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We explain the use of quantum process calculus to describeanalyse linear optical quantum
computing (LOQC). The main idea is to define tm@cessesone modelling a linear optical system
and the other expressing a specification, and prove thaattedehaviourally equivalentwVe extend

the theory ofbehavioural equivalencim the process calculus Communicating Quantum Processes
(CQP) to include multiple particles (namely photons) a®tinfation carriers, described Bpck
statesor number states We summarise the theory in this paper, including the ctueisult that
equivalence is @ongruencemeaning that it is preserved by embedding in any contexprémious
work, we have used quantum process calculus to model LOQ@ithdut verifying models against
specifications. In this paper, for the first time, we are ableatrry out verification. We illustrate this
approach by describing and verifying two models of an LOQGONyate.

1 Introduction

Quantum information processing (QIP) is a field of reseavdtich involves the study of storing and
manipulating information in systems that are governed bydtvs of quantum mechanics. This provides
huge potential in quantum computation, cryptography andraanication [[15], and first secure cryp-
tography systems are already commercially available [Bledr optical quantum computing (LOQC) is
being pioneered for applications in scalable quantum caimgil0]. LOQC is based oapatial encod-
ing where a quantum bit is encoded as a superposition of tweaspatides or the two optical paths that
can be travelled by a single photon [16]. The inherent wetdcdiction between photons as information
carriers makes them highly suitable for communication iapfibns.

Quantum process calculus is a clasgarfmal methodsable to describe and analyse the behaviour
of systems that combine quantum and classical elements.sudeess of formal methods in classical
computer science has motivated the development of quantaoesgs calculus called Communicating
Quantum Processes (CQP) [6]. CQP provides an abstract mbtlet quantum system, with the as-
sumption that a qubit is considered as a localised unit armétion. CQP verifies the correctness of
a system by employing the theory lnéhavioural equivalencf8] between processes. Also, the equiva-
lence is acongruencemeaning that it is preserved by inclusion in any environtn&€he theory has been
applied to the analysis of a quantum error correcting cofle [2

Contributions:  This paper enhances from previous wark [5] significantlywo tifferent ways. First,
we provide the theory of equivalence in CQP for LOQC, which baen extended from Davidson thesis
[3], in order to analyse and verify a realistic experimemsggdtem. Thecongruenceproperty of equiv-
alence in CQP is applied to the LOQC CNOT gate, which provigegor the first time with a more
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physical understanding of the property of equivalence oBe&cwe present two models of an experimen-
tal system that demonstrates LOQC CNOT gate and prove thatite equivalent to their specification.
These two models not only demonstrates the gate but usesiffae@dt measurement semantics which
exhibits the flexibility of process calculus approach to kvar different levels of abstraction. In our sec-
ond model, we demonstrap®st-selectionwhich plays an important role in LOQC, where one considers
only a subset of all experimental runs that fulfil predefinetéda.

The present paper begins in Section 2 by recalling the basicepts of quantum optics which are
needed to understand LOQC. In Secfidon 3 we review the largobGQP, illustrated with a model of
the experimental system that demonstrates LOQC CNOT ga&tetioB[4 summarises the extension of
the theory of equivalence in CQP, which is applied to LOQCSéetior b we describe the post-selection
process and analyse a model of an experimental system deatomggpost-selectivé OQC CNOT gate.
Finally, Sectiorib concludes with an indication of dirensdor future work.

Related Work: All the qguantum process calculi which have been developddrsmnsidered a qubit
as an abstract particle that can be sent or received thrchaginels. Fengt al. [4] developed qCCS, a
guantum extension of the classical value-passing CCS [i@Jpaoved that weak bisimilarity is a con-
gruence. The result is applied to quantum teleporatiorerslgmse coding and quantum key distribution
protocols [11].

2 Background

We recall briefly the aspects of quantum theory and quantuticsopelevant for this paper. For more
detailed information we refer to the book by Nielsen and Qigud 5] and research papers [10] 16, 18].
A qubitis an information unit comprising two stateé8)(and|1)) which are called thetandardbasis.

The state spacél (or Hilbert space) of a qubit consists of aliperposition®f the basis stategy) =
a|0) + B|1) wherea and are complex numbers such that|? + |3|2 = 1. A qubit is conventionally
realised by an individual photon with the two basis statésrireg to orthogonal polarisation directions of
the photon |0) = |H) and|1) = |V)). We refer to the qubit as a polarisation qubit wherandV denote
horizontal and vertical polarisation, respectively. Weadduce the notation |H) + B|V) = a|10)ny +
B101)yv, where the entries in the ket states represent the numbérobdms (photon numban) in the
state basis indicated by the subscripts. This will allowagéneralise the notation to more than one
photon. Two photons in the stategH ) + 3;|V) (wherei is 1,2 respectively for each photon) can then be
encoded in the shorthamd a2|20)yy + B1B2|02)ny + (a1B82+ a2B1)|11) wy, if they are indistinguishable

in all other parameters. In LOQC [10], we consider qubitsclilare encoded in different optical paths
'a’ and 'b’ rather than different polarisation states. This is refdrto asdual rail logic. Again, we
denote the quantum states in thember statdasis, giving the number of photons travelling along the
different paths. The basis states in dual rail logic are tBer+ |10)ap, and similarly for|1) — [01)ap.

In experiments, the conversion ofpalarisation qubit into adual rail qubit is accomplished by the
combination of a polarising beam splitter (PBS) and a phb#tes (PR) [16], which works as a unitary
operationPS.

Definition 1 (PS operator) APS is an operator that transforms a polarisation quhijt) € H to a dual
rail qubit |@) € Hs, whereH andH; are the respective Hilbert spaces for the polarisation anéldsail
qubits. The action d?S is then defined bpS|H) = PS|10)py = |10)ap andPS|V) = PS|01)pyy = |01)ap
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Figure 1. A schematic representation of the LOQC CNOT g&8, andBS; are beam splitters of
reflectivity 1 and the others are of reflectiviy. The dark side of the BS indicates the side from which a
sign change occurs upon reflection.

Operations on number states fack stategn)) are described in terms of the creation and annihi-
lation operatorsa™and&, which when acting on a state) increase or decrease the photon numbgr (
by one. Therefore, each Fock state can be built up from oreatperators given bjn) = %yoy In
LOQC, optical elements such as phase shifters and non siakptieam splitters performmitary trans-
formations which describe the evolution of a closed quantum systemmitary transformation in LOQC
[14] can be described by its effect on each photon path’sioreaperator. A non polarising beam splitter
(BS) is defined by the transformation matrix

cos®  €%sin6
U(BS (ei‘ﬂsine —cos@)

The reflectivity and transmissivity of a BS are givenpy= co 6 and 1— n = sir? 6, respectively,
6 is the angle between the polarisation direction of the iphatton and the crystal axis of the BS apd
is the relative phase between the light modes in the two oyigihs. Here we considegr= 0, which is
the case for BSs in integrated circuits. If the state),y, is incident on a BS witim photons along path
a andn photons along path, the transformation is:

M) ap = (% (\a%n 00)ab — i (8] c0SO + & Sin6)™(&] sin6 — & c0s0)"|00) o 1)

Thecontrolled Not(or CNOT) is a quantum gate that is a primary component in buildingantuum
computer. The operation of the gate is that it flips the seapridt (target qubit) if and only if the first
qubit (control qubit) is 1. On qubits, we ha@OT|0x) = |0x) andCNOT|1x) = |1y) wherex,y € {0, 1}
andy = x@ 1 with & denoting addition modulo 2. In dual rail logic, this becor@@®0T|10yx) = |10yx)
andCNOT|01yx) = |01xy).

In the following we summarise the theory and operation of tREQ)C CNOT gate[[16, 18]. The
BSs used in the LOQC CNOT gate [16.) 18] have reflectivitieg ef % or % The operation is specified
by a control qubit, characterised by the number stateand c,, and a target qubit, characterised by
t; andty, as well as two auxiliary vacuum states (absence of a quhghoton)x; andx,, written as
|ciCotata) [x1%2). Consider the general input state

|¥)in|00) = (a]1010 + |1003) +y|0110 + 5|0103)|00) (@)

The schematic representation of the LOQC CNOT gate is shovigure[l. Using the operators for
each BS as discussed in Eq§. 1 and applying it to the input, &gt& we get the output state of the CNOT



114 Verification of linear optical quantum computing using gtuem process calculus

T = Int|Qbit|NS|Bit|T]|Op(1) | 0p(2)] ---
vV o= x|0|1|...|H|...
e = V|measure &| psmeasure €| Bx=e|e+¢€ | (g e) |if etheneelsee|x:NS,y: NS*=PS(2)
P == O|(PIP)|P+P|e?%:T].P|e[g.P|{e}.P| (qbitX)P| (nsx)P | (new x:[T])P
Figure 2: Syntax of CQP.
gate as:

|)in|00) — 3{(ar|101Q + B]1003) + y|0103) + 5|0110)|00) + v/2(a + 3)[010010)

+v/2(a — 3)|0000|11) + (a + 3)|1100|00) + (ar — 3)]2000|01) 4 v/2a|0010|10)
+v/2B|0003)|10) — v/2(y + 6)|0200|00) — (v — 6)|0100|01) ++/2y|0020) |00)
+(y—8)|0010|01) + (y+ 5)[0013|00) + (v — 5)|0003|01) ++/25|0002|00) }

®3)

LOQC embeds qubits into the larger dual-rail space, to enalparticular physical realisation of
unitary operators to be used. However, this introduces dssipility that the result of the final measure-
ment may be outside the embedding and hence not interpeetalal computational resuRost-selection
compensates for this possibility by discarding the undéetér measurement results at the expense of in-
troducing a non-zero probability that the overall compotafails. From these states \pest-seleconly
those where one photon is found in the target and one in thieat@tate, by discarding all terms apart
from the first four terms in the first line of Elg. 3, giving

|¢) ps = 01|1010 + 3]1001) + y|0101) + 56|0110 4

Successfupost-selectioroccurs only with a probability of one-ninth and the relasibip between Ed.2
and Eqg[4 is a controlled-NOT transformation.

3 Communicating Quantum Processes (CQP)

CQP [6] is a quantum process calculus, which was establisrefdrmally defining the structure and
behaviour of systems that comprise both quantum and cddssicmmunication and computation. The
language is based on thecalculus [13] with primitives for quantum information. &lgeneral idea is
that a system is considered to be made up of independent camisoomprocesses The processesan
communicate by sending and receiving data alomgnnelsand these data are qubits, number states or
classical values. A distinctive feature of CQP is its statjwe system([7], the purpose of which is to
classify classical and quantum data and also to enforcedtwdoming property of quantum information.
We now present CQP including the extensions required for COQ

3.1 Syntax of CQP

The syntax of CQP is defined by the grammar as shown in Figuvée2use the notatioe = e,...,€,,
and write|€| for the length of a tuple. The syntax consists of typesaluesv, expressiong (including
guantum measurements and the conditional application itdnyroperatorse =€), and processeB.
Valuesv consist of variablesx(y,z etc), literal values of data types (0,1,..), unitary oparasuch as the
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v = ...|q|s]|c
E 1= [/ | measure E,&| measure V,.E,&| ... | measure V,E | E4+e|v+E |if E theneelsee
F oim [2RPI[EP|VII.EP [ VM],EP| - VG LP|{[}.P

Figure 3: Internal syntax of CQP.

Hadamard operatdf. Expression® consist of values, measuremenisasure €y, ..., €,, applications
el,...,e x=e of unitary operators and applicatiors NS,y : NS x= PS(z) of PS operator, expressions
involving data operators such as+ € and a pair of valuege e). We have a new addition to the ex-
pression callegost-selectivaneasuremenpsmeasure €,...,6,. Processes include the nil procdys
parallel compositiorP|P, inputse?[X: T].P, outputse! [€].P, actions{e}.P (typically a unitary operation
or measurement), typed channel restrictioaw x : [T])P, qubit declaratior{gbit x)P and number state
declaration(ns x)P.

In order to define the operational semantics we providertteenal syntaxn Figure[3. We assume a
countably infinite set of qubit names, ranging oggr ..., a countably infinite set of number state names
s,t,... and similarly channel names. Values are supplemented \ithierequbit names or number
state names, which are generated at run-time and substituted for thiablas used irgbit andns
declarations respectively. Evaluation contexts for esgimns E[]) and processe$(]) are used to define
the operational semantids [20]. Later in the paper, we asgarameterised process definitions.

3.2 Linear Optical Elements in CQP

First, we define a proced2lSewhich provides the input to the LOQC CNOT gate by converting a
polarisation qubit to a dual rail qubit.

PolSéa: [Qbit],c:"[NS],d:7[NS]) = a?[do:Qbit].{so:NS,s1:NS*=PS(qo)}.c![so].d![s1].0

PolSeis parameterized by three channelg; andd. The right hand side of the definition specifies the
behaviour of the proced2olSe The polarisation qubit (sagp) is received as input through chanrzel
(whose type iS[Qbit]) indicated ag?[qo: Qbit]. The term{sy: NS, s;: NS x=PS(qp)} specifies that the
PS operation is applied to qubijy thereby generatingy ands; of type number stateNG). PS corre-
sponds to the transformation produced by the combinatid?B8 and PR, introduced by Definitioh 1.
The last two termsd{[s] andd![s;]) indicate that the respective values of the number statesemt
through the respective output channels. The t@simply indicates termination.

Next, we define a non polarising beam splitter in CQMB&swhich is a primary component in the
LOQC CNOT gate.

BSe:[NS], f 7INS],h7[NS],i:[NS],n) = e?[s:NS]. f?[s3:NS]. {s,s3%=Bp}.hl[sp].i![s3].0

wheren is the reflectivity. In a similar way, proce&Sreceives inputs, ands; from eand f. Then
performs the unitary operation represented{by sz += B, } on the number states as defined by [Eq. 1.
HereB,, is the unitary operation represented by the matr{BS) for ¢ = 0. The number states are then
output onh andi.
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Figure 4: Model of LOQC CNOT gate: The dashed lines enclosestibsystems which are defined in
the text.

In this paper, we present two types of measurements. We deéhand PDetwhich represent the
detectors that performs measurement BBt performspost-selectiveneasurement.

Det(I :7[NS],m:7[NS],u:Int,Int]) = 1?[so:NS].m?[s;:NS].u![measure S,5].0
PDet(l :[NS],m:"[NS],u:"[Bit]) = 1?[s:NS].m?[s;:NS].ul[psmeasure Sp,s1].0

Here, the detectors measure a pair of number states. Thessiqmmeasure S, S1 probabilistically eval-
uates to a pair of positive integers which is the number of@iedetected in the respective channels and
psmeasure S,S1 produces a zero or one which is a resulpokt-selection The different measurement
semantics enables us to work at different levels of abs&radty showing the flexibility of the process
calculus approach and is discussed in detail in later sectibthe paper.

3.3 The LOQC CNOT Gate in CQP : First Model

The structure of the first model of the experimental systeat temonstrates LOQC CNOT gate is
shown in Figuré 4. The system receives two polarisationtgulbntrol and target) as inputs through
the channels andb. The qubits are then converted to number states by the [gBoéSer, and these
are provided as the input to the CNOT gate represented byegs@NOT. The output ofCNOT is
then measured by the procegdT. The whole model is then defined as a parallel composition of
PolSet | CNOT|MMT. The CQP definition of the model is

Modeh (X) = (new Y)(PolSer(U) | CNOT(V) |[MMT(W))

where each process is parameterised by their respectiv ttse channelsX,U,V andW) on which it
interacts with other processeX.contains channela, b, out;, cnt andout,. U containsa, b, c,d,e, f and
W containsk, |, g, r,out,, cnt, out,. The scope of the list of channel)(is restricted, indicated byew in
the definition.Y comprises of the channetsd, e, f,g,h,m, |, k,0,q,r,u andv. We have omitted the types
from our definitions, for brevity. Also, the definitions inicle a list of channels rather than individual
channel names. The CQP definition folSer is PolSer(U) = PolSda,c,d) | PolSdb, e, f). Recall
from Sectiorl_ 3.2 thaPolSerepresents the combination of a PBS and PR.

Each BS is represented by a procB&and is annotated to show the correspondence with Figure 4.
BS andBS have their inputs crossed over, corresponding to theintatmn [16]. Vacuum statesand
z are created byns y,z) and communicated tBS andBS, respectively through the channelandn.
TheseBSscombine to formCNOT defined as:

CNOT(V) = (new g,h,m,0,i, j,n, p)(ns ¥,2)(BSi(e, f,g,h, 3) [i}y].0| BS(i,c.k, j, )| i?y]. 0|
BSs(g.d,m,,3)|n![Z.0|BSy(h,n,0,p,3)|p?Z.0|BS(Mm,0,q.r,3))
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HereV contains the channetsd, e, f,k,|,g andr. The outputs o£NOT are sent through the channels
k,1,g andr, to the procesMMT. The unused@Soutputsj andp are absorbed by?y] andp?[Z.

MMT (W) = (new u,Vv)(Dety (k,I,u) | Det(q,r,v) | Countelu,v,out;, cnt,out, b))

MMT performs the measurement. DetectDed;, Det, are annotated to match Figlide 4 and measure the
number states associated with the control and target qubite output of a detector are two classical
values which represents the measurement outcome, thatrisithber of photons detected. The outcomes
of the detector processes are given as inputs to the prGesser.

Counter(u,Vv,outy,cnt,out, b : Bit) = u?[co: Int,c1:Int].v2[to: Int, 1 : Int].
ouy![if (cop+c1 =1) then c; else0].oub![if (to+1t; = 1) thent; else0].
cnt![if (co+c1=1)and (tg+t1 =1) thenb=1elseb=0].0

Counterrepresents the coincidence measurement in optical expetsn Coincidence is observed
by detecting two photons, one at chanoednd the other atv. It also provides the correct output of
the CNOT gate in terms of classical bits through the chanoeisandout,. The coincidence count
(b) is recorded as 1 at the output of the charerl The unsuccessful outcomes of the CNOT gate are
recorded as 0 at the three output channels. This is detedrbintheif . .. elseconditions in the definition.
When we consider the correctness of the system, we will gleatdModel, is equivalent to the following
Specification process. We use the same prodestSe T as the input foSpecification.

Specification(a, b,out; , cnt,out) = (new c,d, e, f,g)(PolSer(U) | OP(C) | Output D))

There may be other ways of expressing the specification ximnele without converting the polarisation
qubit into the spatial encoding, but we do not investiga@nttin the present paper. He@js a list of
channels containing,d. e, f,g,h,i, j,k andD consistsy, h,i, j, k, out,, cnt, out,. OP performs the CNOT
operation with a certain probability and is defined by

OP(c,d,e, f,g,h,i, j,k) = (gbit : Q2).c?[so].d?7[s1].€?sp]. f?s3]. {2, s x=H}.{qQz x= U%}.
{(%0,51), (S2,3) *=CZ} . {82, 53 x=H}.hl[0] .i![s1] . j![s2] - K![S3] . @' [measure O] . O

OP possesses a qulmjt (initialised to|0)). A random bit is generated with certain probabiliglf()r bit

0) by measuringj, after the unitary operation WiﬂU%. This is followed by a series of unitary operations
namely Hadamard operatioHYwhich is applied twice on a pair of number statgssg) and a controlled

Z (CZ) wheresy, s; acts as the control pair arsg, s3 is the target pair. The combination otHa CZ and
anotherH constitutes a CNOT, which is an abstract version of the nurstage computation. The theory
of these operators for number states are not discussedipaper but are provided in [14]. The data are
then communicated to the proce3atput

Output(g, h,i, j,k,outy,cnt,out) = g?[x: bit] . h?[sp] .i?[s1] . j 7S] . K?[sg] . cnt![x] .
ouy![if (x=1) then measure s; else0].out![if (x= 1) then measure 53 else0].0

This gives the correct output in the form of classical bitdhef CNOT operation wher equals one,
which is artificially making the specification work with a ta&n probability %). Whenx equals zero,
the specification does not work and we get zero at all the outpannels.
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Figure 5: Transition rules for values and expressions.

3.4 Semantics of CQP

In the previous section, we have described informally thHel®ur of the processes which represent the
linear optical elements of the CNOT gate model. In this secive will explain the formal semantics of
CQP although without giving all of the definitions. Full defions are in the Appendix. The execution of
a system is not completely described by the process ternckvidthe case for classical process calculus)
but also depends on the quantum state. Hence the operag@mahtics are defined usiognfigurations
which represent both the quantum state and the process term.

Definition 2 (Configuration) A configuration is defined as a tuple of the fofRt T.0;w; P) whereX
is a list of names (qubit§, number stateS or both) associated with their typ@s o is a mapping from
namesX) to the quantum state arudis a list of names associated with the process P

We operate with configurations such(as: Qbit, o : NS, s : NS; [01, S0, 51— (]0)|10) +1)|01))]; a1; ¢! [q] - P)
This configuration means that the global quantum state stensf a qubitg;, number statesy and
s1, in the specified state; that the process term under coasiolerhas access to qulgi but not to
the number states; and that the process itsetf[tg].P. The semantics of CQP consists of labelled
transitions between configurations which is essentialyuired for the equivalence of processes. We
now present the completabelled transition rulesof CQP that are extended from the previous work in
order to verify LOQC, which is the focus of this paper.
Expression Transition Rules: For the evaluation of expressions we also introdexgeression con-
figurations (X : T;0; w;e), which are similar to configurations, but include an expesin place of
the process. The semantics of expressions is defined by dbetien relations—, (on values) and
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T, K @) i P) —Sp (X T, [Ke (@) 0 P)
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T K W) 0P | Q) —%p (X: T, [% (@) 0P || Q)
& T, = )] wP) —Sp (X: T, K= )] o0';P')
(P-sum)
X:T. & [0 P+Q) —%p (X: T, K= |)]; s P)
TR @) wiP) —p (%o TR )i P) _
if a ¢ {c?],cl[]} (P-RE9)

& T, [%—= |)); w; (new )P) =% (X2 T, [K = |@0)]; w; (new ¢)P)
(%Y : Qbit,q: Qbit,Z: NS;[%,0,¥,Z— |@)]; w;{s,t x=PS(q)}.P) = (%, ¥: Qbit,Z: NS,s: NS,t : NS;[%,,Z 5t = |@)];;P) (P-PS)
where|g) = |a)[0)|B)ly) +1a")[1)IB)Y) . (W) = a)|B)|v)[10) +|a’)[B")|Y)|01)q € wandst ¢ w, q ¢ w' ands;t € &'

Figure 6: Transition rules for pure process configurations.

—e (On expressions), given in Figuré 5. Rule Ru® deal with the evaluation of terms that result
in values. Rules R-MASURENS-2,R-PS-MASURE and R-MEASUREQBIT are measurement rules
which produces a mixed configuration. First two rules measupair of number states and the last rule
measures qubit. R-ERSURENS-2 produces a mixed configuration over the possible nmeasant
outcomesk andl. The measurement outcomes are classical values which emreuthber of photons
detected. R-PS-MASURE is apost-selectivaneasurement rule which produces a mixed configuration
over the possible measurement outcdmiule R-TRANS-NS deals with unitary transformations which
result in literal unit. The important aspect of RRANS-NS and the measurement rules is the effect they
have on the quantum state.

The rule R-®NTEXT has two primary purposes; it is used for the evaluation ofesgions in an
expression context and it is also used of the evaluation of expressions in mixadigurations. The
evaluation of a mixed expression configuration, hi (X: T;[X— |())]; w;Aye E[€]; () is determined
by the evaluation of each component. For a given componbatptire expression configuration is
obtained by substitution of the respective valu@s:T; [X— |)]; w; E[€]{Ti /¥}). For this configuration
we isolate the context and consider the evaluatioe{df/y}). The resulting configuration may be a
mixed expression configuration with new variablestroduced; specifically we end up with a term
AZe €{Ui/y};Vij where, due to the use of the substitutiehjs constant across eachThe results for
eachi are combined to give the final terhyZe E[€]; i, Vi; incorporating variableg andy.

Pure Configuration Transition Rules: The rules for pure process configurations are given in Fig-
ure[6. This defines the input and output transitions for pardigurations. It is used in the hypothesis of
L-OuT-QBIT, L-OuT-Ns and L-CoM to determine the actions of the individual components in>eohi
configurations. The rules namely choice (BN, parallel (P-RR) and restriction (P-Rs) are required
to define input and output actions for arbitrary processttoasons. These rules are applicable for both
gubits and number states and P-PS is for the conversion afipation qubit to the number states.

Mixed Configuration Transition Rules : The transition relation on mixed configurations is defined
by the rules in Figuré€l7. The rule LR®B is a probabilistic transition in whiclp; is the probability
of the transition. The rules LN, L-OuT-QBIT and L-OuT-Ns represent the input and output actions
respectively, which are the visible interactions with theinment.P{V; /Z} indicates thaP with a list
of valuesy; is substituted for the list of variablé When the two processes of input and output actions
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Bipj(@i g (X: TioiwR) & @i g (x:TioiwiR) (L-PROB)
@i g (X:T,01;w;AZec?[d],§.P; V) AP o, g (X:T;00;0,F, P AZe P{P/q,F/3}, V) (L-IN)

Vi€ L((p.0) : Qbit.§: NS;[paS+> [ai)|8)]; B8 P{w /X)) “50 ((5.) : Qbit, & NS; [0S |an) [B)): 7S P {3 /%))
(L-OuT-Q8BIT)

©ier 0 (F.0) : Qbit,§: NS [paS+> |ai)|B)]: .8 A% Pi¥h) “2F e pj (i % ((P.) : Qbit,§: NS; [p'7a8+> Mar) |B)]; 5. AXe P %)
whereU = {U; |iel} ={W; | jeJ}andVj e Jlj ={ilG=W;},pj= S G
i€Tj
andF C p, = p\T,MN corresponds to the permutation pos+— i)*?’(ﬁ‘J
Vi, € 1.(p: Qbit, (£.9) : NS; [BES++ |a) |8 ]; .5 P{W; /%y /5)) “bp (B Qbit, (£:8) : NS; [ > |a)|)]: . &3P (W) /% W /5})
(L-OuT-NY9)

~ o~ v e .U,
@i jer G (P: Qbit, (§,8) : NS; (PS> |a)|B))]; B, & AXye Py W)

Bes Pi( i, el % (P: Qbit, (T,8 : NS); [BIST > M|a)|B;)]; .8 ARy e P/: %), W) ))
whereU = {Gjj |i,j eI} ={& | ke I}, andVke J, Ik = {i, j|Gj =&}, px = Gij
i,JElk
andr C §§ =8\ T, corresponds to the permutatian pis— pirs .
Vie |.(i:f;q;w,F;P{\7i/i})dﬂ>‘g (X:Ti0;w;P'{%/Z})
viel(x: T:onw,Q(u/2) “%Y (x: Tronw. . Q {Vi/2}) (L-Cowm)

Dicl G (X:T;0;0,FAZe P || Q%) -5 Dicr g (X: T; 01w, AZe P || Q50)

Sia g (X: T; 0, ;A Ze P ) i>@_ie\l] gihij (X:T;aij; ;A Z7e P, Wi )
1€d;

— ~ — — — — (L-PAR)
Bicl G (X:T;01;w0;AZeP || Q; Vi) H@jig gihij (X:T;0ij; 0 AZje P || Q; Vi, Wij)

Biel G (X:T;05; Wi AZePV) 5 @ iy Gihyj (X: T; 03530, AZye P10, Wi )

— " 1e) — — (L-Sum)
@icl G (X:T; 01 w;AZe P+ Q; Vi) — el ghij (X:T;0j; 0 ;AZye P’ Wij)
1€

Biel G (X: ;05,0 AZe Pi%) —5 @jey Gilij (X2 T;01j; 0 A% PV, W)

= (L-RE9

Diel Gi (Y:T’;ai;w;/\io(new c)P;Vi) &@jg\l} gihij (Y:f;qj;w’;)\iyo(new C)P'; Vi, Wij)
J€d
it a ¢ {c7],cll]}

Bier Gi (@: Qbit,§: NS;[§5+ |B)|y)]; w;AZe (qbit :y)P;Vi) — @iy gi (§: Qbit,q: Qbit,S: NS; (6,0, B)]))|W)]); 0, 0;AZe P{a/y}; %)
whereq is fresh (L-qeIT)

Giel 0 (d: Qbit,5: NS;[68+ |B)|%)];w;AZe (ns :yY)P;X) —= @i g (§: Qbit,r : NS,8: NS; [§,r,5 [B)|@)|W)]; w,r; AMe P{r /y}; %)

wherer is fresh (L-Ns)
Giel G (X:T;0; 0 AZe {UL.P; V) — @icy G (X: T, 01 0;AZe P;¥) (L-AcT)
Sicr G (P.G: Qbit, gc : Qbit, 7 : NS; [5,0c, 6.7 |@)]; w; AZe {Sa, % +=PS(0c) }; .P.%) (L-PS)

—5 @il G (P.6: Qbit, 1 NS, s NS, : NS; [5,0,7, 5,5 — |W)]; ;A Ze P;. V)

Giel N (X:T; 01w, Ve &%) —ePict higij (X: T, Gij; w; AVZe &; Vi, Wij )

— — 3 — — — (L-EXPR)
®@iel i (X: T, 01w Ay eF[e]; V) — Biel higij (X: T;0ij; ; AYZe F[€]; Vi, Wi )
JEJ

Figure 7: Transition rules for mixed process configurations
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are put in parallel then each has a partner for its potemiaraction, and the input and output can
synchronise, resulting inatransition which is given by the rule L-@M. The rule L-ACT just removes
actions. This is a reduction of the action expression which would involve effects like measurement
or transformation of the quantum state. Rules B+Qand L-Ns are for introducing additionalbit and

NS variables respectivelyns declarations represents vacuum states. Since the valsesiasd with

the an input action are determined by the environment, titieraiis identical across all components in
a mixed configuration. L-#R, L-Sum and L-Res can then be used to define inputs on other process
constructions in a mixed configuration.

The rule L-QuT-QBIT and L-OuT-Ns is the point at which mixed configurations are combined with
probabilistic branching. Branching must occur when ang avtien there is information to distinguish
the components. This information is represented by theicialsvalues that are outputs, which may vary
between the components. Some values may be the same, thegeliyng the relevant components to
remain in a mixed configuration after the output. The purpafsk-OuT-OQBIT and L-QUT-NS is to
distribute the components according to the different \@laad to assign an action label that represents
the combined action ddill components. For example in transition LyGQBIT, each component has

a pure transmonL;p] representing the channel and qubit names that are commdhdongponents,

|
and the valuesj that are specific to that component. The combined actior fé&fﬂg consists of these
common elements and the &ebf all the value tuples.

Example 1 (g,8,t:T;[g,5t — 010/0)]10) + ap1|1)|01) + 0r20|0Y|20)]; G, S,t; ¢! [measure s,t] . P)
— @ijerorz) | aijP@st: Ti[ast— B)fi))];a.stiAyzecy,Z. Pii, j).

This transition represents the effect of a measurement @firagp number statess(t), within a pro-
cess which is going to output the result of the measuremehe cbnfiguration on the left is jpure
configuration as described before. On the right we havaiged configuratiorin which the® ranges
over the possible outcomes of the measurement anﬂnh% are the weights of the components in the
mixture. The quantum stafg,s,t — |B)|ij)] corresponds to the measurement outcome. The expression
Ayzeclly,Z].P represents the fact that the components of the mixed coafigarhave the same process
structure and differ only in the values corresponding to snesment outcomes. The final terms in the
configuration,i and j, shows how the abstracted variableandz should be instantiated in each com-
ponent. Thus thdyzrepresents a term into which expressions may be substitwteidh is the reason
for the A notation. The next transition (R-PSH#ASURE) representpost-selectivaneasurement which
filters out the measurement values that satisfies a predefiiteda.

Example 2 (q,s,t: T;[q,s,t — Q10]0)|10) + ao1|1)|01) 4+ a20|0)|20)]; 0, s, t; ¢! [psmeasure s,t] . P)
LA Dijeforrizj | BilA@st:T;[a,st—[d)ij)];ast;Ayecly].P;j).
Unlike Exampldl, hereandj can have values either 0 or 1 ang j. This is the criterion for post-

selection and the weights of the components in the mixtizenaw|S;; |2 (where|; > = 5, ‘:'1”‘0”2)
ije{ !

Also, here we measure two number staasdt, which results in one classical value. Exanigle 3 shows
the effect of the output from the final configuration of Exaeipl

o~ = o~ .. - . 1]
Example 3 @i jejo1yizj | Bijl2(X: T [X— [8)[i])]; X Ayeclly] . P;i) i Bijefo1}izj|Bijl?
~ 2 ~
(X T2 [ [BV i) Aye P ) Y (%2 T3[R |1)[0D]; K Ay Pi 1)

HereXis a list of names consisting sandt. The output transition produces the intermediate config-
uration, which is a probability distribution over pure capufiations (in contrast to a mixed configuration;
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note the change from to H). Because it comes from a mixed configuration, the outpustt@n con-
tains asetof possible values. From this intermediate configurati@rdhare two possible probabilistic

" , . B
transitions, of which one is showwfé ).

Example 4 @i =0 gij (X: T; [X = [B)[i])]; X Ayze (c![y]. P| c2y. Q)i ]) —
@i jz0 9ij (X: T; X [B)i])];X Ayze (P Q)31 )

Measurement outcomes may be communicated between precgiheut creating a probability
distribution. In these cases an observer must still considesystem to be in a mixed configuration as
the outcomes are communicated internally and not to theamvient.

Example 5 (g: Qbit,r : Qbit, p: NS,t:NS;[q,r, p,t — a|00)|10)+ (3|11)|01)]; g,r, p,t; {u: NS,v: NS*=
PS(a)}.P) — (r : Qbit,§ : NS;[r,§ + a0)|1010 + B|1)|0101];1,$’; P)

Example_b represents the transition P-PS, which is the csioveof a polarisation qubiig] to the
number statesu(andv). § indicates that it is a list of names comprisipg, u andv of typeNS.

3.5 Execution ofModek

Lett = (0;0;0;Modeh) be the initial configuration. The semantics of CQP is noredeinistic and
hence the transitions can proceed in different order. Ifiteefew steps, the proces®ISe T receives
qubits g, and g from the environment, constructing a global quantum st@jg = a|00) + 3]01) +
y|10) + 3|11). We get the configuration(gs : Qbit,d : Qbit, b0z = |@)q; o, G; (PolSet’ | CNOT|
MMT)). After somert transitions corresponding olSer operations, the qubits are converted to the
respective number stateg, s;,s, and sz by PS operator giving the quantum stal@)s = a|1010 +
/1001 + y|0110 + 5/0101). The configuration is nows: NS;5= |@)s; So, 51,52, Ss; (PolSer” | CNOT]|
MMT)). After another set of transitions corresponding to tl@&NOT process, we get the stai@) ot
which is given by Ed.13. The configuration now becor(ﬁasﬂlvs; S=|®)out; 0,51, 2, S3; (CNOT |[MMT)).
After the measurement by both detectors, the outcomes armuoaicated to th€ounter This happens
internally and hence, we get the mixed configuration:

@lezo gij hiju (S: NS;S= |@jki ); S0, 51,52, S3; Ay e Countef; i, j, k1)
S0

Hereyis a list of measurement outcomes, €1, to andt;). The output transitions produces the configura-
tion below, which is a mixed state given @(,j,k,hme{&l} Gijmhijkim (S:NS;S=|@jk );S,AZe0;i, j,k,1,m)
whereZis cq,t1,b. The mixture contains both the successful and unsuccessfabmes oModel,.

4 Behavioural Equivalence of CQP Processes

We now extend the theory of equivalence in CQP to apply it f@QC. The process calculus ap-
proach to verification is to define a proceédedelwhich models the system of interest, another process
Specificatiorwhich expresses the specification tNaddelshould satisfy, and then prove thdbdeland
Specificatiorare equivalent. We begin with the definitionmbbabilistic branching bisimilaritywhich

is a congruence for CQP.
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4.1 Probabilistic Branching Bisimilarity

There are several types of probabilistic bisimilarity ftassical probabilistic process calculi, including
probabilistic branching bisimilarityf19]. The equivalence for CQP defined by Daviddan [3], whigims
out to be a congruence, is a form of probabilistic branchisgrblarity, adapted to the situation in which
probabilistic behaviour comes from quantum measuremekeyoint is that when considering match-
ing of input or output transitions involving qubits, it isehieduced density matrices of the transmitted
qubits that are required to be equal. We will now define praiséib branching bisimilarity in full. The
definitions in the remainder of this section are an extenfimm Davidson’s thesis [3].

Notation: Let — ' denote zero or one transitions; lee=- denote zero or more transitions; and
let =% be equivalent te——2s—. We writeg for a list of qubit names, and similarly for other lists.

Definition 3 (Density Matrix of Configurations) Letoj; = [X— [j)] andy C Xand {j = (X: T; Oij; W, AWe
P;Vij) and t= @jj g;j tij. Then

1 p(aij) = i) (g 4. pY(tj) = p¥(ayj)
2. pY(aij) = trag(|4i) (i) 5. p(t) =i GiP(t)
3. plty) =p(oy) 6. pY(t) = 5 i pV(t)

We also introduce the notatigek to denote the reduced density matrix of #re/ironmenqubits or
number states. Formally, if= (X: T;[X— |)];¥;P) thenpe(t) = p'(t) whereF = X\ y. The definition
of pe is extended to mixed configurations in the same manngr.a3he probabilistic functionu :
< x ¥ —[0,1] is defined in the style of [19]. It allows non-deterministiarisitions to be treated as
transitions with probability 1, which is necessary whercakdting the total probability of reaching a

terminal statepu(t,u) =9dif t 2 p(t,u) = 1if t =uandt € ; u(t,u) = 0 otherwise.

Definition 4 (Probabilistic Branching Bisimulation) An equivalence relatior#? on configurations is
a probabilistic branching bisimulatioon configurations if whenevét, u) € % the following conditions
are satisfied.

I Ift € Z,and t— t' then3u/,u" such that u= U/ 5 u” with (t,U) € % and (t', ") € 2.

1. 1t *M v where t = @ je(r.m Pt} and V= {¥,...,Vin} andXy is eitherdy or § then3u’,u” such
that u—s u' M v with
a) (t,u) ez,

b) U =Bjeq1.m Py,
c) foreach je {1,...,m}, pe(t)) = pe(U)).

d) for each je {1,...,m}, (t},u}) € 2.

m. it My then3u',u” such that u— U Ay with (t,u)eZand(t' ) e %.

IV. If se Jpthenpu(t,D) = u(u,D) for all classes D= .7 /.
This relation follows the standard definition of branchingifulation [8] with additional conditions
for probabilistic configurations and matching quantum iinfation. In condition Il we require that the

distinct set of value¥ must match and although the nam&s &ndX,) need not be identical which is
either the qubit namesj{ and@,) or number state names, (ands;), their respective reduced density

matrices p*1(t) andp’2(u)) must. Condition IV provides the matching on probabilistanfigurations
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following the approach of [19]. It is necessary to include ldtter condition to ensure that the probabili-
ties are paired with their respective configurations. Tédglk to the following definitions. The essential
definitions are presented in this paper and the others avidpobin the appendix.

Definition 5 (Probabilistic Branching Bisimilarity) Configurations t and u ar@robabilistic branch-
ing bisimilar, denoted & u, if there exists a probabilistic branching bisimulatighsuch that(t,u) € Z.

Definition 6 (Probabilistic Branching Bisimilarity of Proc esses)Processes P and Q apgobabilistic
branching bisimilardenoted P= Q, if and only if for allo, (X: T;0;0;P) < (X: T;0;0;Q).

Definition 7 (Full probabilistic branching bisimilarity) Processes P and Q afell probabilistic branch-
ing bisimilar, denoted P=° Q, if for all substitutionsk and all quantum states, (X: T: 0;q,SPK) <
(X:T;0,6,5QK).

In order to state theongruencaheorem, we need an assumption that processes are typisbds- |
sential idea is to associate each qubit or number state witicg@e owning component of the process. In
particular this means that when we consider a process P intexd¢dC[P], the context cannot manipulate
guantum state that is owned by P. The full type system is @htfarward extension of the system from
CQP, taking account of number states.

Theorem 1 (Full probabilistic branching bisimilarity is a congruence) If P ¢ Q then for any con-
text d], if C[P] and JQ) are typable then ] <€ C[Q).

4.2 Correctness oModel

We now sketch the proof thaflodel <€ Specification, which by Theoreni]1 implies that the LOQC
CNOT gate works in any context.

Proposition 1 Model ¢ Specification.

Proof: First we prove thaModel, < Specification, by defining an equivalence relatio# that contains
the pair((X: T; 0;0;Model ), (X: T; 0;0;Specification)) for all o and is closed under their transitions.
Z is defined by taking its equivalence classes to bétte) defined below, for all states, which group
configurations according to the sequences of observalsiticms leading to them.

)

o

Fi(o,q1) = {f|(X:T;0,0;P) = fandPeE}
Fao.aquap) = {f|x:T;0:0;p) T2 ¢ angp e B}

O

?a b°[Q2] outy![c1]

) ( )
) ( )
Fg(a qz) = {f|(X:T;0,0;P) ='=2 f andPc E}
(0) ( )
) ( )

o

— [ |(%:T;0;0;p) DuZRomGowle] ¢ ogp £y
— {f|(x: T;0;0;p) 2uZRPLIORIRINY] ¢ JndP e E}

HereE is {Modek, Specification} and we now prove tha¥ is a probabilistic branching bisimulation.
It suffices to consider transitions betweBnclasses, as transitions within classes must @d are

matched byr. If f,ge Fi(0) andf — A% £/ then f/ € F»(o) and we findg',g” such thag = ¢ — ]

g’ with ¢ € F(0) andg” € F»(0), so (f,g) € # and (f',g") € Z as required. Transitions from
F2(0),Fs(0) andF4(0o) are matched similarly. There are no transitions fieyto). There is no need for
a probability calculation (case IV of Definitibm 4) becaulse probabilistic configurations do not arise as
the measurement results are communicated internallyllfsibacauseModel and Specification have
no free variables, their equivalence is trivially presery substitutions. O

(a
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5 LOQC CNOT Gate: A Second Model

The first model includes an explicit implementation of fh@st-selectiorprocedure, meaning that the
specification process has to include the success prolyabﬂié. We now consider a more abstract
model, by introducing a new measurement operator whiclidedpost-selectiorand restricts attention

to the successful outcomes. This is achieved by replaciagptbcessMMT of our first model by the
procesPSMwhich performgpost-selectiveneasurement and enables a simpler specification to be used.
The CQP definition oModeb is given adModeb(A) = (new B)(PolSe(C) | CNOT(D) | PSME)). Pro-
cesse®olSer andCNOT are defined in the previous model. The prodesa/is defined a®SME) =
PDetl(IE) ] PDetz(é). We prove thaModeb is equivalent tdspecificatiop:

OPCNOTC) = c?[so].d?[s1]. €7[sp] . f?[s3] . {p, Sa = H}.
 A(s0,s1), (s2,83) x=CZ} . {sp, 3 +=H} . hl[so] .1l [s1]. j![s2] . K![s5]. O
Output D) = h?[sg] .17[s1] . ] ?7[S2] . k?[s3] - Outy ! [measure s3] . oub! [measure s3] .0

Specificatiop(A) = (new E)(PolSer(B) | OPCNOTC) | Output D))

The analysis oModeb and the proof of its correctness are provided in the Appendix

6 Conclusion and Future Work

The main contribution of this paper is the extension of theafrequivalence of CQP to verify linear
optical quantum computing. This is the first work in using rfuan process calculus to verify a phys-
ical realisation of quantum computing. We have defined theali optical elements in CQP, and have
described and analysed two models of the linear opticalreérpeatal system that demonstrates a CNOT
gate. Using our second model, we have also described arftbaigrost-selection in CQP.

These two models use different measurement semantics én trdvork at different levels of ab-
straction. This shows that the process calculus is flexibtmugh to support a range of descriptions,
from detailed hardware implementations up to more abssjaetifications. The importance of process
calculus is that it provides a systematic methodology feification of quantum systems. The essential
property that the equivalence is a congruence guarantaeedhivalent processes remain equivalent in
any context, and supports equational reasoning. The facQP can also express classical behaviour
means that we have a uniform framework in which to analyzesidal and quantum computation and
communication.

Shor’s algorithm operating on four qubits using the bagiedr optical elements has been demon-
strated [[17]. In this paper, we present the modelling oféhglements with a future aim to formally
analyse guantum algorithms in CQP using LOQC. This provalgsatform to learn about quantum
complexity in LOQC using CQP and also to verify it. The lomgrh goal is to develop software for au-
tomated analysis of CQP models, following the establisherkwn classical process calculus and recent
work on automated equivalence checking of concurrent gquaprograms [1].

References

[1] E. Ardeshir-Larijani, S. J. Gay & R. Nagarajan (2014erification of Concurrent Quantum Protocols
by Equivalence Checking In: Proceedings of the 20th International Conference on Toots A&lgo-
rithms for the Construction and Analysis of Systems (TACAB)13, LNCS, pp. 500-514, dod.1007/
978-3-642-54862-8_42.


http://dx.doi.org/10.1007/978-3-642-54862-8_42
http://dx.doi.org/10.1007/978-3-642-54862-8_42

126 Verification of linear optical quantum computing using gtuem process calculus

[2] T. A. S. Davidson, S. J. Gay, R. Nagarajan & I. V. PuthodX2): Analysis of a Quantum Error Correcting
Code using Quantum Process Calculuis Proceedings of the International Workshop on Quantum Rysi
and Logic (QPL)95, EPTCS, pp. 67-80, doD.4204/EPTCS.95.7.

[3] Timothy A. S. Davidson (2011)Formal Verification Techniques using Quantum Process QascuPh.D.
thesis, University of Warwick.

[4] Yuan Feng, Runyao Duan & Mingsheng Ying (201Bjsimulation for quantum processel®: Proceedings
of the 38th Annual ACM Symposium on Principles of ProgramgrianguagesACM, pp. 523-534, doi0.
1145/1926385.1926446,

[5] S. Franke-Arnold, S. J. Gay & I. V. Puthoor (2018uantum process calculus for linear optical computing
In: Proceedings of the 5th Conference on Reversible Compuaté®@) 7948, LNCS, pp. 234-246, dod.
1007/978-3-642-38986-3_19.

[6] Simon J. Gay & Rajagopal Nagarajan (2008Jommunicating Quantum ProcesseB: Proceedings of
the 32nd Annual ACM Symposium on Principles of ProgrammiagdguagesACM, pp. 145-157, doio.
1145/1040305.1040318.

[7] Simon J. Gay & Rajagopal Nagarajan (2006Yypes and Typechecking for Communicating Quan-
tum Processes Mathematical Structures in Computer Sciente(3), pp. 375-406, ddi0.1017/
S0960129506005263.

[8] Rob J.van Glabbeek & W. Peter Weijland (199BJanching time and abstraction in bisimulation semantics
Journal of the ACMA3(3), pp. 555—600, ddi0.1145/233551 .233556.

[9] IDQ: ID Quantique Available athttp://www.idquantique.com/company/presentation.html.

[10] E. Knill, R. Laflamme & G. J. Milburn (2001)A scheme for efficient quantum computation with linear
optics Nature409, p. 46, doit0.1038/35051009.

[11] T. Kubota, Y. Kakutani, G. Kato, Y. Kawano & H. Sakurad20(2): Application of a process calculus to
security proofs of quantum protocols: Proceedings of WORLDCOMP/FCS2Q12

[12] Robin Milner (1989):.Communication and Concurrencirentice-Hall.
[13] Robin Milner (1999):Communicating and Mobile Systems: the Pi-Calculdambridge University Press.

[14] C. R. Myers & R. Laflamme (2005)Linear Optics Quantum Computation: an OverviewarXiv: quant-
ph/0512104v1

[15] M. A. Nielsen & I. L. Chuang (2000)Quantum Computation and Quantum Informatid@ambridge Uni-
versity Press.

[16] J. L. O'Brien, G. J. Pryde, A. G. White, T. C. Ralph & D. Briaing (2003):Demonstration of an all-optical
guantum controlled-NOT gatédNature426, p. 264, doit0.1038/nature02054.

[17] A. Politi, J. C. F. Matthews & J. L. O'Brien (2009)Shor’s Quantum Factoring Algorithm on a Photonic
Chip. Science325, p. 1221, doi:0.1126/science.1173731.

[18] T. C. Ralph, N. K. Lanford, T. B. Bell & A. G. White (2002)inear optical controlled-NOT gate in the
coincidence basisPhysical Review Letters 85, pp. 062324—1, ddi0.1103/PhysRevA.65.062324.

[19] Nikola Tréka & Sonja Georgievska (2008ranching Bisimulation Congruence for Probabilistic Syat
Electronic Notes in Theoretical Computer Scied28(3), pp. 129 —143, ddi0.1016/j.entcs.2008.11.
023.

[20] Andrew K. Wright & Matthias Felleisen (19947 syntactic approach to type soundnessformation and
Computatior1.15(1), pp. 38—94, dain.1006/inco.1994.1093.


http://dx.doi.org/10.4204/EPTCS.95.7
http://dx.doi.org/10.1145/1926385.1926446
http://dx.doi.org/10.1145/1926385.1926446
http://dx.doi.org/10.1007/978-3-642-38986-3_19
http://dx.doi.org/10.1007/978-3-642-38986-3_19
http://dx.doi.org/10.1145/1040305.1040318
http://dx.doi.org/10.1145/1040305.1040318
http://dx.doi.org/10.1017/S0960129506005263
http://dx.doi.org/10.1017/S0960129506005263
http://dx.doi.org/10.1145/233551.233556
http://www.idquantique.com/company/presentation.html
http://dx.doi.org/10.1038/35051009
http://dx.doi.org/10.1038/nature02054
http://dx.doi.org/10.1126/science.1173731
http://dx.doi.org/10.1103/PhysRevA.65.062324
http://dx.doi.org/10.1016/j.entcs.2008.11.023
http://dx.doi.org/10.1016/j.entcs.2008.11.023
http://dx.doi.org/10.1006/inco.1994.1093

S. Franke-Arnold, S. J. Gay and I. V. Puthoor 127

7 Appendix

7.1 Definitions and Lemmas for Equivalence

Definition 8 (Context) A contextC is a process with a non-degenerate occurrenc® mfplaced by a
hole,[-]. Formally,
C:=[|(C|P)|aC+P|a.C| (newX]T])C

for a € {€?[%: T],e![g], {e}, (gbit X), (ns 1)}.

Definition 9 (Congruence) An equivalence relatiogZ on processes iseongruencéf (C[P],C[Q]) € #Z
whenevel(P,Q) € # and C is a context.

Definition 10 (Non-input, non-qubit or non-number state cortext) A non-input, non-qubit or non-number
state contexts a context in which the hole does not appear under an inpuwjulit and number state
declaration.

Definition 11 (Non-input, non-qubit or non-number state corgruence) An equivalence relatiosZ on
processes is aon-input, non-qubit or non-number state congrueh@@[P],C[Q]) € #Z wheneve(P,Q) €
Z and C is a non-input, non-qubit or non-number state context.

The first lemma provides a general form for representing cho@nfigurations related by internal tran-
sitions. Due to space constraints the proofs of all lemmadstla@orems are not provided in this paper.

Lemma 1 (General form of internal transitions) If t = ®apei,, Gabkl (X : T; Oabkl; G, S, AYZ @ P; Wapyi)
kled

and t==t' then there exist setg Isuch thatt= ©apc);, Fypy (X: T 0 0, S AV Z 0 P, ).
kled
The following 3 lemmas prove that the state of qubits and rematates that are not owned by a particular

process is unaffected by any transitions of that process.

Lemma 2 (External state independence fo—) If ['; Ske: T and t— t’ where t= (S: Né,ﬁ:
Qbit, T : Qbit; [SF — |Y)]; T, S e) thenpT (t) = pT (')

Lemma 3 (External state independence for—¢) If I'; SHe: T and t—t’ where t= @y 9w (S:
NS, q: Qbit,T': Qbit; [SOF — |(k)]; G, S AV e € W) thenp™ (t) = pT (t')

Lemma 4 (External state independence for-) If I'; S+ P and t— t’ where t= &yc| g (3:NS,§:
Qbit, ¥ : Qbit; [SIF — [ )]; 8,5 AYe P; W) thenp® (t) = pT (t')

The next lemma proves that the action of a context on the guastate is independent of the quantum
subsystem owned by a process.

Lemma 5 (Independence of context transitions)Assume thall; Sg- R. Lett and u be configurations
where

If p%PUeSPSE (1) = pUdESe% () and t— t’ where t= Suers, Ihiap(X: T [GpTR0ESELE — |Wan)]; W, WL AT @
. abeK
R, Wr,,) then there exists & ©mney, N imnagX: T; [0QURIESQSRSE H [ Pnnan |; W, Wk; AY @ R Wi, ) such
abeK
that u— U/ and pPESS (t') = pladeSo (/)
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The next two lemmas prove some simple results which are ustba iproof of Theorerl 2.

Lemma 6 Lett = @uia g uta and t = Guer g Wty then t—" t' if and only if Ve (ta — tf) for
ae{?],1}

Lemma 7 Let tnn= Biicip, 9 kimn(X: T; Okmn; @; A Yo P; Wiamn) and famn = (X: T; Giamn; @; P{Wiamn/Y})
¢c?[Umn,0,S . . ¢c?[Umn,0,3

We are now in a position to prove that bisimilarity is presehby parallel composition. To prove this,

we define an equivalence relation that contains the (9&irT; 0;0;P |R),(X: T; 0;0;Q|R)) and that is

closed under transitions from these configurations.

Theorem 2 (Parallel preservation for configurations) Assume thaf - P, ' - Q, I - P|R, andl' -
QIR. If(X:T;0,0;P) = (X: T;0,;0;Q) then(X: T;0;0;P|R) & (X: T;0;0;Q|R).

Using this result, we prove that the bisimilarity of processs preserved by parallel composition.

Theorem 3 (Parallel Preservation) If P < Q then for any process R such tHat- P|R andl - Q|R
then P R< Q|R.

We now consider preservation with respect to other processtaictions and can be shown that prob-
abilistic branching bisimilarity is preserved by all preseconstructs except input and qubit or number
state declarations.

Lemma 8 Probabilistic branching bisimilarity is preserved by outpprefix, action prefix, channel re-
striction and non-deterministic choice.

Theorem 4 (Probabilistic branching bisimilarity is a non-input congruence) If P £ Q and for any
non-input, non-qubit or non-number state context Clif C[P] andl" F C[Q] then GP] < C[Q).

7.2 Execution ofModeb:

Lett = (0;0;0;Modeb) be the initial configuration. Like in previous case aftereiging input qubits,
we get the configuration a&y; : Qbit, gy : Qbit, q102 = |@)q; 1, d2; (PolSer’ | CNOT|PSM)). As before
the qubits are converted to the number states after gomperations and the configuration is now,

(8:NS;5=|9)s; %0, 1, 2, s; (PoISer” | CNOT| PSM))

After another set of transitions corresponding to tl&NOT process, we get the sta@)o, which is
given by Eq[B. The configuration now becomgs NS;S= |0)out; S0, 51,92, S3; (CNOT | PSM)). The
execution oModeb is similar to that oModek and differs only in the measurement. Here the detectors
perform apost-selectiveneasurement giving rise to the following mixed configunatio

Dijefo.1}.i#j Gijhij (5:NS;S= @k );%,51,%,83:AYe PSM; |, I)
Kle{0,1} kAl
The post-selectiveneasurement outcomes @re then given as output to the environment resulting in a
probabilistic configuration given a8 (o 1} kic(o,1} 9ij hijki (S NS;S= [@jx ); 0,51, %2, S3;AY @ 0; ], 1).
Another significant difference between the models is in tamunication of the measurement out-
comes. InModel, the outcomes were communicated internally and hence didive a probabilistic
configuration, which is not the case figrodeb.
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7.3 Correctness oModeb
Proposition 2 Modeb <° Specificatiop.
Proof: We have similar equivalence classes as in the previous case:

a?lq

Fl (0,01 X:T:0:0:P 1]fandPeE}
(e

) ( )
2(0,q1,0) = {f|(X:T;0;0;P) 2U0%%] ¢ andP e E}

) ( )

( )

%

O

F3(0 o % T: 00 0:p) ZaA%lowtier] ¢ o gp e E}
Fa0) = {f|(X:T;0;0;p) TePRPMGIowle) ¢ ohgp e £}
Here E is {Modeb, Specification} and the proof is similar to the previous case. Modeb, we will

always get a correct output since we do not consider any andthe probability of getting one of the
outputs is%. Similar to the previous proof, here we have no transitisomfF,(o). O
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