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Jay and Given-Wilson have recently introduced the Factorisation (or SF-) calculus as a minimal
fundamental model ofintensionalcomputation. It is a combinatory calculus containing a special
combinator,F, which is able to examine the internal structure of its first argument. The calculus is
significant in that as well as being combinatorially complete it also exhibits the property of structural
completeness, i.e. it is able to represent any function on terms definable using pattern matching on
arbitrary normal forms. In particular, it admits a term thatcan decide the structural equality of any
two arbitrary normal forms.

Since SF-calculus is combinatorially complete, it is clearly at least as powerful as the more
familiar and paradigmatic Turing-powerful computationalmodels ofλ -calculus and Combinatory
Logic. Its relationship to these models in the converse direction is less obvious, however. Jay and
Given-Wilson have suggested that SF-calculus is strictly more powerful than the aforementioned
models, but a detailed study of the connections between these models is yet to be undertaken.

This paper begins to bridge that gap by presenting a faithfulencoding of the Factorisation Cal-
culus into theλ -calculus preserving both reduction and strong normalisation. The existence of such
an encoding is a new result. It also suggests that there is, insome sense, an equivalence between
the former model and the latter. We discuss to what extent ourresult constitutes an equivalence by
considering it in the context of some previously defined frameworks for comparing computational
power and expressiveness.

1 Introduction

Mathematical models of computation are useful in studying the formal properties of programming prac-
tice. Indeed, the field of computing today arose partly out ofthe study of such abstract models: namely
Turing Machines [33], theλ -calculus [8], and Combinatory Logic [10], which are consequently consid-
ered to be archetypal computational models. It is standard practice to qualify the abilities, or expressive-
ness, of a formal model of computation by demonstrating thatit maysimulate(and be simulated by) the
operation of other formal models. This is the very essence ofthe notion ofTuring-completeness, which
encapsulates the intuition that a model may carry out any operation that is ‘effectively computable’. To
construct such a simulation one must first give an injective mapping, showing how the terms of the source
model may be represented by terms of the target. For example,this is the basis behind the process of
Gödelization and the Church encoding of natural numbers [22]. Two basic properties are then required:
that each atomic operational step of the source model is reflected by one or more steps of the target, and
that a program of the target modelterminateswhenever the corresponding source program does. The
former is a key ingredient of Landin’s influential work on comparing languages [25], while the latter is
used as a criterion for comparing expressiveness by, e.g., Felleisen [12]. Formal definitions of encodings
incorporating these properties, referred to as “faithful”, are already in use by the 90s, e.g. in [2], and are
now common (see e.g. [15]).
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Recently, Jay’s work on formal models of generic pattern matching [17] have led, in collaboration
with Given-Wilson, to the formulation of theFactorisation Calculus. This is a combinatory calculus
comprising two combinators: theS combinator, familiar from Combinatory Logic; and a newF combi-
nator. The purpose of the latter is to enable arbitrary (head) normal terms to befactorised, that is split
into their constituent parts, thereby allowing the examination of the internal structure of terms. This en-
dows Factorisation Calculus with an interesting and powerful property: that ofstructure completeness.
This means that any function on terms themselves definable bypattern matching overarbitrary normal
forms is representable. Thus, Factorisation Calculus can be viewed as a minimal, fundamental model
characterising not only the abstract notion ofpattern matchingbut alsointensional computation.

Jay and Given-Wilson show that Factorisation Calculus is Turing-complete, demonstrating a straight-
forward simulation of Combinatory Logic in their calculus.Moreover, due to its structural completeness,
there is a term of Factorisation Calculus which can decide the structural equality of any two arbitrary nor-
mal forms. Conversely, factorisation and structural equality of normal formscannotbe so represented in
λ -calculus and Combinatory Logic, thus these models arenotstructure complete. This hints at some sort
of disparity in the expressivity of the two models. In their original and subsequent research [18, 14, 19],
Jay and Given-Wilson speculate that the added expressive power may manifest itself in a non-existence
result for simulations of Factorisation Calculus inλ -calculus, but this is not pursued in detail.

We show that theredoesexist a simulation of Factorisation Calculus withinλ -calculus. The existence
of such a simulation has not been demonstrated before, and this is the primary contribution of our paper.
The simulation is made possible by a construction due to Berarducci and Böhm, which shows how to
encode a certain class of term rewriting systems withinλ -calculus. We show that Factorisation Calculus
can be simulated by such a term rewriting system, whence the result follows. In the classical framework,
our result signifies that Factorisation Calculus is no more powerful thanλ -calculus. Thus there appears to
be a mismatch between our result and the structure completeness property that the standard simulation-
based notion of equivalence does not account for. To begin totry and resolve this, we consider some
research in the literature which refines the concept of computational equivalence and discuss how our
result relates to this.

Outline The rest of this paper is organised as follows. Section 2 recalls Jay and Given-Wilson’s Fac-
torisation Calculus and its basic properties. Section 3 describes Berarducci and Böhm’s construction
for encoding so-called canonical rewrite systems within the λ -calculus. In Section 4 we present our
technical contribution: a simulation of the FactorisationCalculus in theλ -calculus via this construction.
Section 5 then discusses, in light of our results, how the relative expressiveness of Factorisation Calculus
andλ -calculus may be characterised. Section 6 concludes and remarks on areas for future work.

2 Factorisation Calculus

We begin by presenting Jay and Given-Wilson’s FactoriationCalculus itself, and review its principal
properties. Factorisation Calculus, or more accurately SF-calculus1, is a combinatory calculus whose
terms are those of the free algebra over the two-element signature containing the combinatorsS and
F, which each reduce upon being applied to three arguments. The former is the familiar combinator
from Combinatory Logic [10] which applies its first and second arguments to duplicates of its third.
The F combinator, on the other hand, introduces new capabilitiesin the form of factorisation: it is

1We may say that any combinatory calculus that is structure complete isa factorisation calculus.



78 Encoding the Factorisation Calculus

able to examine theinternal structure of its first argument and process its second and third in different
ways depending on whether that argument isatomic(i.e. itself a combinator) orcompound(i.e. a partial
application). To illustrate this, consider how theF combinator reduces in the following two instances:

FSMN → M F(SX)MN → NSX

Observe that when the first argument is atomic, it eliminatesits third argument and returns its second. On
the other hand, when the first argument is compound it eliminates its second argument andfactorisesthe
first into its left- and right-hand constituent components,passing theseseparatelyto its third argument.

Formally, SF-calculus is defined as follows.

Definition 2.1 (SF-calculus [18,§ 4]). The SF-calculus is a combinatory rewrite system over terms
(ranged over by uppercase roman letters M, N, etc.) given by the following grammar:

M, N ::= S | F | M N

Terms of the formS, F, SM, FM, SM N, or FM N (i.e. partially applied combinators) are calledfac-
torable forms. Reduction of terms is the smallest contextually closed binary relation→SF on terms (with
the reflexive transitive closure denoted by→∗

SF
) satisfying:

SM N X →SF M X (N X)

FOM N→SF M if O is S or F

F(PQ)M N →SF N PQ if PQ is a factorable form

Reduction of SF-calculus is confluent, and theK combinator of Combinatory Logic can be repre-
sented in SF-calculus byFF (also, indeed, byFS). Thus, there is a trivial encoding of Combinatory
Logic in SF-calculus which preserves reduction and strong normalisation [14].

The behaviour of theF combinator gives SF-calculus anintensionalquality: one may define higher
order functions in SF-calculus which discriminate betweenfunctions whoseimplementationsare dif-
ferent even when those functions areextensionallyequal (i.e. produce identical outputs for identical
inputs). For example, for any normal formX, the termIX ≡ S(FF)X implements the identity function
(i.e. IX M →∗

SF
M for all M) and thus all such terms are extensionally equal. However, an SF-termT can

be constructed which distinguishes them (by behaving asT IX →∗
SF

X). Moreover, one can construct an
SF-term that can decide the equality of any twoarbitrary normal forms.

The intensional behaviour of SF-calculus is formally characterised by a property calledstructure
completeness, which captures the notion that everysymbolic computation(i.e. Turing-computable sym-
bolic function) on normal forms is represented by some term.

Definition 2.2 (Structure Completeness [18,§ 7-8]). Let C be a confluent combinatory calculus whose
terms include variables, with reduction relation→∗

C
. Definepatternsto be thelinear normal forms

(i.e. containing no more than one occurrence of each variable), andmatchable formsto be partially
applied combinators.

1. Amatch{U/P} of a pattern P against a term U may be defined tosucceedwith a substitution of
terms for variables, orfail as follows (whereId denotes the identity function and⊎ the disjoint
union of substitutions with match failure as an absorbing element):

{U/x} = [U/x] {A/A}= Id

{U V/PQ}= {U/P}⊎{V/Q}

{U/P}= fail

(if A atomic)

(if U V a compound)

(otherwise, if U matchable)
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2. A caseis an equation of the form P= M where P is a pattern and M an arbitrary term, which
defines asymbolic functionG on terms byG (U) = σ (M) if {U/P} succeeds with substitutionσ ,
andG (U) =U if it fails.

3. A confluent combinatory calculus isstructure completeif for every pattern P and term M, there is
some term G such that GU→∗

C
G (U) for every term U on whichG is defined; i.e. the symbolic

function defined by every case is represented by some term.

Structure completeness subsumes combinatorial completeness sinceλx.M is given by the casex= M.

Theorem 2.3([18, Cor. 8.4]). SF-calculus is structure complete.

TheF combinator itself represents a symbolic computationF , namely that of factorisation:

F (A, M, N) = M if A is atomic

F (PQ, M, N) = N PQ if PQ is compound

A significant (and arguably remarkable) fact is thatF cannot be represented in Combinatory Logic (for
definitions of atomic and compound appropriate thereto).

Theorem 2.4([18, Thm. 3.2]). Factorisation of SK-combinators is a symbolic computationthat is not
representable in Combinatory Logic.

The equality predicate on normal forms also has no representation in Combinatory Logic. Thus,
there exist (symbolic) functions, which are clearly ‘computable’ from an empirical point of view, that
are not (directly) representable in Combinatory Logic (there is also a similar result forλ -calculus [4]).
This result clearly points towards some form of added expressivity possessed by SF-calculus over the
archetypal computational models. It is to this issue that wewill return in Section 5.

3 Strongly Normalising Solutions of Equational Systems inλ -calculus

We now reiterate the interpretation result of Berarducci and Böhm [5], upon which our technical contri-
bution rests. Essentially, this result says that systems ofequations for a particular class of term algebras
can be given solutions in theλ -calculus such that the representation of each atomic term of the algebra
is strongly normalisingthus having anormal form. Moreover, when the set of equations is interpreted as
a rewrite system the encoding of terms preserves reduction and strong normalisation.

We assume the usual definitions of theλ -calculus without further explanation (readers may refer to
[4] for details), withΛ denoting the set of lambda terms,→∗

β denoting the (multi-step)β -reduction rela-
tion, and=β denotingβ -equality (i.e. the equivalence relation on lambda terms induced byβ -reduction).
Furthermore, we also assume the familiar algebraic notion of the set Ter(Σ) of (Σ-)termsover the signa-
ture (set offunction symbols, each with an associated arity)Σ. We can then also consider the setΛ(Σ)
of extendedlambda terms (i.e. lambda terms which may containΣ-terms); notice that both Ter(Σ) andΛ
are (strict) subsets ofΛ(Σ).
Definition 3.1 (Canonical Systems of Equations). Fix a signatureΣ and letE be a set of equations
between terms t∈ Ter(Σ). We say thatE is canonicalif Σ can be partitioned into two disjoint subsetsΣ0

andΣ1 (i.e. Σ = Σ0∪Σ1) such that: each equation inE is of the formf (c(x1, . . . ,xm),y1, . . . ,yn) = t with
c∈ Σ0 and f∈ Σ1 and where the variables x1, . . . ,xm,y1, . . . ,yn are all distinct and form a superset of the
variables in the term t; and for each distinct pair(c, f ) ∈ Σ0×Σ1 there is at most one equation inE of
this form. We say thatE is completeif for each distinct pair(c, f ) ∈ Σ0×Σ1 there is exactly one such
equation inE .
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Canonical systems of equations, then, partition the signature into a setΣ0 of (algebraic datatype)
constructors, andΣ1 of programsdefined by pattern matching over the constructors on the firstargument.
Notice that any incomplete canonical system of equations can trivially be made complete by adding
equations for the missing cases which simply project one of the function’s arguments2.

As an example of a canonical system of equations, we may observe that the usual recursive definition
of addition over the datatype of (Peano) natural numbers is such a system:

add(zero,x) = x add(succ (x),y) = succ(add(x,y))

We have a signature containing one function symboladd, one nullary constructorzero, and one unary
constructorsucc; moreover in this simple case, the equation system is already complete. In fact, every
partial recursive function (on natural numbers) can be defined by a canonical system of equations [5, 6].

Given an equational systemE over a signatureΣ, we can also take it to define a term rewriting system
on Ter(Σ) by reading each equation as arewrite rule, i.e. fi(c j(x1, . . . ,xm),y1, . . . ,yn)→ t. We will write
→E for the (one-step) reduction relation of the rewrite systemdefined byE in this way (i.e. the smallest
binary relation on terms satisfying the rewrite rules and closed under substitution and contexts), and→∗

E

for its reflexive, transitive closure (i.e. multi-step reduction). Ultimately, the aim is to interpret equational
systems (and their associated rewrite systems) withinλ -calculus.

Definition 3.2 (Interpretations). A representationof the signatureΣ is a functionφ : Σ → Λ from the
function symbols ofΣ to (closed) lambda terms, and induces a map(·)φ : Λ(Σ)→ Λ in the obvious way,
namely by xφ = x, (λx.M)φ = λx.Mφ , (MN)φ = MφNφ , and for f∈ Σ, f (t1, . . . , tn)

φ = φ( f ) t1φ . . . tnφ .
We say that a representationφ satisfies(or solves) E if for each equation t1 = t2 (and corresponding
rewrite rule t1 → t2) in E we have t1φ =β t2φ (and correspondingly also t1

φ →∗
β t2φ ). When a represen-

tation φ satisfiesE , we say thatφ is an interpretation(or a solution) of E within λ -calculus.

The following construction gives a special kind of representation for canonical systems of equations.

Definition 3.3 (Canonical Representations). Let E be a canonical system of equations that partitions
the signatureΣ into constructorsΣ0 = {c1, . . . ,cr} and programsΣ1 = { f1, . . . , fk}. Without loss of
generality we may assume thatE is complete, and so for each1≤ i ≤ k and1≤ j ≤ r let b(i, j) denote
the term t such that fi(c j(x1, . . . ,xm),y1, . . . ,yn) = t ∈ E .

We will make use of the following notational abbreviations:
- Let 〈t1, . . . , tn〉 denote the Church n-tuple, i.e.λx.xt1 . . . tn.
- LetΠn

k (where1≤ k≤ n) be the n-ary kth projection function, i.e.λx1 . . .xn.xk.
- For k≥ i > 1, let ti, . . . , tk, . . . , ti−1 denote the cyclic permutation of t1, t2, . . . , tk beginning with ti;

(in an abuse of notation we may also take ti, . . . , tk, . . . , ti−1 = t1, t2, . . . , tk when i= 1).
We now define two disjoint representationsϑ andζ for constructors and programs respectively.

(Representation of Constructors)For each1≤ i ≤ r, we define the representation of the constructor
ci as follows (where n is the arity of ci):

ϑ(ci) = λx1 . . .xn f . f Πr
i x1 . . .xn f

(Representation of Programs)We choose k distinct fresh variables v1, . . . ,vk not occurring inE and
fix a ‘pre-representation’,ψ , of Σ1 defined byψ( fi) = 〈vi , . . . ,vk, . . . ,vi−1〉 for each1 ≤ i ≤ k.

2Alternatively, one might want to introduce a new nullary constructor (denoting an ‘error’ value) and add equations for the
missing cases that simply return this value.
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Using this representation, and the representation of constructors defined above, we then define
k× r lambda terms t(i, j) (1≤ i ≤ k, 1≤ j ≤ r), using the equations inE as follows:

t(i, j) = λx1 . . .xmvi . . .vk . . .vi−1y1 . . .yn.(b(i, j)
ψ)ϑ

where fi(c j(x1, . . . ,xm),y1, . . . ,yn) = b(i, j) ∈ E is the equation defining the behaviour of fi when
given a datum constructed using cj as its first argument. We now define k terms, each one a
Church r-tuple collating the bodies of all the cases for one of the programs inΣ1, as follows:

ti = 〈t(i,1), . . . , t(i,r)〉

(where1≤ i ≤ k). Each program is then represented by a Church k-tuple containing the collated
representations of each program defintion, beginning with its own. That is,ζ is defined by:

ζ ( fi) = 〈ti , . . . , tk, . . . , ti−1〉 (1≤ i ≤ k)

The representationφ = ϑ ∪ζ is called acanonicalrepresentation ofΣ with respect toE .

To gain some insight into the construction defined above, onecan observe that it is related to an en-
coding of data attributed to Scott3 (and thus commonly referred to in the literature as the Scottencoding),
which has subsequently been developed by others (e.g. [30, 27, 16, 31]). In the more familiar ‘standard’
encoding of functions, a fixed-point combinator is used to solve any recursion in the definition. This has
the effect of making recursionexplicit, and thus the representations of recursive functions have infinite
expansions consisting of a ‘list’ of distinct instances of the function body, one for each recursive call
that may be made. Applying the function to a datum then corresponds to afold of the datum over this
list, which discards the remaining infinity of recursive calls once the base case is reached. Therefore, as
described by Böhm et al. [6,§3], in this scheme functions are ‘diverging objects which, when applied to
data, may “incidentally” converge’. In encodings of the Scott variety, the recursive nature of functions is
kept implicit and, while still triggered by application to a datum, only reproduced ‘on demand’. Hence
we obtain finite objects which now ‘may “incidentally” diverge’ when applied to data4.

To explicate the particular encoding specified by Definition3.3, we point out that the representation
of a constructor is a (lambda) function that takes in the appropriate number of arguments (thesub-data
of the datum that is subsequently constructed) and then waits to be given a function, which will be the
program to be executed. Now, looking at how the constructor representation uses this function argument,
we see that programs should expect to be given a projection function, followed by a number of sub-
data, and then they are also passeda copy of themselves. It is this final element which is the key to
Scott-type encodings, and allows recursion to be kept implicit. Looking now at the representation of
programs we see that they are Churchk-tuples containing an element for each program defined byE

(each of which is a Churchr-tuple, where each element is a representation of one of the cases of that
program’s definition). Thus the representation of each program contains the definition ofeveryprogram
defined byE ; in particular it will contain the definition of each programwhich it may itself invoke. To
illustrate in more detail how the encoding works, we can consider the general reduction sequence of a
term representing the application of some programprogi to some arguments, the first of which is a datum
constructed asc j (d1, . . . ,dm):

(progi (c j (d1, . . . ,dm))arg1 . . . argm)
φ = 〈ti , . . . , ti−1〉(c j (d1, . . . ,dm))

φ
arg

φ
1 . . . argφ

m

3The citation can be found in Curry, Hindley and Seldin [11, p.504].
4This reversed form of the slogan is also due to Böhm et al., and illustrates the dual nature of the Scott and Church encodings.
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→∗
β (λx.xti . . . ti−1)(λ f . f Πr

jd1 . . .dm f )argφ
1 . . . argφ

m (1)

→β (λ f . f Πr
jd1 . . .dm f ) ti . . . ti−1arg

φ
1 . . . argφ

m (2)

→β ti Πr
jd1 . . .dmti ti+1 . . . ti−1arg

φ
1 . . . argφ

m (3)

= 〈ti,1, . . . , ti,r 〉Πr
jd1 . . .dmti ti+1 . . . ti−1arg

φ
1 . . . argφ

m (4)

= (λx.xti,1 . . . ti,r )Πr
jd1 . . .dmti ti+1 . . . ti−1arg

φ
1 . . . argφ

m (5)

→β Πr
j ti,1 . . . ti,r d1 . . .dmti ti+1 . . . ti−1arg

φ
1 . . . argφ

m (6)

→β ti, j d1 . . .dmti ti+1 . . . ti−1arg
φ
1 . . . argφ

m (7)

= (λx1 . . .xmvi . . .vk . . .vi−1y1 . . .yn.(b(i, j)
ψ)ϑ )d1 . . .dmti ti+1 . . . ti−1arg

φ
1 . . . argφ

m

→∗
β (b(i, j) [d1/x1, . . . ,dm/xm,arg1/y1, . . . ,argn/yn])

φ (8)

When the program is applied to a datum (Eq. (1)), its representation arranges to apply the datum first to
the representations of each program beginning with its own,and then to the remainder of the arguments
(Eq. (2)). Then, the particular structure of the datum will reduce the expression to pick out the appropriate
case of the program definition to be executed, and apply it to the sub-data and the representations of
each program, having duplicated the program being executed(Eqs. (3) to (7)). This then reduces to the
representation of the appropriate substitution instance of the function body (Eq. (8)).

The result of Berarducci and Böhm says that a canonical representation gives an interpretation that
also preserves strong normalisation.

Theorem 3.4 (Interpretation Theorem [5, Thm 3.4]). Let Σ be a signature andE a canonical set of
equations forΣ; then any canonical representationφ for Σ with respect toE is an interpretation ofE
within λ -calculus. In addition(·)φ preserves strong normalisation of closed terms.

4 Encoding the Factorisation Calculus

In this section, we present our novel technical contribution: an encoding of SF-calculus inλ -calculus.
We believe that this is the first such encoding presented in the literature. Our encoding is a faithful
simulation; it preserves both the reduction behaviour of terms (thus alsoβ -equality) and their termination
behaviour (i.e. strong normalisation). In this section we shall make use of standard notation and results
for term rewriting systems, details of which may be found in [24].

The key step to the encoding is to define a rewrite system behaviourally equivalent to SF-calculus that
is also canonical, in the sense of Definition 3.1. It is then simply a matter of applying the construction
of Berarducci and Böhm to obtain the encoding. Thus it is ourtranslation of SF-calculus into this
intermediate rewrite system that is the primary novelty of our contribution.

We are aiming to derive a set of rewrite rules that iscanonicaland so we must translate the schematic
definition of Jay and Given-Wilson, as presented in Section 2, into one consisting of algebraic rewrite
rules. There are two salient features of Definition 3.1 that we must take into account: that the rewrite
rules must make a distinction betweenprogramsandconstructors; and that the left-hand side of each
rewrite rule must contain exactly one program symbol and oneconstructor. To obtain rewrite rules of
the required form, we recast SF-calculus as acurryfied, applicativeterm rewriting system. That is, we
first introduce an explicit program symbolapp to denote application and use the symbolsS andF solely
asconstructors. Secondly we stratify the combinatorsC ∈ {S,F} into sets{C0,C1,C2} of constructors,
each of which represent successivepartial applications of their underlying combinatorC. Although this
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‘currying’ process is well-known from the world of functional programming, the reader may refer to
[20, 3] for a formal definition of this process in the context of general term rewriting.

We may take the rewrite rules for theS combinator directly from the standard curryfied applicative
formulation of Combinatory Logic (see e.g. [3]):

app(S0, x)→ S1 (x) app(S1 (x), y)→ S2 (x, y) app(S2 (x, y), z)→ app(app(x, z), app(y, z))

The rules for producing the partial applications of theF combinator are similarly straightforward:

app(F0, x)→ F1 (x) app(F1 (x), y)→ F2 (x, y)

The rewrite rule for the full application of theF combinator is more tricky because we must find a way of
implementing its two possible reductions. As in the original formulation of SF-calculus, since the choice
of which reduction to make is determined by the structure of the first argument we should like to be able
to use the pattern-matching capabilities inherent in the term rewriting discipline, e.g. by giving rewrite
rules such as:

app(F2 (S0, y), z)→ y app(F2 (F1 (x), y), z)→ app(app(z, F0), x)

However these rules arenot canonical since they contain two occurrences of a constructor: they are
pattern-matching ‘too deeply’. We can circumvent this by introducing an auxiliaryprogram symbol
f-reduce and then having the rewrite rule for theF2 case ofapp delegate to this new program:

app(F2 (x, y), z)→ f-reduce (x, y, z)

Sincef-reduce is an independent program symbol, and only needs to pattern match on its first argument
to determine which result to compute, we may give canonical rewrite rules for it, such as the following:

f-reduce (S0, y, z)→ y f-reduce (F1 (x), y, z)→ app(app(z, F0), x)

We now have all the components to be able to present a canonical rewrite system that faithfully
implements SF-calculus.

Definition 4.1 (Currified Applicative SF-Calculus). Let ΣSF = Σ0∪Σ1 be the signature comprising the
setΣ0 = {S0,S1,S2,F0,F1,F2} of constructors and the setΣ1 = {app, f-reduce} of programs.Curryfied
Applicative SF-calculusis the term rewriting systemSFC

@ defined by the rewrite rules given in Figure 1
over the signatureΣSF. We denote its one-step and many-step reduction relations by →

SF
C
@

and→∗
SF

C
@

.

Notice that the rewrite rules ofSFC
@ are canonical, in the sense of Definition 3.1, and that they are also

complete. We also remark thatSFC
@ is anorthogonalterm rewriting system [24, Def. 2.1.1].

It is interesting to observe that our implementation of SF-calculus as a canonical applicative term
rewriting system has involved an application of theVisitor design pattern5 [13]. When it comes to
reducing a complete application of theF combinator, the computation must proceed based on the par-
ticular identity of some object (i.e. the first argument), but without having any knowledge of that iden-
tity. The solution is to apply the visitor pattern, which involves invoking a new ‘visit’ operation (that
we call f-reduce) on the object, which in response executes the appropriate behaviour based on itsself-
knowledge of its own identity. We do not think it is entirely coincidental that the visitor pattern has arisen
in our work: its connection with structural matching has already been noted [28], and investigating this
connection further is an avenue for future research.

There is a straightforward translation from SF-calculus toSFC
@.

5In fact, the encoding that we are presenting in this paper arose as a direct result of considering how the Factorisation
Calculus could be implemented in (Featherweight) Java.
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app(S0, x)→ S1 (x) app(F0, x)→ F1 (x)

app(S1 (x), y)→ S2 (x, y) app(F1 (x), y)→ F2 (x, y)

app(S2 (x, y), z)→ app(app(x, z), app(y, z)) app(F2 (x, y), z)→ f-reduce (x, y, z)

f-reduce (S0, y, z)→ y f-reduce (S1 (x), y, z)→ app(app(z, S0), x)

f-reduce (F0, y, z)→ y f-reduce (F1 (x), y, z)→ app(app(z, F0), x)

f-reduce (S2 (p, q), y, z)→ app(app(z, app(S0, p)), q)

f-reduce (F2 (p, q), y, z)→ app(app(z, app(F0, p)), q)

Figure 1: A Complete Set of Canonical Rewrite Rules for Currified Applicative SF-calculus

Definition 4.2 (Translation of SF-calculus toSFC
@). The translation[[·]]@ from SF-terms toSFC

@-terms
is defined by[[S]]@ = S0, [[F]]@ = F0, and[[MN]]@ = app([[M]]@, [[N]]@).

We now show thatSFC
@ faithfully implements SF-calculus.

Lemma 4.3([[·]]@ Preserves Reduction). Let M and N be SF-terms; if M→∗
SF

N then[[M]]@→∗
SF

C
@
[[N]]@.

Proof. It is sufficient to consider the basic reduction rules of SF-calculus. In the interests of clarity, we
underline the redex that is contracted at each step. The casefor S is straightforward:

[[SM N X]]@ = app(app(app(S0, [[M]]@), [[N]]@), [[X]]@)→
SF

C
@
app(app(S1 ([[M]]@), [[N]]@), [[X]]@)

→
SF

C
@
app(S2 ([[M]]@, [[N]]@), [[X]]@)→

SF
C
@
app(app([[M]]@, [[X]]@), app([[N]]@, [[X]]@))

= [[M X (N X)]]@

The case forF with S the first argument (i.e. atomic) is as follows (the other atomic case is symmetric):

[[FSM N]]@ = app(app(app(F0, S0), [[M]]@), [[N]]@)→
SF

C
@
app(app(F1 (S0), [[M]]@), [[N]]@)

→
SF

C
@
app(F2 (S0, [[M]]@), [[N]]@)→

SF
C
@
f-reduce (S0, [[M]]@, [[N]]@)→

SF
C
@
[[M]]@

When the first argument toF is a factorable form, we must further consider its structure. The case for
when the first argument isSX (for some termX) is as follows:

[[F(SX)M N]]@ = app(app(app(F0, app(S0, [[X]]@)), [[M]]@), [[N]]@)

→
SF

C
@
app(app(app(F0, S1 ([[X]]@)), [[M]]@), [[N]]@)

→
SF

C
@
app(app(F1 (S1 ([[X]]@)), [[M]]@), [[N]]@)→

SF
C
@
app(F2 (S1 ([[X]]@), [[M]]@), [[N]]@)

→
SF

C
@
f-reduce (S1 ([[X]]@), [[M]]@, [[N]]@)→

SF
C
@
app(app([[N]]@, S0), [[X]]@) = [[NSX]]@

Again, the case for when the first argument isFX (for some termX) is symmetric and can be obtained
from the above sequence by replacing each occurrence ofS0 by F0 and each occurrence ofS1 by F1.

The case for when the first argument isSX Y (for some termsX andY) is as follows:

[[F(SX Y)M N]]@ = app(app(app(F0, app(app(S0, [[X]]@), [[Y]]@)), [[M]]@), [[N]]@)
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→
SF

C
@
app(app(app(F0, app(S1 ([[X]]@), [[Y]]@)), [[M]]@), [[N]]@)

→
SF

C
@
app(app(app(F0, S2 ([[X]]@, [[Y]]@)), [[M]]@), [[N]]@)

→
SF

C
@
app(app(F1 (S2 ([[X]]@, [[Y]]@)), [[M]]@), [[N]]@)

→
SF

C
@
app(F2 (S2 ([[X]]@, [[Y]]@), [[M]]@), [[N]]@)

→
SF

C
@
f-reduce (S2 ([[X]]@, [[Y]]@), [[M]]@, [[N]]@)

→
SF

C
@
app(app([[N]]@, app(S0, [[X]]@)), [[Y]]@) = [[N(SX)Y]]@

Once more, the case for when the first argument isFX Y (for some termsX andY) is symmetric and can
be obtained from the above sequence by replacing each occurrence ofS0 by F0, each occurrence ofS1
by F1, and each occurrence ofS2 by F2.

To show that[[·]]@ preserves strong normalisation, we will rely on the notion of a perpetual reduction
sequence. We recall the relevant definitions of perpetual reductionsand their properties [21]. A term
t is called an∞-term (also denoted∞(t)) if it has an infinite reduction sequence. A reductionstep
t → s is calledperpetualif ∞(t) implies ∞(s), that is it preserves divergence, and a reduction sequence
t1 → . . . → tn is perpetual if every stepti → ti+1 is perpetual. Clearly, a perpetual reduction sequence
t →∗ t ′ also preserves divergence. Aredex uis called perpetual if its contraction in every context yields a
perpetual reduction step. Letu→ t be a substitution instance of a rewrite ruler (sou is a redex andt its
r-contraction), then call the subterms ofu that are those substituted for the variables inr thearguments
of u. Such an argument is said to beerasedif it corresponds to a variable that doesnotoccur in the right-
hand side ofr. It is the case that for orthogonal rewrite systems every redex whose erased arguments are
strongly normalising and closed (i.e. containing no variables) is perpetual [21, Cor. 5.1].

We first prove a couple of auxiliary lemmas.

Lemma 4.4. Let N be an SF-normal form, then[[N]]@ is strongly normalising.

Proof. We characterise the normal forms as terms taking one of the following forms: S, F, SX, FX,
SX Y or FX Y, in which each subterm is also a normal form. We then proceed by induction on the size of
terms. The base cases, i.e. whenN is eitherS of F are trivial since then[[N]]@ is itself a normal form. For
the inductive cases, notice that the termsS1 ([[X]]@), F1 ([[X]]@), S2 ([[X]]@, [[Y]]@) andF2 ([[X]]@, [[Y]]@)
are strongly normalising since they are head normal and by induction [[X]]@ and [[Y]]@ are strongly
normalising asX andY are by definition normal forms (smaller thanN). It is then straightforward to
show in each case that the (unique) reduction from[[N]]@ to its corresponding head normal form given
above is perpetual since it does not erase any arguments, andSFC

@ is an orthogonal rewrite system. The
result then follows.

Lemma 4.5. Let X, M and N be SF-normal forms, and O an operator (i.e. either S or F) such that
OX M N→SF R; thenC [[[OX M N]]@] →∗

SF
C
@

C [[[R]]@] is a perpetual reduction sequence for anySF
C
@-

term contextC .

Proof. We show that there is a reduction sequence[[OX M N]]@ →∗
SF

C
@
[[R]]@ which contracts a perpetual

redex at each step, from which the result immediately follows. In fact, the reduction sequences that
witness this are exactly those that are used to show preservation of reduction. In each case notice that,
in the reduction sequence demonstrated in the proof of Lemma4.3, the only erased argument (when it
exists) is in the final reduction step and in each case this argument is either[[M]]@ or [[N]]@ which by
Lemma 4.4 is strongly normalising sinceM andN are normal forms (and also closed since we do not
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consider SF-terms with variables). Thus, sinceSFC
@ is an orthogonal rewrite system, it follows that the

redex contracted at each step is perpetual.

We can now prove the following result.

Lemma 4.6 ([[·]]@ Preserves Strong Normalisation). Let M be a strongly normalising SF-term; then
[[M]]@ is strongly normalising.

Proof. We use the same technique as used in the proof of [5, Thm. 3.4(2)], and proceed by (strong)
induction on the lengthn of the longest reduction sequence fromM to its normal form. Whenn= 0, then
we have thatM is a (SF-)normal form and thus[[M]]@ is strongly normalising w.r.t→∗

SF
C
@

by Lemma 4.4.

When n > 0 thenM must contain at least one redexOX Y Z. Consider aninnermostredex, whose
contractum is the termR. ThusM = C [OX Y Z]→SF C [R] = N (for some (SF-)term contextC ) andX,
Y andZ are normal forms (since the redex is innermost). Now, sinceM is strongly normalising so too is
N, and the length of its longest reduction sequence must be strictly less thann (otherwisen would not be
maximum). Thus by the inductive hypothesis[[N]]@ is strongly normalising. Consider now the structure
of [[M]]@: we have[[M]]@ = C ′[[[OX Y Z]]@] for some (SFC

@-)term contextC ′. SinceX, Y andZ are
normal forms, by Lemma 4.5 there is a perpetual reduction sequence from[[M]]@ = C ′[[[OX Y Z]]@] to
[[N]]@ = C ′[[[R]]@], i.e. one which preserves divergence. Therefore, since[[N]]@ is strongly normalising
so too is[[M]]@ (if it were not, neither would[[N]]@ be).

Using Berarducci and Böhm’s construction, outlined in Section 3, we obtain an encoding of SF-
calculus in theλ -calculus.

Definition 4.7 (Translation of SF-calculus toλ -calculus). Fix a canonical representationφSF of ΣSF

w.r.t. the rewrite rules ofSFC
@. The mapping[[·]]λ = (·)φSF ◦ [[·]]@ translates SF-calculus toλ -calculus.

We leave it as an exercise to the reader to compute such a canonical representationφSF.
We now present our main result: that[[·]]λ is a faithful encoding of SF-calculus inλ -calculus.

Theorem 4.8(Faithful Encoding of SF-calculus inλ -calculus). The translation[[·]]λ of SF-calculus into
λ -calculus preserves reduction and strong normalisation.

Proof. The result follows directly from the fact that the two translations that are composed to obtain
[[·]]λ , namely[[·]]@ and(·)φSF , each satisfy both these properties. In the case of the former, we refer to
Lemmas 4.3 and 4.6; for the latter to the results of Berarducci and Böhm, cf. Theorem 3.4 (note that all
terms are closed, since we do not consider SF-calculus with variables).

5 Expressiveness of Factorisation: Discussion & Related Work

We now turn out attention to the question of the expressiveness of SF-calculus relative toλ -calculus and
Combinatory Logic. On one hand our results, i.e. Theorem 4.8, along with those of Jay and Given-Wilson
[18], show that SF-calculus andλ -calculus simulate the same executions. On the other, SF-calculus is
structure complete whereasλ -calculus is not. Is this a contradiction and, if so, how may it be resolved?
Notwithstanding the long tradition of using simulations tocharacterise computational equivalence, it
has since been realised that a refinement of this notion is necessary to draw richer, more meaningful
comparisons. While a complete and in-depth analysis is not within the scope of the current paper, by
discussing our results with reference to some of this work weaim to draw some concrete conclusions
about the how the expressiveness of structure completenessand SF-calculus may be characterised.
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The ‘Standard’ Notion of Equivalence. From the earliest research into computability, two aspects
of abstract notions of computation were identified as relevant to the idea of expressiveness. Firstly, one
wants to compare the respective set offunctionsthat each model computes. For example, in recursion
theory it was shown that the set of primitive recursive functions (on natural numbers) is a strict subset
of the recursive functions (see e.g. [32]). At the same time,there is a requirement to compare models
that operate, at a fundamental level, in diverse domains. Turing Machines,λ -calculus and Combinatory
Logic are, operationally, quite different ways to compute.It was shown however that via particular
(and now canonical) representations of numbers, each modelcan ‘compute’ the same set of functions
on natural numbers, namely the partial recursive functions. Conversely, Gödelization allows each of the
computations in these models to besimulatedby a partial recursive function [22].

This idea of simulation extends to the operation of the models themselves: each model may simulate
the operational behaviour of the others. Such simulations also appear to abstract away the problem of
representation: often we do want to compute functions of natural numbers, however more often we
desire to compute functions over different domains; it is incumbent upon us to represent elements of the
desired domain of discourse as terms of the computational model. The initial characterisation of the set
of ‘computable’ functions was over the domain of natural numbers6, but what is the set of ‘computable’
functions over some other given domain? With simulations between models it seems that one may at
least lay this question aside by observing that whatever canbe represented in one model may then also
be represented in the other, and therefore whatever functions they do compute it is the same in both
cases. A stronger conclusion would be that the set of computable functions over arbitrary domains is
isomorphic to the computable functions on natural numbers.

This simulation method has long since become the standard: to show two models are of equivalent
computational power, demonstrate simulations of each in the other. One model of computation is only
more powerful than another, then, if it isnot possible to simulate the former in the latter. The approach
has been cemented over the years, notably in Landin’s now seminal work [25]. As the search space of
formal computation has been explored the notion of simulation has been adapted accordingly, and there
are now a number of sophisticated simulations between all sorts of models, both sequential and concur-
rent (e.g. [1, 29]). In this tradition, Theorem 4.8 is a result showing thatλ -calculus is computationally
as powerful asSF-calculus.

Refining the Notion of Expressiveness. It was already noted over two decades ago that despite the
broad applicability and application of the simulation method, it is not actually a fine-grained enough
notion to provide a complete and universal characterisation of expressiveness. Felleisen observed that
since the languages we wish to compare are (usually) Turing-complete, other methods (than simulation)
must be found in order to verify claims of relative (in-)expressiveness [12]. He proposed a framework
based on the concept, from logic, ofeliminability of symbols from conservative extensions [23]. One
logical systemL is a conservative extension of another systemL ′ if the expressions (formulae) and
theorems of the latter are subsets of those of the former. A symbol ofL (which is not inL ′) is eliminable
if there is a homomorphism (i.e. a map preserving the syntactic structure)ϕ : Exp(L )→ Exp(L ′) from
the expressions ofL to the expressions ofL ′, which acts as identity for expressions ofL ′, such that
an expressiont is a theorem ofL if and only if ϕ(t) is a theorem ofL ′. Felleisen extends this to
programming languages by analogy - formulae are (syntactically valid) programs and the theorems are
the terminating programs. Then we may say that languageL is moreexpressive than languageL ′ when

6Turing’s work is different in this respect, since he deliberately embarked on a characterisation of computable functions
over a different domain, namely that of strings of arbitrarysymbols.



88 Encoding the Factorisation Calculus

the former adds somenon-eliminablesyntactic construct, i.e. one which cannot be ‘translated away’.
Thus the standard simulation approach is refined by imposingan extra criterion when one language is a
superset of another: can the larger one be built from the smaller one usingmacros?

To place SF-calculus in this framework we can consider SKF-calculus, i.e. the extension of SF-
calculus by including an additional atomic term: the familiar K combinator. Since SKF-calculus is a
proper extension of Combinatory Logic, obtained by adding theF combinator, we can apply the expres-
siveness test of Felleisen. That is, we ask isF eliminable? The answer to this question isno; indeed
this is guaranteed by Theorem 2.4. In this sense, Jay and Given-Wilson’s resultsdo justify the claim that
SF-calculus is more expressive than Combinatory Logic andλ -calculus.

More Abstract Notions of Computational Equivalence. The simulation method, and its refinement
described above, are still firmly grounded in anoperationalview of computation, but recent work has
sought to anchor formal comparisons of expressiveness in a more general,abstractbasis. A notable
contribution to this effort is the work of Boker and Dershowitz [7]. They abstract the notion of compu-
tational model as simply itsextension, i.e. the set of functions over its inherent domain that it computes,
and consider simulations (encodings) between them. They derive the remarkable result that combining
the standard simulation approach with the natural containment of one extensionality within another leads
to a paradox: some computational models can simulate modelswhich arestrictly more powerful in the
sense that they have larger extensionalities (i.e. computemore functions). Thus, some representations
add more computational power.

This result begs the question: do we consider simulations via such ‘active’ mappings to constitute an
equivalence? One may suspect that the problem lies in allowing injectivemappings between domains,
and that imposing stricter conditions (e.g. bijections) would ensure ‘passiveness’. This is indeed the
case, but adopting such restrictions is useless for most comparisons since the passive encodings are
ones which are “almost identity”. We have no choice but to allow such encodings, although we do
have the option of considering a hierarchy of equivalences based on the properties of the encodings used.
Boker and Dershowitz define four increasingly stricter notions of (in-)equivalence based on, respectively:
injective encodings (power equivalence), corresponding to the standard approach; injective encodings
for which the images are computable in the simulating models(decent power equivalence); bijective
encodings (bijective power equivalence); and bijections that are inverses of each other (isomorphism).
Boker and Dershowitz also show that there are models (including Turing Machines and the recursive
numeric functions) which cannot simulate any stronger models; they areinterpretation complete.

We may also gain insight into the relative expressiveness ofSF-calculus andλ -calculus using this
framework. Our result shows that they arepower equivalent. Theorem 2.4 shows that they cannot be
bijectively power equivalent (nor, therefore, isomorphic) since that would imply thatλ -calculus could
distinguish arbitrary normal forms. Thus, in this sense they are not equivalent. We do not know if SF-
calculus isbijectively strongerthanλ -calculus; this would require demonstrating a bijective encoding of
the latter in the former. Also, we do not know ifλ -calculus is decently power equivalent to SF-calculus;
we consider it at least a possibility. We would also expect that, due to its intensional capabilities, SF-
calculus is interpretation complete.

Related to the work of Boker and Dershowitz, is that of Cockett and Hofstra [9], and Longley [26]
which are both concerned with category-theoretic descriptions of abstract computational models. In these
frameworks model equivalence is interpreted by categorical isomorphism, and so akin to the strongest
notion of equivalence considered by Boker and Dershowitz.
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6 Conclusions & Future Work

In this paper, we have considered the relationship of the recently introduced SF-calculus to the ‘canoni-
cal’ computational model ofλ -calculus and, so by extension, Combinatory Logic. We have demonstrated
that SF-calculus can be faithfully encoded (i.e. simulated) in theλ -calculus by defining a behaviourally
equivalent applicative term rewriting system and then interpreting this system inλ -calculus using a con-
struction of Berarducci and Böhm. This result shows that SF-calculus andλ -calculus are of equivalent
computational power, according to the classical interpretation of computational equivalence. We have
also considered the relationship of SF-calculus to theλ -calculus using a more nuanced interpretation of
equivalence, informed by research in the literature. Moreover, we hope to have exposed both SF-calculus
and Berarducci and Böhm’s encoding to greater prominence.We feel that they are both subjects of great
interest which deserve to be better known.

With respect to future work, there is still great scope for investigating the expressiveness of SF-
calculus. There are the open questions we have highlighted regarding SF-calculus as it relates to the
framework of Boker and Dershowitz. The categorical and denotational natures of SF-calculus also de-
serve exploration. Beyond this, the wider question of how best to qualify computational expressiveness
still remains; we believe the study of SF-calculus can provide further insights on this. For example,
the structural completeness property is already a new metric; Jay and Vergara have also considered a
strengthening of the notion of decent power equivalence in which the simulation of each model in it-
self via the composition of the two encodings is computable in each model [19]. Quantitative questions
regarding expressiveness also present themselves: e.g. our encoding of SF-calculus inλ -calculus leads
to a large increase in the size of terms; are there lower bounds on the size of such increases which
meaningfully quantify expressive power?
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