Future Work

In this paper, we have considered the relationship of thentcintroduced SF-calculus to the ‘canoni-
cal’ computational model of-calculus and, so by extension, Combinatory Logic. We haveahstrated
that SF-calculus can be faithfully encoded (i.e. simulpbedhe A -calculus by defining a behaviourally
equivalent applicative term rewriting system and thenrpriting this system i -calculus using a con-
struction of Berarducci and Bohm. This result shows that8lEulus and\ -calculus are of equivalent
computational power, according to the classical integtien of computational equivalence. We have
also considered the relationship of SF-calculus toAthealculus using a more nuanced interpretation of
equivalence, informed by research in the literature. Meggonve hope to have exposed both SF-calculus
and Berarducci and Bohm’s encoding to greater promineWesfeel that they are both subjects of great
interest which deserve to be better known.

With respect to future work, there is still great scope forestigating the expressiveness of SF-
calculus. There are the open questions we have highligketgarding SF-calculus as it relates to the
framework of Boker and Dershowitz. The categorical and tsianal natures of SF-calculus also de-
serve exploration. Beyond this, the wider question of host be qualify computational expressiveness
still remains; we believe the study of SF-calculus can mleviurther insights on this. For example,
the structural completeness property is already a new eneialy and Vergara have also considered a
strengthening of the notion of decent power equivalencelhithvthe simulation of each model in it-
self via the composition of the two encodings is computableach model [19]. Quantitative questions
regarding expressiveness also present themselves: e.gnoading of SF-calculus ik-calculus leads
to a large increase in the size of terms; are there lower loondthe size of such increases which
meaningfully quantify expressive power?
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