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We explain the use of quantum process calculus to describe and analyse linear optical quantum
computing (LOQC). The main idea is to define twoprocesses, one modelling a linear optical system
and the other expressing a specification, and prove that theyarebehaviourally equivalent. We extend
the theory ofbehavioural equivalencein the process calculus Communicating Quantum Processes
(CQP) to include multiple particles (namely photons) as information carriers, described byFock
statesor number states. We summarise the theory in this paper, including the crucial result that
equivalence is acongruence, meaning that it is preserved by embedding in any context. Inprevious
work, we have used quantum process calculus to model LOQC butwithout verifying models against
specifications. In this paper, for the first time, we are able to carry out verification. We illustrate this
approach by describing and verifying two models of an LOQC CNOT gate.

1 Introduction

Quantum information processing (QIP) is a field of research,which involves the study of storing and
manipulating information in systems that are governed by the laws of quantum mechanics. This provides
huge potential in quantum computation, cryptography and communication [15], and first secure cryp-
tography systems are already commercially available [9]. Linear optical quantum computing (LOQC) is
being pioneered for applications in scalable quantum computing [10]. LOQC is based onspatial encod-
ing where a quantum bit is encoded as a superposition of two spatial modes or the two optical paths that
can be travelled by a single photon [16]. The inherent weak interaction between photons as information
carriers makes them highly suitable for communication applications.

Quantum process calculus is a class offormal methods, able to describe and analyse the behaviour
of systems that combine quantum and classical elements. Thesuccess of formal methods in classical
computer science has motivated the development of quantum process calculus called Communicating
Quantum Processes (CQP) [6]. CQP provides an abstract modelof the quantum system, with the as-
sumption that a qubit is considered as a localised unit of information. CQP verifies the correctness of
a system by employing the theory ofbehavioural equivalence[3] between processes. Also, the equiva-
lence is acongruence, meaning that it is preserved by inclusion in any environment. The theory has been
applied to the analysis of a quantum error correcting code [2].

Contributions: This paper enhances from previous work [5] significantly in two different ways. First,
we provide the theory of equivalence in CQP for LOQC, which has been extended from Davidson thesis
[3], in order to analyse and verify a realistic experimentalsystem. Thecongruenceproperty of equiv-
alence in CQP is applied to the LOQC CNOT gate, which providesus for the first time with a more
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physical understanding of the property of equivalence. Second, we present two models of an experimen-
tal system that demonstrates LOQC CNOT gate and prove that they are equivalent to their specification.
These two models not only demonstrates the gate but uses two different measurement semantics which
exhibits the flexibility of process calculus approach to work at different levels of abstraction. In our sec-
ond model, we demonstratepost-selection, which plays an important role in LOQC, where one considers
only a subset of all experimental runs that fulfil predefined criteria.

The present paper begins in Section 2 by recalling the basic concepts of quantum optics which are
needed to understand LOQC. In Section 3 we review the language of CQP, illustrated with a model of
the experimental system that demonstrates LOQC CNOT gate. Section 4 summarises the extension of
the theory of equivalence in CQP, which is applied to LOQC. InSection 5 we describe the post-selection
process and analyse a model of an experimental system demonstratingpost-selectiveLOQC CNOT gate.
Finally, Section 6 concludes with an indication of directions for future work.

Related Work: All the quantum process calculi which have been developed sofar considered a qubit
as an abstract particle that can be sent or received through channels. Fenget al. [4] developed qCCS, a
quantum extension of the classical value-passing CCS [12] and proved that weak bisimilarity is a con-
gruence. The result is applied to quantum teleporation, superdense coding and quantum key distribution
protocols [11].

2 Background

We recall briefly the aspects of quantum theory and quantum optics relevant for this paper. For more
detailed information we refer to the book by Nielsen and Chuang [15] and research papers [10, 16, 18].

A qubit is an information unit comprising two states (|0〉 and|1〉) which are called thestandardbasis.
Thestate spaceH (or Hilbert space) of a qubit consists of allsuperpositionsof the basis states:|ψ〉 =
α |0〉+β |1〉 whereα andβ are complex numbers such that|α |2+ |β |2 = 1. A qubit is conventionally
realised by an individual photon with the two basis states refering to orthogonal polarisation directions of
the photon (|0〉= |H〉 and|1〉= |V〉). We refer to the qubit as a polarisation qubit whereH andV denote
horizontal and vertical polarisation, respectively. We introduce the notationα |H〉+β |V〉 = α |10〉HV +
β |01〉HV , where the entries in the ket states represent the number of photons (photon numbern) in the
state basis indicated by the subscripts. This will allow us to generalise the notation to more than one
photon. Two photons in the statesαi |H〉+βi|V〉 (wherei is 1,2 respectively for each photon) can then be
encoded in the shorthandα1α2|20〉HV +β1β2|02〉HV +(α1β2+α2β1)|11〉HV , if they are indistinguishable
in all other parameters. In LOQC [10], we consider qubits which are encoded in different optical paths
’a’ and ’b’ rather than different polarisation states. This is referred to asdual rail logic. Again, we
denote the quantum states in thenumber statebasis, giving the number of photons travelling along the
different paths. The basis states in dual rail logic are then|0〉 → |10〉ab, and similarly for|1〉 → |01〉ab.
In experiments, the conversion of apolarisation qubit into adual rail qubit is accomplished by the
combination of a polarising beam splitter (PBS) and a phase shifter (PR) [16], which works as a unitary
operationPS.

Definition 1 (PS operator) APS is an operator that transforms a polarisation qubit|ψ〉 ∈Hq to a dual
rail qubit |φ〉 ∈Hs, whereHq andHs are the respective Hilbert spaces for the polarisation and dual rail
qubits. The action ofPS is then defined byPS|H〉 ≡PS|10〉HV = |10〉ab andPS|V〉 ≡PS|01〉HV = |01〉ab
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Figure 1: A schematic representation of the LOQC CNOT gate.BS1 andBS5 are beam splitters of
reflectivity 1

2 and the others are of reflectivity13. The dark side of the BS indicates the side from which a
sign change occurs upon reflection.

Operations on number states (orFock states|n〉) are described in terms of the creation and annihi-
lation operators ˆa† andâ, which when acting on a state|n〉 increase or decrease the photon number (n)

by one. Therefore, each Fock state can be built up from creation operators given by|n〉 = (â†)n
√

n!
|0〉. In

LOQC, optical elements such as phase shifters and non polarising beam splitters performunitary trans-
formations, which describe the evolution of a closed quantum system. A unitary transformation in LOQC
[14] can be described by its effect on each photon path’s creation operator. A non polarising beam splitter
(BS) is defined by the transformation matrix

U(BS) =

(
cosθ eiφ sinθ

e−iφ sinθ −cosθ

)

The reflectivity and transmissivity of a BS are given byη = cos2 θ and 1−η = sin2θ , respectively,
θ is the angle between the polarisation direction of the inputphoton and the crystal axis of the BS andφ
is the relative phase between the light modes in the two output paths. Here we considerφ = 0, which is
the case for BSs in integrated circuits. If the state|mn〉ab is incident on a BS withm photons along path
a andn photons along pathb, the transformation is:

|mn〉ab =
(â†

a)
m

√
m!

(â†
b)

n
√

n!
|00〉ab → 1√

m!n!
(â†

a cosθ + â†
bsinθ)m(â†

a sinθ − â†
bcosθ)n|00〉ab (1)

Thecontrolled Not(or CNOT) is a quantum gate that is a primary component in building a quantum
computer. The operation of the gate is that it flips the secondqubit (target qubit) if and only if the first
qubit (control qubit) is 1. On qubits, we haveCNOT|0x〉= |0x〉 andCNOT|1x〉= |1y〉 wherex,y∈ {0,1}
andy= x⊕1 with⊕ denoting addition modulo 2. In dual rail logic, this becomesCNOT|10yx〉= |10yx〉
andCNOT|01yx〉 = |01xy〉.

In the following we summarise the theory and operation of theLOQC CNOT gate [16, 18]. The
BSs used in the LOQC CNOT gate [16, 18] have reflectivities ofη = 1

2 or 1
3. The operation is specified

by a control qubit, characterised by the number statesc1 and c2, and a target qubit, characterised by
t1 and t2, as well as two auxiliary vacuum states (absence of a qubit orphoton)x1 andx2, written as
|c1c2t1t2〉|x1x2〉. Consider the general input state

|ψ〉in|00〉 = (α |1010〉+β |1001〉+ γ |0110〉+δ |0101〉)|00〉 (2)

The schematic representation of the LOQC CNOT gate is shown in Figure 1. Using the operators for
each BS as discussed in Eq. 1 and applying it to the input state, Eq. 2 we get the output state of the CNOT
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T ::= Int | Qbit | NS | Bit | [̂T̃] | Op(1) | Op(2) | · · ·
v ::= x | 0 | 1 | · · · | H | · · ·
e ::= v | measure ẽ | psmeasure ẽ | ẽ∗=e | e+e′ | (e,e) | if e thene elsee | x : NS,y : NS∗=PS(z)

P ::= 0 | (P|P) | P+P | e?[x̃ : T̃].P | e![ẽ].P | {e}.P | (qbit x)P | (ns x)P | (new x : [̂T])P

Figure 2: Syntax of CQP.

gate as:

|ψ〉in|00〉 → 1
3{(α |1010〉+β |1001〉+ γ |0101〉+δ |0110〉)|00〉+

√
2(α +β )|0100〉|10〉

+
√

2(α −β )|0000〉|11〉+(α +β )|1100〉|00〉+(α −β )|1000〉|01〉+
√

2α |0010〉|10〉
+
√

2β |0001〉|10〉−
√

2(γ +δ )|0200〉|00〉− (γ −δ )|0100〉|01〉+
√

2γ |0020〉|00〉
+(γ −δ )|0010〉|01〉+(γ +δ )|0011〉|00〉+(γ −δ )|0001〉|01〉+

√
2δ |0002〉|00〉}

(3)

LOQC embeds qubits into the larger dual-rail space, to enable a particular physical realisation of
unitary operators to be used. However, this introduces the possibility that the result of the final measure-
ment may be outside the embedding and hence not interpretable as a computational result.Post-selection
compensates for this possibility by discarding the undesirable measurement results at the expense of in-
troducing a non-zero probability that the overall computation fails. From these states wepost-selectonly
those where one photon is found in the target and one in the control state, by discarding all terms apart
from the first four terms in the first line of Eq. 3, giving

|φ〉ps= α |1010〉+β |1001〉+ γ |0101〉+δ |0110〉 (4)

Successfulpost-selectionoccurs only with a probability of one-ninth and the relationship between Eq. 2
and Eq. 4 is a controlled-NOT transformation.

3 Communicating Quantum Processes (CQP)

CQP [6] is a quantum process calculus, which was establishedfor formally defining the structure and
behaviour of systems that comprise both quantum and classical communication and computation. The
language is based on theπ-calculus [13] with primitives for quantum information. The general idea is
that a system is considered to be made up of independent components orprocesses. Theprocessescan
communicate by sending and receiving data alongchannelsand these data are qubits, number states or
classical values. A distinctive feature of CQP is its statictype system [7], the purpose of which is to
classify classical and quantum data and also to enforce the no-cloning property of quantum information.
We now present CQP including the extensions required for LOQC.

3.1 Syntax of CQP

The syntax of CQP is defined by the grammar as shown in Figure 2.We use the notation ˜e= e1, . . . ,en,
and write|ẽ| for the length of a tuple. The syntax consists of typesT, valuesv, expressionse (including
quantum measurements and the conditional application of unitary operators ˜e∗= e), and processesP.
Valuesv consist of variables (x,y,z etc), literal values of data types (0,1,..), unitary operators such as the
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v ::= . . . | q | s | c

E ::= [] | measure E, ẽ | measure v,E, ẽ | . . . | measure ṽ,E | E+e | v+E | if E theneelsee

F ::= []?[x̃].P | []![ẽ].P | v![[].ẽ].P | v![v, [], ẽ].P | · · · | v![ṽ, []].P | {[]}.P

Figure 3: Internal syntax of CQP.

Hadamard operatorH. Expressionse consist of values, measurementsmeasure e1, . . . ,en, applications
e1, . . . ,en ∗=e of unitary operators and applicationsx : NS,y : NS∗=PS(z) of PS operator, expressions
involving data operators such ase+ e′ and a pair of values(e,e). We have a new addition to the ex-
pression calledpost-selectivemeasurementpsmeasure e1, . . . ,en. Processes include the nil process0,
parallel compositionP|P, inputse?[x̃: T̃].P, outputse![ẽ].P, actions{e}.P (typically a unitary operation
or measurement), typed channel restriction(new x : [̂T̃])P, qubit declaration(qbit x)P and number state
declaration(ns x)P.

In order to define the operational semantics we provide theinternal syntaxin Figure 3. We assume a
countably infinite set of qubit names, ranging overq, r, . . . , a countably infinite set of number state names
s, t, . . . and similarly channel names. Values are supplemented with either qubit namesq or number
state namess, which are generated at run-time and substituted for the variables used inqbit andns
declarations respectively. Evaluation contexts for expressions (E[]) and processes (F[]) are used to define
the operational semantics [20]. Later in the paper, we also use parameterised process definitions.

3.2 Linear Optical Elements in CQP

First, we define a processPolSewhich provides the input to the LOQC CNOT gate by converting a
polarisation qubit to a dual rail qubit.

PolSe(a: [̂Qbit],c: [̂NS],d : [̂NS]) = a?[q0 :Qbit] .{s0 :NS,s1 :NS∗=PS(q0)} .c![s0] .d![s1] .0

PolSeis parameterized by three channels,a,c andd. The right hand side of the definition specifies the
behaviour of the processPolSe. The polarisation qubit (sayq0) is received as input through channela
(whose type iŝ[Qbit]) indicated asa?[q0 :Qbit]. The term{s0 :NS,s1 :NS∗=PS(q0)} specifies that the
PS operation is applied to qubitq0 thereby generatings0 ands1 of type number states (NS). PS corre-
sponds to the transformation produced by the combination ofPBS and PR, introduced by Definition 1.
The last two terms (c![s0] andd![s1]) indicate that the respective values of the number states are sent
through the respective output channels. The term0 simply indicates termination.

Next, we define a non polarising beam splitter in CQP asBS, which is a primary component in the
LOQC CNOT gate.

BS(e: [̂NS], f :̂ [NS],h: [̂NS], i : [̂NS],η) = e?[s2 :NS] . f ?[s3 :NS] .{s2,s3 ∗=Bη} .h![s2] . i![s3] .0

whereη is the reflectivity. In a similar way, processBSreceives inputss2 ands3 from e and f . Then
performs the unitary operation represented by{s2,s3 ∗=Bη} on the number states as defined by Eq. 1.
HereBη is the unitary operation represented by the matrixU(BS) for φ = 0. The number states are then
output onh andi.
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Figure 4: Model of LOQC CNOT gate: The dashed lines enclose the subsystems which are defined in
the text.

In this paper, we present two types of measurements. We defineDet andPDetwhich represent the
detectors that performs measurement andPDetperformspost-selectivemeasurement.

Det(l : [̂NS],m: [̂NS],u: [̂Int, Int]) = l?[s0 :NS] .m?[s1 :NS] .u![measure s0,s1] .0
PDet(l : [̂NS],m:̂ [NS],u: [̂Bit]) = l?[s0 :NS] .m?[s1 :NS] .u![psmeasure s0,s1] .0

Here, the detectors measure a pair of number states. The expressionmeasure s0,s1 probabilistically eval-
uates to a pair of positive integers which is the number of photons detected in the respective channels and
psmeasure s0,s1 produces a zero or one which is a result ofpost-selection. The different measurement
semantics enables us to work at different levels of abstraction by showing the flexibility of the process
calculus approach and is discussed in detail in later sections of the paper.

3.3 The LOQC CNOT Gate in CQP : First Model

The structure of the first model of the experimental system that demonstrates LOQC CNOT gate is
shown in Figure 4. The system receives two polarisation qubits (control and target) as inputs through
the channelsa andb. The qubits are then converted to number states by the process PolSeCT, and these
are provided as the input to the CNOT gate represented by processCNOT. The output ofCNOT is
then measured by the processMMT. The whole model is then defined as a parallel composition of
PolSeCT |CNOT|MMT. The CQP definition of the model is

Model1(X̃) = (new Ỹ)(PolSeCT(Ũ) |CNOT(Ṽ) |MMT(W̃))

where each process is parameterised by their respective list of the channels (̃X,Ũ ,Ṽ andW̃) on which it
interacts with other processes.X̃ contains channelsa,b,out1,cnt andout2. Ũ containsa,b,c,d,e, f and
W̃ containsk, l ,q, r,out1,cnt,out2. The scope of the list of channels (Ỹ) is restricted, indicated bynew in
the definition.Ỹ comprises of the channelsc,d,e, f ,g,h,m, l ,k,o,q, r,u andv. We have omitted the types
from our definitions, for brevity. Also, the definitions include a list of channels rather than individual
channel names. The CQP definition forPolSeCT is PolSeCT(Ũ) = PolSe(a,c,d) |PolSe(b,e, f ). Recall
from Section 3.2 thatPolSerepresents the combination of a PBS and PR.

Each BS is represented by a processBSand is annotated to show the correspondence with Figure 4.
BS2 andBS3 have their inputs crossed over, corresponding to their orientation [16]. Vacuum statesy and
z are created by(ns y,z) and communicated toBS2 andBS4 respectively through the channelsi andn.
TheseBSscombine to formCNOTdefined as:

CNOT(Ṽ) = (new g,h,m,o, i, j,n, p)(ns y,z)(BS1(e, f ,g,h, 1
2) | i![y] .0|BS2(i,c,k, j, 1

3) | j?[y] .0|
BS3(g,d,m, l , 1

3) |n![z] .0|BS4(h,n,o, p, 1
3) | p?[z] .0|BS5(m,o,q, r, 1

2))
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HereṼ contains the channelsc,d,e, f ,k, l ,q andr. The outputs ofCNOTare sent through the channels
k, l ,q andr, to the processMMT. The unusedBSoutputs j andp are absorbed byj?[y] andp?[z].

MMT(W̃) = (new u,v)(Det1(k, l ,u) |Det2(q, r,v) |Counter(u,v,out1,cnt,out2,b))

MMT performs the measurement. DetectorsDet1,Det2 are annotated to match Figure 4 and measure the
number states associated with the control and target qubits. The output of a detector are two classical
values which represents the measurement outcome, that is the number of photons detected. The outcomes
of the detector processes are given as inputs to the processCounter.

Counter(u,v,out1,cnt,out2,b : Bit) = u?[c0 : Int,c1 : Int] .v?[t0 : Int, t1 : Int] .
out1![if (c0+c1 = 1) then c1 else0] .out2![if (t0+ t1 = 1) then t1 else0] .

cnt![if (c0+c1 = 1) and (t0+ t1 = 1) then b= 1 elseb= 0] .0

Counterrepresents the coincidence measurement in optical experiments. Coincidence is observed
by detecting two photons, one at channelu and the other atv. It also provides the correct output of
the CNOT gate in terms of classical bits through the channelsout1 andout2. The coincidence count
(b) is recorded as 1 at the output of the channelcnt. The unsuccessful outcomes of the CNOT gate are
recorded as 0 at the three output channels. This is determined by theif . . .elseconditions in the definition.
When we consider the correctness of the system, we will provethatModel1 is equivalent to the following
Specification1 process. We use the same processPolSeCT as the input forSpecification1.

Specification1(a,b,out1,cnt,out2) = (new c,d,e, f ,g)(PolSeCT(Ũ) |OP(C̃) |Output(D̃))

There may be other ways of expressing the specification, for example without converting the polarisation
qubit into the spatial encoding, but we do not investigate them in the present paper. Here,C̃ is a list of
channels containingc,d,e, f ,g,h, i, j,k andD̃ consistsg,h, i, j,k,out1,cnt,out2. OP performs the CNOT
operation with a certain probability and is defined by

OP(c,d,e, f ,g,h, i, j,k) = (qbit : q2) .c?[s0] .d?[s1] .e?[s2] . f ?[s3] .{s2,s3 ∗=H} .{q2 ∗=U 1
9
} .

{(s0,s1),(s2,s3)∗=CZ} .{s2,s3 ∗=H} .h![s0] . i![s1] . j![s2] .k![s3] .g![measure q2] .0

OP possesses a qubitq2 (initialised to|0〉). A random bit is generated with certain probability (8
9 for bit

0) by measuringq2 after the unitary operation withU 1
9
. This is followed by a series of unitary operations

namely Hadamard operation (H) which is applied twice on a pair of number states (s2,s3) and a controlled
Z (CZ) wheres0,s1 acts as the control pair ands2,s3 is the target pair. The combination of aH, CZ and
anotherH constitutes a CNOT, which is an abstract version of the number state computation. The theory
of these operators for number states are not discussed in this paper but are provided in [14]. The data are
then communicated to the processOutput:

Output(g,h, i, j,k,out1,cnt,out2) = g?[x:bit] .h?[s0] . i?[s1] . j?[s2] .k?[s3] .cnt![x] .
out1![if (x= 1) then measure s1 else0] .out2![if (x= 1) thenmeasure s3 else0] .0

This gives the correct output in the form of classical bits ofthe CNOT operation whenx equals one,
which is artificially making the specification work with a certain probability (19). Whenx equals zero,
the specification does not work and we get zero at all the output channels.



118 Verification of linear optical quantum computing using quantum process calculus

(x̃ : T̃;σ ;ω ;u+v) −→v (x̃ : T̃;σ ;ω ;w)if u andv are integer literals andw= u+v (R-PLUS)

(x̃ : T̃; [x̃ 7→ ∑̃
s≥0

αs̃|βs̃〉|s̃〉];ω ;measure sa,sb)−→v ⊕k,l≥0gkl(x̃ : T̃; [x̃ 7→ ∑̃
s′≥0

αs̃′√
gkl

|β
s̃′ 〉|s̃′〉];ω ;λyz• (y,z);k, l) wheregkl = ∑̃

i

|αs̃′ |
2,

(R-MEASURE-NS-2)

s̃= s0, . . . ,sn−1, s̃′ = s0, . . . ,sa−1,k, . . . , l ,sb+1, . . . ,sn−1, ĩ = s0, . . . ,sn−1 \ (sa,sb)and(a,b) ∈ {0, . . . ,n−1} anda 6= b

(x̃ : T̃; [x̃ 7→ ∑̃
s≥0

αs̃|βs̃〉|s̃〉];ω ;psmeasure sa,sb)−→v ⊕k,l∈{0,1},k6=lhkl(x̃ : T̃; [x̃ 7→ ∑̃
s′≥0

αs̃′′√
hkl

|β
s̃′ 〉|s̃′〉];ω ;λz•z; l) wherehkl =

√
gop

1

∑ j̃ |αs̃′′ |2

(R-PS-MEASURE)

andgop = ∑̃
i

|αs̃′ |
2, o, p≥ 0, s̃= s0, . . . ,sn−1, s̃′ = s0, . . . ,sa−1,o, . . . , p,sb+1, . . . ,sn−1,

ĩ = s0, . . . ,sn−1 \ (sa,sb) s̃′′ = s0, . . . ,sa−1,k, . . . , l ,sb+1, . . . ,sn−1,

and j̃ = s0, . . . ,sa−1,k, . . . , l ,sb+1, . . . ,sn−1 and(a,b) ∈ {0, . . . ,n−1} anda 6= b

(q0, . . . ,qn−1 = α0|φ0〉+ · · ·+α2n−1|φ2n−1〉;ω ;measure q0, . . . ,qr−1)−→v ⊕0≤m<2r gm (q0, . . . ,qn−1 =
αlm√

gm
|φlm〉+ · · ·+ αum√

gm
|φum〉;ω ;λx•x;m)

(R-MEASURE-QBIT)

wherelm = 2n−r m,um = 2n−r(m+1)−1,gm = |αlm|2+ · · ·+ |αum|2

(q̃ : Qbit, s̃ : NS; [q̃, s̃ 7→ |ψ〉];ω ;s0, . . . ,s2r−1 ∗=U)−→v (q̃ : Qbit, s̃ : NS; [q̃,s0, . . . ,sn−1 7→ (I|q̃|⊗U ⊗ I(n−2r))|ψ〉];ω ;unit)
(R-TRANS-NS)

(x̃ : T̃;σ ;ω ; if true theneelsee′)−→v (x̃ : T̃;σ ;ω ;e) or (x̃ : T̃;σ ;ω ; if false thene′ elsee)−→v (x̃ : T̃;σ ;ω ;e′) (R-IFTHEN)

∀i ∈ I .(x̃ : T̃; [x̃ 7→ |ψi〉];ω ;e{ũi/ỹ})−→v ⊕ j∈Ji gi j (x̃ : T̃; [x̃ 7→ |ψi j 〉];ω ;λ z̃•e′{ũi/ỹ}; ṽi j )

⊕i∈I hi (x̃ : T̃; [x̃ 7→ |ψi〉];ω ;λ ỹ•E[e]; ũi )−→e ⊕ i∈I
j∈Ji

higi j (x̃ : T̃; [x̃ 7→ |ψi j 〉];ω ;λ ỹz̃•E[e′]; ũi , ṽi j )
(R-CONTEXT)

Figure 5: Transition rules for values and expressions.

3.4 Semantics of CQP

In the previous section, we have described informally the behaviour of the processes which represent the
linear optical elements of the CNOT gate model. In this section we will explain the formal semantics of
CQP although without giving all of the definitions. Full definitions are in the Appendix. The execution of
a system is not completely described by the process term (which is the case for classical process calculus)
but also depends on the quantum state. Hence the operationalsemantics are defined usingconfigurations,
which represent both the quantum state and the process term.

Definition 2 (Configuration) A configuration is defined as a tuple of the form(x̃ : T̃;σ ;ω ;P) wherex̃
is a list of names (qubits̃q, number states̃s or both) associated with their typesT̃ , σ is a mapping from
names (̃x) to the quantum state andω is a list of names associated with the process P

We operate with configurations such as(q1 :Qbit,s0 :NS,s1 :NS; [q1,s0,s1 7→ (|0〉|10〉+ |1〉|01〉)];q1;c![q1] .P)
This configuration means that the global quantum state consists of a qubit,q1, number statess0 and

s1, in the specified state; that the process term under consideration has access to qubitq1 but not to
the number states; and that the process itself isc![q1] .P. The semantics of CQP consists of labelled
transitions between configurations which is essentially required for the equivalence of processes. We
now present the completelabelled transition rulesof CQP that are extended from the previous work in
order to verify LOQC, which is the focus of this paper.

Expression Transition Rules: For the evaluation of expressions we also introduceexpression con-
figurations (x̃ : T̃;σ ;ω ;e), which are similar to configurations, but include an expression in place of
the process. The semantics of expressions is defined by the reduction relations−→v (on values) and
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(p̃, q̃ : ˜Qbit, r̃ , s̃ : ÑS, [p̃q̃r̃ s̃ 7→ |ψ〉]; p̃, q̃, r̃ , s̃;c![ṽ, q̃, s̃].P)
c![ṽ,q̃,s̃]−→p (p̃, q̃ : ˜Qbit, r̃ , s̃ : ÑS, [p̃q̃̃rs̃ 7→ |ψ〉]; p̃, r̃ ;P) (P-OUT)

(q̃ : ˜Qbit, s̃ : ÑS, [q̃s̃ 7→ |ψ〉];ω ;c?[ỹ, x̃].P)
c?[ṽ, p̃,r̃]−→p (q̃ : ˜Qbit, s̃ : ÑS, [q̃s̃ 7→ |ψ〉];ω , p̃, r̃ ;P{ṽ, r̃/ỹ, p̃/x̃}) (P-IN)

(x̃ : T̃, [x̃ 7→ |ψ〉];ω ;P)
α−→p (x̃ : T̃, [x̃ 7→ |ψ〉];ω ′;P′)

(x̃ : T̃, [x̃ 7→ |ψ〉];ω ;P ‖ Q)
α−→p (x̃ : T̃, [x̃ 7→ |ψ〉];ω ′;P′ ‖ Q)

(P-PAR)

(x̃ : T̃, [x̃ 7→ |ψ〉];ω ;P)
α−→p (x̃ : T̃, [x̃ 7→ |ψ〉];ω ′;P′)

(x̃ : T̃, [x̃ 7→ |ψ〉];ω ;P+Q)
α−→p (x̃ : T̃, [x̃ 7→ |ψ〉];ω ′;P′)

(P-SUM)

(x̃ : T̃, [x̃ 7→ |ψ〉];ω ;P) α−→p (x̃ : T̃, [x̃ 7→ |ψ〉];ω ;P′)

(x̃ : T̃, [x̃ 7→ |ψ〉];ω ;(new c)P)
α−→p (x̃ : T̃, [x̃ 7→ |ψ〉];ω ;(new c)P′)

if α /∈ {c?[·],c![·]} (P-RES)

(x̃, ỹ : ˜Qbit,q : Qbit, z̃ : ÑS; [x̃,q, ỹ, z̃ 7→ |φ〉];ω ;{s,t ∗=PS(q)} .P) τ−→ (x̃, ỹ : ˜Qbit, z̃ : ÑS,s : NS,t : NS; [x̃, ỹ, z̃,s,t 7→ |ψ〉];ω ′;P) (P-PS)

where|φ〉= |α〉|0〉|β〉|γ〉+ |α ′〉|1〉|β ′〉|γ ′〉 , |ψ〉= |α〉|β〉|γ〉|10〉+ |α ′〉|β ′〉|γ ′〉|01〉q∈ ω ands,t /∈ ω , q /∈ ω ′ ands,t ∈ ω ′

Figure 6: Transition rules for pure process configurations.

−→e (on expressions), given in Figure 5. Rule R-PLUS deal with the evaluation of terms that result
in values. Rules R-MEASURE-NS-2,R-PS-MEASURE and R-MEASURE-QBIT are measurement rules
which produces a mixed configuration. First two rules measure a pair of number states and the last rule
measures qubit. R-MEASURE-NS-2 produces a mixed configuration over the possible measurement
outcomesk and l . The measurement outcomes are classical values which are the number of photons
detected. R-PS-MEASURE is apost-selectivemeasurement rule which produces a mixed configuration
over the possible measurement outcomel . Rule R-TRANS-NS deals with unitary transformations which
result in literal unit. The important aspect of R-TRANS-NS and the measurement rules is the effect they
have on the quantum state.

The rule R-CONTEXT has two primary purposes; it is used for the evaluation of expressions in an
expression contextE and it is also used of the evaluation of expressions in mixed configurations. The
evaluation of a mixed expression configuration⊕i∈I hi (x̃ : T̃; [x̃ 7→ |ψi〉];ω ;λ ỹ•E[e]; ũi) is determined
by the evaluation of each component. For a given component, the pure expression configuration is
obtained by substitution of the respective values;(x̃ : T̃; [x̃ 7→ |ψi〉];ω ;E[e]{ũi/ỹ}). For this configuration
we isolate the context and consider the evaluation ofe{ũi/ỹ}). The resulting configuration may be a
mixed expression configuration with new variablesz̃ introduced; specifically we end up with a term
λ z̃•e′{ũi/ỹ}; ṽi j where, due to the use of the substitution,e′ is constant across eachi. The results for
eachi are combined to give the final termλ ỹ̃z•E[e′]; ũi , ṽi j incorporating variables̃zandỹ.

Pure Configuration Transition Rules : The rules for pure process configurations are given in Fig-
ure 6. This defines the input and output transitions for pure configurations. It is used in the hypothesis of
L-OUT-QBIT , L-OUT-NS and L-COM to determine the actions of the individual components in a mixed
configurations. The rules namely choice (P-SUM), parallel (P-PAR) and restriction (P-RES) are required
to define input and output actions for arbitrary process constructions. These rules are applicable for both
qubits and number states and P-PS is for the conversion of polarisation qubit to the number states.

Mixed Configuration Transition Rules : The transition relation on mixed configurations is defined
by the rules in Figure 7. The rule L-PROB is a probabilistic transition in whichpi is the probability
of the transition. The rules L-IN, L-OUT-QBIT and L-OUT-NS represent the input and output actions
respectively, which are the visible interactions with the environment.P{ṽi/z̃} indicates thatP with a list
of valuesvi is substituted for the list of variables̃z. When the two processes of input and output actions
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⊞ j pj (⊕i gi (x̃ : T̃;σi ;ω ;Pi))
pi
 ⊕i gi (x̃ : T̃;σi ;ω ;PI ) (L-PROB)

⊕i gi (x̃ : T̃;σi ;ω ;λ z̃•c?[q̃, s̃].P; ṽi )
c?[ p̃,r̃]−→ ⊕i gi (x̃ : T̃;σi ;ω , r̃ , p̃;λ z̃•P{p̃/q̃, r̃/s̃}; ṽi ) (L-I N)

∀i ∈ I .((p̃, q̃) : Q̃bit, s̃ : ÑS; [p̃q̃s̃ 7→ |αi 〉|β〉]; p̃, s̃;P{ṽi/x̃}) c![ũi ,r̃]−→p ((p̃, q̃) : Q̃bit, s̃ : ÑS; [p̃q̃s̃ 7→ |αi 〉|β〉]; p̃′ , s̃;P′{ṽi/x̃})
(L-OUT-QBIT)

⊕i∈I gi ((p̃, q̃) : Q̃bit, s̃ : ÑS; [p̃q̃s̃ 7→ |αi〉|β〉]; p̃, s̃;λ x̃•P; ṽi )
c![U,r̃]−→ ⊞ j∈J pj (⊕i∈I j

gi

pj
((p̃′, q̃) : Q̃bit, s̃ : ÑS; [p̃′ r̃ q̃s̃ 7→ Π|αi〉|β〉]; p̃′ , s̃;λ x̃•P′; ṽi ))

whereU = {ũi | i ∈ I} = {w̃j | j ∈ J} and∀ j ∈ J, I j = {i|ũi = w̃j}, pj = ∑
i∈I j

gi

andr̃ ⊆ p̃, p̃′ = p̃\ r̃,Π corresponds to the permutationπ : p̃q̃s̃ 7→ p̃′ r̃ q̃s̃ .

∀i, j ∈ I .(p̃ : Q̃bit,(t̃ , s̃) : ÑS; [ p̃̃ts̃ 7→ |α〉|βi j 〉]; p̃, s̃;P{ṽi j /x̃,w̃i j /ỹ})
c![ũi j ,r̃ ]−→p (p̃ : Q̃bit,(t̃ , s̃) : ÑS; [ p̃̃ts̃ 7→ |α〉|βi j 〉]; p̃, s̃′;P′{ṽi j /x̃,w̃i j /ỹ})

(L-OUT-NS)

⊕i, j∈I gi j (p̃ : Q̃bit,(t̃ , s̃) : ÑS; [ p̃̃ts̃ 7→ |α〉|βi j 〉]; p̃, s̃;λ x̃ỹ•P; ṽi j ,w̃i j )
c![U,r̃]−→

⊞k∈J pk(⊕i, j∈Ik
gi j

pk
(p̃ : Q̃bit,(t̃ , s̃′ : ÑS); [ p̃̃t s̃′r̃ 7→ Π|α〉|βi j 〉]; p̃, s̃′;λ x̃ỹ•P′; ṽi j ,w̃i j ))

whereU = {ũi j | i, j ∈ I} = {ẽk | k∈ J}, and∀k∈ J, Ik = {i, j|ũi j = ẽk}, pk = ∑
i, j∈Ik

gi j

andr̃ ⊆ s̃, s̃′ = s̃\ r̃ ,Π corresponds to the permutationπ : p̃̃t s̃ 7→ p̃̃t r̃ s̃′ .

∀i ∈ I .(x̃ : T̃;σi ;ω , r̃ ;P{ṽi/z̃}) c![ũi ,r̃ ]−→p (x̃ : T̃;σi ;ω ;P′{ṽi/z̃})
∀i ∈ I .(x̃ : T̃;σi ;ω ;Q{ṽi/z̃}) c?[ũi ,r̃ ]−→p (x̃ : T̃;σi ;ω , r̃ ;Q′{ṽi/z̃})

⊕i∈I gi (x̃ : T̃;σi ;ω , r̃ ;λ z̃•P ‖ Q; ṽi )
τ−→⊕i∈I gi (x̃ : T̃;σi ;ω , r̃ ;λ z̃•P′ ‖ Q′; ṽi )

(L-COM)

⊕i∈I gi (x̃ : T̃;σi ;ω ;λ z̃•P; ṽi )
α−→⊕ i∈I

j∈Ji

gihi j (x̃ : T̃;σi j ;ω ′;λ z̃ỹ•P′; ṽi ,w̃i j )

⊕i∈I gi (x̃ : T̃;σi ;ω ;λ z̃•P ‖ Q; ṽi )
α−→⊕ i∈I

j∈Ji

gihi j (x̃ : T̃;σi j ;ω ′;λ z̃ỹ•P′ ‖ Q; ṽi ,w̃i j )
(L-PAR)

⊕i∈I gi (x̃ : T̃;σi ;ω ;λ z̃•P; ṽi )
α−→⊕ i∈I

j∈Ji

gihi j (x̃ : T̃;σi j ;ω ′;λ z̃ỹ•P′; ṽi ,w̃i j )

⊕i∈I gi (x̃ : T̃;σi ;ω ;λ z̃•P+Q; ṽi )
α−→⊕ i∈I

j∈Ji

gihi j (x̃ : T̃;σi j ;ω ′;λ z̃ỹ•P′; ṽi ,w̃i j )
(L-SUM)

⊕i∈I gi (x̃ : T̃;σi ;ω ;λ z̃•P; ṽi )
α−→⊕ i∈I

j∈Ji

gihi j (x̃ : T̃;σi j ;ω ′;λ z̃ỹ•P′; ṽi ,w̃i j )

⊕i∈I gi (x̃ : T̃;σi ;ω ;λ z̃• (new c)P; ṽi )
α−→⊕ i∈I

j∈Ji

gihi j (x̃ : T̃;σi j ;ω ′;λ z̃ỹ• (new c)P′; ṽi ,w̃i j )
(L-RES)

if α /∈ {c?[·],c![·]}

⊕i∈I gi (q̃ : Q̃bit, s̃ : ÑS; [q̃s̃ 7→ |βi 〉|γi 〉];ω ;λ z̃• (qbit : y)P; ṽi )
τ−→⊕i∈I gi (q̃ : Q̃bit,q : Qbit, s̃ : ÑS; [q̃,q, s̃ 7→ |βi 〉|φ j 〉|γi〉];ω ,q;λ z̃•P{q/y}; ṽi )

whereq is fresh (L-QBIT)

⊕i∈I gi (q̃ : Q̃bit, s̃ : ÑS; [q̃s̃ 7→ |βi〉|γi 〉];ω ;λ z̃• (ns : y)P;X̃)
τ−→⊕i∈I gi (q̃ : Q̃bit,r : NS, s̃ : ÑS; [q̃,r, s̃ 7→ |βi 〉|ψ j 〉|γi〉];ω ,r ;λm̃•P{r/y}; ṽi )

wherer is fresh (L-NS)

⊕i∈I gi (x̃ : T̃;σi ;ω ;λ z̃•{u}.Pi ; ṽi )
τ−→⊕i∈I gi (x̃ : T̃;σi ;ω ;λ z̃•P; ṽi ) (L-A CT)

⊕i∈I gi (p̃, q̃ : ˜Qbit,qc : Qbit, r̃ : ÑS; [p̃,qc, q̃, r̃ 7→ |φ〉];ω ;λ z̃•{sa,sb ∗=PS(qc)}; .P, ṽi ) (L-PS)
τ−→⊕i∈I gi (p̃, q̃ : ˜Qbit, r̃ : ÑS,sa : NS,sb : NS; [p̃, q̃, r̃ ,sa,sb 7→ |ψ〉];ω ′;λ z̃•P; ,ṽi)

⊕i∈I hi (x̃ : T̃;σi ;ω ;λ ỹ•e; ṽi )−→e ⊕ i∈I
j∈Ji

higi j (x̃ : T̃;σi j ;ω ;λ ỹz̃•e′; ṽi ,w̃i j )

⊕i∈I hi (x̃ : T̃;σi ;ω ;λ ỹ•F [e]; ṽi )
τ−→⊕ i∈I

j∈Ji

higi j (x̃ : T̃;σi j ;ω ;λ ỹz̃•F [e′]; ṽi ,w̃i j )
(L-EXPR)

Figure 7: Transition rules for mixed process configurations.
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are put in parallel then each has a partner for its potential interaction, and the input and output can
synchronise, resulting in aτ transition which is given by the rule L-COM. The rule L-ACT just removes
actions. This is a reduction of the action expression tov which would involve effects like measurement
or transformation of the quantum state. Rules L-QBIT and L-NS are for introducing additionalQbit and
NS variables respectively.ns declarations represents vacuum states. Since the values associated with
the an input action are determined by the environment, this action is identical across all components in
a mixed configuration. L-PAR, L-SUM and L-RES can then be used to define inputs on other process
constructions in a mixed configuration.

The rule L-OUT-QBIT and L-OUT-NS is the point at which mixed configurations are combined with
probabilistic branching. Branching must occur when and only when there is information to distinguish
the components. This information is represented by the classical values that are outputs, which may vary
between the components. Some values may be the same, therebyrequiring the relevant components to
remain in a mixed configuration after the output. The purposeof L-OUT-QBIT and L-OUT-NS is to
distribute the components according to the different values, and to assign an action label that represents
the combined action ofall components. For example in transition L-OUT-QBIT , each component has

a pure transition
c![ũi ,r̃ ]−→p representing the channel and qubit names that are common to all components,

and the values̃ui that are specific to that component. The combined action label
c![U,r̃ ]−→ consists of these

common elements and the setU of all the value tuples.

Example 1 (q,s, t : T̃; [q,s, t 7→ α10|0〉|10〉+α01|1〉|01〉+α20|0〉|20〉];q,s, t;c![measure s, t] .P)
τ−→⊕i, j∈{0,1,2} | αi j |2(q,s, t : T̃; [q,s, t 7→ |β 〉|i j 〉];q,s, t;λyz•c![y,z] .P; i, j).

This transition represents the effect of a measurement of a pair of number states (s, t), within a pro-
cess which is going to output the result of the measurement. The configuration on the left is apure
configuration, as described before. On the right we have amixed configurationin which the⊕ ranges
over the possible outcomes of the measurement and the|αi j |2 are the weights of the components in the
mixture. The quantum state[q,s, t 7→ |β 〉|i j 〉] corresponds to the measurement outcome. The expression
λyz•c![y,z].P represents the fact that the components of the mixed configuration have the same process
structure and differ only in the values corresponding to measurement outcomes. The final terms in the
configuration,i and j, shows how the abstracted variablesy andz should be instantiated in each com-
ponent. Thus theλyz represents a term into which expressions may be substituted, which is the reason
for theλ notation. The next transition (R-PS-MEASURE) representspost-selectivemeasurement which
filters out the measurement values that satisfies a predefinedcriteria.

Example 2 (q,s, t : T̃; [q,s, t 7→ α10|0〉|10〉+α01|1〉|01〉+α20|0〉|20〉];q,s, t;c![psmeasure s, t] .P)
τ−→⊕i, j∈{0,1},i 6= j | βi j |2(q,s, t : T̃; [q,s, t 7→ |δ 〉|i j 〉];q,s, t;λy•c![y] .P; j).

Unlike Example 1, herei and j can have values either 0 or 1 andi 6= j. This is the criterion for post-

selection and the weights of the components in the mixture are now|βi j |2 (where|βi j |2 = |αi j |2
∑i j∈{0,1} |αi j |2 ).

Also, here we measure two number statessandt, which results in one classical value. Example 3 shows
the effect of the output from the final configuration of Example 2.

Example 3 ⊕i, j∈{0,1},i 6= j | βi j |2(x̃ : T̃; [x̃ 7→ |δ 〉|i j 〉]; x̃;λy•c![y] .P; i)
c![ j]−→⊞i j∈{0,1},i 6= j |βi j |2

(x̃ : T̃; [x̃ 7→ |δ 〉|i j 〉]; x̃;λy•P; j)
|β01|2
 (x̃ : T̃; [x̃ 7→ |1〉|01〉]; x̃;λy•P;1)

Herex̃ is a list of names consistingq, sandt. The output transition produces the intermediate config-
uration, which is a probability distribution over pure configurations (in contrast to a mixed configuration;
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note the change from⊕ to⊞). Because it comes from a mixed configuration, the output transition con-
tains asetof possible values. From this intermediate configuration there are two possible probabilistic

transitions, of which one is shown (
|β01|2
 ).

Example 4 ⊕i, j≥0 g i j (x̃ : T̃; [x̃ 7→ |β 〉|i j 〉]; x̃;λyz• (c![y] .P|c?[y] .Q); i, j)
τ−→

⊕i, j≥0 g i j (x̃ : T̃; [x̃ 7→ |β 〉|i j 〉]; x̃;λyz• (P |Q); i, j)

Measurement outcomes may be communicated between processes without creating a probability
distribution. In these cases an observer must still consider the system to be in a mixed configuration as
the outcomes are communicated internally and not to the environment.

Example 5 (q :Qbit, r :Qbit, p :NS, t :NS; [q, r, p, t 7→α |00〉|10〉+β |11〉|01〉];q, r, p, t;{u :NS,v :NS∗=
PS(q)} .P) τ−→ (r : Qbit, s̃′ : ÑS; [r, s̃′ 7→ α |0〉|1010〉+β |1〉|0101〉]; r, s̃′ ;P)

Example 5 represents the transition P-PS, which is the conversion of a polarisation qubit (q) to the
number states (u andv). s̃′ indicates that it is a list of names comprisingp, t,u andv of typeNS.

3.5 Execution ofModel1

Let t = ( /0; /0; /0;Model1) be the initial configuration. The semantics of CQP is non-deterministic and
hence the transitions can proceed in different order. In thefirst few steps, the processPolSeCT receives
qubits q1 and q2 from the environment, constructing a global quantum state|φ〉q = α |00〉+ β |01〉+
γ |10〉+ δ |11〉. We get the configuration,(q1 : Qbit,q2 : Qbit,q1q2 = |φ〉q;q1,q2;(PolSeCT

′ |CNOT|
MMT)). After someτ transitions corresponding toPolSeCT operations, the qubits are converted to the
respective number statess0,s1,s2 and s3 by PS operator giving the quantum state|φ〉s = α |1010〉+
β |1001〉+ γ |0110〉+δ |0101〉. The configuration is now(s̃: ÑS; s̃= |φ〉s;s0,s1,s2,s3;(PolSeCT

′′ |CNOT|
MMT)). After another set ofτ transitions corresponding to theCNOT process, we get the state|φ〉out

which is given by Eq. 3. The configuration now becomes(s̃: ÑS; s̃= |φ〉out;s0,s1,s2,s3;(CNOT′ |MMT)).
After the measurement by both detectors, the outcomes are communicated to theCounter. This happens
internally and hence, we get the mixed configuration:

⊕i j≥0
kl≥0

gi j hi jkl (s̃ : ÑS; s̃= |φi jkl 〉;s0,s1,s2,s3;λ ỹ•Counter′; i, j,k, l)

Hereỹ is a list of measurement outcomes (c0,c1, t0 andt1). The output transitions produces the configura-
tion below, which is a mixed state given by⊕i, j,k,l ,m∈{0,1} gi jmhi jklm (s̃: ÑS; s̃= |φi jkl 〉; s̃;λ z̃•0; i, j,k, l ,m)
wherez̃ is c1, t1,b. The mixture contains both the successful and unsuccessfuloutcomes ofModel1.

4 Behavioural Equivalence of CQP Processes

We now extend the theory of equivalence in CQP to apply it for LOQC. The process calculus ap-
proach to verification is to define a processModelwhich models the system of interest, another process
Specificationwhich expresses the specification thatModelshould satisfy, and then prove thatModeland
Specificationare equivalent. We begin with the definition ofprobabilistic branching bisimilarity, which
is a congruence for CQP.
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4.1 Probabilistic Branching Bisimilarity

There are several types of probabilistic bisimilarity for classical probabilistic process calculi, including
probabilistic branching bisimilarity[19]. The equivalence for CQP defined by Davidson [3], which turns
out to be a congruence, is a form of probabilistic branching bisimilarity, adapted to the situation in which
probabilistic behaviour comes from quantum measurement. Akey point is that when considering match-
ing of input or output transitions involving qubits, it is the reduced density matrices of the transmitted
qubits that are required to be equal. We will now define probabilistic branching bisimilarity in full. The
definitions in the remainder of this section are an extensionfrom Davidson’s thesis [3].

Notation: Let
τ−→+

denote zero or oneτ transitions; let=⇒ denote zero or moreτ transitions; and
let

α
=⇒ be equivalent to=⇒ α−→=⇒. We writeq̃ for a list of qubit names, and similarly for other lists.

Definition 3 (Density Matrix of Configurations) Letσi j = [x̃ 7→ |ψi j 〉] andỹ⊆ x̃ and ti j =(x̃ : T̃;σi j ;ω ;λ w̃•
P; ṽi j ) and t=⊕i j gi j ti j . Then

1. ρ(σi j ) = |ψi j 〉〈ψi j | 4. ρ ỹ(ti j ) = ρ ỹ(σi j )

2. ρ ỹ(σi j ) = trx̃\ỹ(|ψi j 〉〈ψi j |) 5. ρ(t) = ∑i j gi j ρ(ti j )
3. ρ(ti j ) = ρ(σi j ) 6. ρ ỹ(t) = ∑i j gi j ρ ỹ(ti j )

We also introduce the notationρE to denote the reduced density matrix of theenvironmentqubits or
number states. Formally, ift = (x̃ : T̃; [x̃ 7→ |ψ〉]; ỹ;P) thenρE(t) = ρ r̃(t) wherer̃ = x̃\ ỹ. The definition
of ρE is extended to mixed configurations in the same manner asρ . The probabilistic functionµ :
S ×S → [0,1] is defined in the style of [19]. It allows non-deterministic transitions to be treated as
transitions with probability 1, which is necessary when calculating the total probability of reaching a

terminal state.µ(t,u) = δ if t
δ
 u; µ(t,u) = 1 if t = u andt ∈ Tn; µ(t,u) = 0 otherwise.

Definition 4 (Probabilistic Branching Bisimulation) An equivalence relationR on configurations is
a probabilistic branching bisimulationon configurations if whenever(t,u) ∈ R the following conditions
are satisfied.

I. If t ∈ Tn and t
τ−→ t ′ then∃u′,u′′ such that u=⇒ u′

τ−→+
u′′ with (t,u′) ∈ R and(t ′,u′′) ∈ R.

II. If t
c![V,X̃1]−→ t ′ where t′ =⊞ j∈{1...m}p j t ′j and V= {ṽ1, . . . , ṽm} andX̃1 is eitherq̃1 or s̃1 then∃u′,u′′ such

that u=⇒ u′
c![V,X̃2]−→ u′′ with

a) (t,u′) ∈ R,

b) u′′ =⊞ j∈{1...m}p ju′′j ,

c) for each j∈ {1, . . . ,m}, ρE(t ′j) = ρE(u′′j ).

d) for each j∈ {1, . . . ,m}, (t ′j ,u
′′
j ) ∈ R.

III. If t
c?[ṽ]−→ t ′ then∃u′,u′′ such that u=⇒ u′

c?[ṽ]−→ u′′ with (t,u′) ∈ R and(t ′,u′′) ∈ R.

IV. If s∈ Tp thenµ(t,D) = µ(u,D) for all classes D∈ T /R.

This relation follows the standard definition of branching bisimulation [8] with additional conditions
for probabilistic configurations and matching quantum information. In condition II we require that the
distinct set of valuesV must match and although the names (X̃1 andX̃2) need not be identical which is
either the qubit names (q̃1 and q̃2) or number state names (s̃1 and s̃2), their respective reduced density
matrices (ρ X̃1(t) andρ X̃2(u′)) must. Condition IV provides the matching on probabilisticconfigurations
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following the approach of [19]. It is necessary to include the latter condition to ensure that the probabili-
ties are paired with their respective configurations. This leads to the following definitions. The essential
definitions are presented in this paper and the others are provided in the appendix.

Definition 5 (Probabilistic Branching Bisimilarity) Configurations t and u areprobabilistic branch-
ing bisimilar, denoted t- u, if there exists a probabilistic branching bisimulationR such that(t,u) ∈R.

Definition 6 (Probabilistic Branching Bisimilarity of Proc esses)Processes P and Q areprobabilistic
branching bisimilar, denoted P- Q, if and only if for allσ , (x̃ : T̃;σ ; /0;P) - (x̃ : T̃;σ ; /0;Q).

Definition 7 (Full probabilistic branching bisimilarity) Processes P and Q arefull probabilistic branch-
ing bisimilar, denoted P-c Q, if for all substitutionsκ and all quantum statesσ , (x̃ : T̃;σ ; q̃, s̃;Pκ) -

(x̃ : T̃;σ ; q̃, s̃;Qκ).

In order to state thecongruencetheorem, we need an assumption that processes are typable. Its es-
sential idea is to associate each qubit or number state with aunique owning component of the process. In
particular this means that when we consider a process P in a context,C[P], the context cannot manipulate
quantum state that is owned by P. The full type system is a straightforward extension of the system from
CQP, taking account of number states.

Theorem 1 (Full probabilistic branching bisimilarity is a c ongruence) If P -
c Q then for any con-

text C[], if C[P] and C[Q] are typable then C[P] -c C[Q].

4.2 Correctness ofModel1

We now sketch the proof thatModel1 -
c Specification1, which by Theorem 1 implies that the LOQC

CNOT gate works in any context.

Proposition 1 Model1 -
c Specification1.

Proof: First we prove thatModel1 - Specification1, by defining an equivalence relationR that contains
the pair((x̃ : T̃;σ ; /0;Model1),(x̃ : T̃;σ ; /0;Specification1)) for all σ and is closed under their transitions.
R is defined by taking its equivalence classes to be theFi(σ) defined below, for all statesσ , which group
configurations according to the sequences of observable transitions leading to them.

F1(σ ,q1) = { f | (x̃ : T̃;σ ; /0;P)
a?[q1]
=⇒ f andP∈ E}

F2(σ ,q1,q2) = { f | (x̃ : T̃;σ ; /0;P)
a?[q1]
=⇒b?[q2]

=⇒ f andP∈ E}
F3(σ ,q2) = { f | (x̃ : T̃;σ ; /0;P)

a?[q1]
=⇒b?[q2]

=⇒out1![c1]
=⇒ f andP∈ E}

F4(σ) = { f | (x̃ : T̃;σ ; /0;P)
a?[q1]
=⇒b?[q2]

=⇒out1![c1]
=⇒ out2![c2]

=⇒ f andP∈ E}
F5(σ) = { f | (x̃ : T̃;σ ; /0;P)

a?[q1]
=⇒b?[q2]

=⇒out1![c1]
=⇒ out2![c2]

=⇒ cnt![y]
=⇒ f andP∈ E}

HereE is {Model1,Specification1} and we now prove thatR is a probabilistic branching bisimulation.
It suffices to consider transitions betweenFi classes, as transitions within classes must beτ and are

matched byτ . If f ,g∈ F1(σ) and f
a?[q1]−→ f ′ then f ′ ∈ F2(σ) and we findg′,g′′ such thatg=⇒ g′

a?[q1]−→
g′′ with g′ ∈ F1(σ) and g′′ ∈ F2(σ), so ( f ,g′) ∈ R and ( f ′,g′′) ∈ R as required. Transitions from
F2(σ),F3(σ) andF4(σ) are matched similarly. There are no transitions fromF5(σ). There is no need for
a probability calculation (case IV of Definition 4) because the probabilistic configurations do not arise as
the measurement results are communicated internally. Finally, becauseModel1 andSpecification1 have
no free variables, their equivalence is trivially preserved by substitutions. �
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5 LOQC CNOT Gate: A Second Model

The first model includes an explicit implementation of thepost-selectionprocedure, meaning that the
specification process has to include the success probability of 1

9. We now consider a more abstract
model, by introducing a new measurement operator which includespost-selectionand restricts attention
to the successful outcomes. This is achieved by replacing the processMMT of our first model by the
processPSMwhich performspost-selectivemeasurement and enables a simpler specification to be used.
The CQP definition ofModel2 is given asModel2(Ã) = (new B̃)(PolSeCT(C̃) |CNOT(D̃) |PSM(Ẽ)). Pro-
cessesPolSeCT andCNOTare defined in the previous model. The processPSMis defined asPSM(Ẽ) =
PDet1(F̃) |PDet2(G̃). We prove thatModel2 is equivalent toSpecification2:

OPCNOT(C̃) = c?[s0] .d?[s1] .e?[s2] . f ?[s3] .{s2,s3∗=H} .
{(s0,s1),(s2,s3)∗=CZ} .{s2,s3∗=H} .h![s0] . i![s1] . j![s2] .k![s3] .0

Output(D̃) = h?[s0] . i?[s1] . j?[s2] .k?[s3] .out1![measure s1] .out2![measure s3] .0
Specification2(Ã) = (new Ẽ)(PolSeCT(B̃) |OPCNOT(C̃) |Output(D̃))

The analysis ofModel2 and the proof of its correctness are provided in the Appendix.

6 Conclusion and Future Work

The main contribution of this paper is the extension of theory of equivalence of CQP to verify linear
optical quantum computing. This is the first work in using quantum process calculus to verify a phys-
ical realisation of quantum computing. We have defined the linear optical elements in CQP, and have
described and analysed two models of the linear optical experimental system that demonstrates a CNOT
gate. Using our second model, we have also described and verified post-selection in CQP.

These two models use different measurement semantics in order to work at different levels of ab-
straction. This shows that the process calculus is flexible enough to support a range of descriptions,
from detailed hardware implementations up to more abstractspecifications. The importance of process
calculus is that it provides a systematic methodology for verification of quantum systems. The essential
property that the equivalence is a congruence guarantees that equivalent processes remain equivalent in
any context, and supports equational reasoning. The fact that CQP can also express classical behaviour
means that we have a uniform framework in which to analyze classical and quantum computation and
communication.

Shor’s algorithm operating on four qubits using the basic linear optical elements has been demon-
strated [17]. In this paper, we present the modelling of these elements with a future aim to formally
analyse quantum algorithms in CQP using LOQC. This providesa platform to learn about quantum
complexity in LOQC using CQP and also to verify it. The long-term goal is to develop software for au-
tomated analysis of CQP models, following the established work in classical process calculus and recent
work on automated equivalence checking of concurrent quantum programs [1].
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7 Appendix

7.1 Definitions and Lemmas for Equivalence

Definition 8 (Context) A contextC is a process with a non-degenerate occurrence of0 replaced by a
hole,[·]. Formally,

C ::= [] | (C ‖ P) | α .C+P | α .C | (new x̂ [T])C

for α ∈ {e?[x̃ : T̃],e![ẽ],{e},(qbit x),(ns r)}.

Definition 9 (Congruence) An equivalence relationR on processes is acongruenceif (C[P],C[Q])∈R

whenever(P,Q) ∈ R and C is a context.

Definition 10 (Non-input, non-qubit or non-number state context) Anon-input, non-qubit or non-number
state contextis a context in which the hole does not appear under an input orqubit and number state
declaration.

Definition 11 (Non-input, non-qubit or non-number state congruence) An equivalence relationR on
processes is anon-input, non-qubit or non-number state congruenceif (C[P],C[Q])∈R whenever(P,Q)∈
R and C is a non-input, non-qubit or non-number state context.

The first lemma provides a general form for representing mixed configurations related by internal tran-
sitions. Due to space constraints the proofs of all lemmas and theorems are not provided in this paper.

Lemma 1 (General form of internal transitions) If t = ⊕ab∈Ikl
kl∈J

gabkl (x̃ : T̃;σabkl; q̃, s̃;λ ỹ̃z• P;w̃abkl)

and t=⇒ t ′ then there exist sets I′
kl such that t′ =⊕ab∈I ′kl

kl∈J

g′abkl (x̃ : T̃;σ ′
abkl; q̃

′, s̃′;λ ỹ′z̃′ •P′;w̃′
abkl).

The following 3 lemmas prove that the state of qubits and number states that are not owned by a particular
process is unaffected by any transitions of that process.

Lemma 2 (External state independence for−→v ) If Γ; s̃⊢ e : T and t−→v t ′ where t= (s̃ : ÑS, q̃ :
Q̃bit, r̃ : Q̃bit; [s̃q̃r̃ 7→ |ψ〉]; q̃, s̃;e) thenρ q̃̃r(t) = ρ q̃̃r(t ′)

Lemma 3 (External state independence for−→e ) If Γ; s̃⊢ e : T and t−→e t ′ where t=⊕kl∈I g kl(s̃ :
ÑS, q̃ : Q̃bit, r̃ : Q̃bit; [s̃q̃r̃ 7→ |ψkl〉]; q̃, s̃;λ ỹ•e;w̃kl) thenρ q̃̃r(t) = ρ q̃̃r(t ′)

Lemma 4 (External state independence for τ−→) If Γ; s̃⊢P and t
τ−→ t ′ where t=⊕kl∈I g kl(s̃: ÑS, q̃ :

Q̃bit, r̃ : Q̃bit; [s̃q̃r̃ 7→ |ψkl〉]; q̃, s̃;λ ỹ•P;w̃kl) thenρ q̃̃r(t) = ρ q̃̃r(t ′)

The next lemma proves that the action of a context on the quantum state is independent of the quantum
subsystem owned by a process.

Lemma 5 (Independence of context transitions)Assume thatΓ; s̃R ⊢ R. Let t and u be configurations
where

t =⊕kl∈I g kl(x̃ : T̃; [q̃Pq̃Rq̃Es̃Ps̃Rs̃E 7→ |ψkl〉]; q̃P, q̃R, s̃P, s̃R;λ ỹ•R;w̃R)

u=⊕mn∈J h mn(x̃ : T̃; [q̃Qq̃Rq̃Es̃Qs̃Rs̃E 7→ |φmn〉]; q̃Q, q̃R, s̃Q, s̃R;λ ỹ•R;w̃R)

If ρ q̃Pq̃E s̃Ps̃E(t)= ρ q̃Qq̃Es̃Qs̃E(u) and t
τ−→ t ′ where t=⊕kl∈I ′ab

ab∈K

g ′
klab(x̃ : T̃; [q̃Pq̃′Rq̃Es̃Ps̃′Rs̃E 7→ |ψklab〉];ωP,ω ′

R;λ ỹ′•

R′;w̃Rab) then there exists u=⊕mn∈J′ab
ab∈K

h ′
mnab(x̃ : T̃; [q̃Qq̃′Rq̃Es̃Qs̃′Rs̃E 7→ |φmnab〉];ωQ,ω ′

R;λ ỹ′•R′;w̃Rab) such

that u
τ−→ u′ andρ q̃Pq̃Es̃Ps̃E(t ′) = ρ q̃Qq̃Es̃Qs̃E(u′)
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The next two lemmas prove some simple results which are used in the proof of Theorem 2.

Lemma 6 Let t = ⊕kl∈I g kltkl and t′ = ⊕kl∈I g klt ′kl then t
α−→ t ′ if and only if ∀kl∈I (tkl

α−→ t ′kl) for
α ∈ {.?[·],τ}

Lemma 7 Let tmn=⊕kl∈Imn g klmn(x̃ : T̃;σklmn;ω ;λ ỹ•P;w̃klmn) and tklmn= (x̃ : T̃;σklmn;ω ;P{w̃klmn/ỹ})
then∀mn∈J,kl∈Imn.(tklmn

c?[ũmn,q̃,s̃]−→p t ′klmn) if and only if∀mn∈J.(tmn
c?[ũmn,q̃,s̃]−→p t ′mn)

We are now in a position to prove that bisimilarity is preserved by parallel composition. To prove this,
we define an equivalence relation that contains the pair((x̃ : T̃;σ ; /0;P |R),(x̃ : T̃;σ ; /0;Q |R)) and that is
closed under transitions from these configurations.

Theorem 2 (Parallel preservation for configurations) Assume thatΓ ⊢ P, Γ ⊢ Q, Γ ⊢ P|R, andΓ ⊢
Q |R. If (x̃ : T̃;σ ; /0;P) - (x̃ : T̃;σ ; /0;Q) then(x̃ : T̃;σ ; /0;P |R) - (x̃ : T̃;σ ; /0;Q |R).
Using this result, we prove that the bisimilarity of processes is preserved by parallel composition.

Theorem 3 (Parallel Preservation) If P - Q then for any process R such thatΓ ⊢ P|R andΓ ⊢ Q |R
then P|R- Q |R.

We now consider preservation with respect to other process constructions and can be shown that prob-
abilistic branching bisimilarity is preserved by all process constructs except input and qubit or number
state declarations.

Lemma 8 Probabilistic branching bisimilarity is preserved by output prefix, action prefix, channel re-
striction and non-deterministic choice.

Theorem 4 (Probabilistic branching bisimilarity is a non-input congruence) If P - Q and for any
non-input, non-qubit or non-number state context C ifΓ ⊢C[P] andΓ ⊢C[Q] then C[P] - C[Q].

7.2 Execution ofModel2:

Let t = ( /0; /0; /0;Model2) be the initial configuration. Like in previous case after receiving input qubits,
we get the configuration as,(q1 : Qbit,q2 : Qbit,q1q2 = |φ〉q;q1,q2;(PolSeCT

′ |CNOT|PSM)). As before
the qubits are converted to the number states after someτ operations and the configuration is now,

(s̃ : ÑS; s̃= |φ〉s;s0,s1,s2,s3;(PolSeCT
′′ |CNOT|PSM))

After another set ofτ transitions corresponding to theCNOT process, we get the state|φ〉out which is
given by Eq. 3. The configuration now becomes(s̃ : ÑS; s̃= |φ〉out;s0,s1,s2,s3;(CNOT′ |PSM)). The
execution ofModel2 is similar to that ofModel1 and differs only in the measurement. Here the detectors
perform apost-selectivemeasurement giving rise to the following mixed configuration:

⊕i j∈{0,1},i 6= j
kl∈{0,1},k6=l

gi j hi jkl (s̃ : ÑS; s̃= |φi jkl 〉;s0,s1,s2,s3;λ ỹ•PSM′; j, l)

Thepost-selectivemeasurement outcomes (ỹ) are then given as output to the environment resulting in a
probabilistic configuration given as⊞i j∈{0,1},kl∈{0,1}gi j hi jkl (s̃ : ÑS; s̃= |φi jkl 〉;s0,s1,s2,s3;λ ỹ•0; j, l).

Another significant difference between the models is in the communication of the measurement out-
comes. InModel1, the outcomes were communicated internally and hence did not give a probabilistic
configuration, which is not the case forModel2.
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7.3 Correctness ofModel2

Proposition 2 Model2 -
c Specification2.

Proof: We have similar equivalence classes as in the previous case:

F1(σ ,q1) = { f | (x̃ : T̃;σ ; /0;P)
a?[q1]
=⇒ f andP∈ E}

F2(σ ,q1,q2) = { f | (x̃ : T̃;σ ; /0;P)
a?[q1]
=⇒b?[q2]

=⇒ f andP∈ E}
F3(σ ,q2) = { f | (x̃ : T̃;σ ; /0;P)

a?[q1]
=⇒b?[q2]

=⇒out1![c1]
=⇒ f andP∈ E}

F4(σ) = { f | (x̃ : T̃;σ ; /0;P)
a?[q1]
=⇒b?[q2]

=⇒out1![c1]
=⇒ out2![c2]

=⇒ f andP∈ E}

HereE is {Model2,Specification2} and the proof is similar to the previous case. InModel2, we will
always get a correct output since we do not consider any errorand the probability of getting one of the
outputs is1

4. Similar to the previous proof, here we have no transitions from F4(σ). �
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