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Meta SOS is a software framework designed to integrate the results from the meta-theory of struc-
tural operational semantics (SOS). These results include deriving semantic properties of language
constructs just by syntactically analyzing their rule-based definition, as well as automatically de-
riving sound and ground-complete axiomatizations for languages, when considering a notion of be-
havioural equivalence. This paper describes theMeta SOS framework by blending aspects from the
meta-theory of SOS, details on their implementation in Maude, and running examples.

1 Introduction

Structural Operational Semantics [31] is a well known approach for intuitively specifying the semantics
of programming and specification languages by means of rules. These rules can be analyzed using meta-
theoretic results in order to infer certain properties about language constructs by purely syntactic means.
Research on SOS meta-theory has at its core the development of rule formats that, if respected, will
guarantee that some language constructs have certain properties, such as commutativity, associativity,
and idempotence. We refer the reader to [10] for an overview on how to derive these properties as
well as axiomatizations. Rule formats can also be used to obtain congruence properties for behavioural
equivalences (see, e.g., [7]) and semantic properties suchas determinism of transition relations [1].

Despite the large body of research on the meta-theory of SOS,to the best of our knowledge, there
currently does not exist an extensible software tool integrating the results obtained so far in that research
area. (We briefly review some of the existing software tools below.) This is an unsatisfactory state of
affairs since such a software framework would allow language designers to benefit from the results in
the meta-theory of SOS while experimenting with their language designs. The design of programming
and specification languages is a highly non-trivial endeavour and tool support is needed in order to sup-
port prototyping of language designs, their algorithmic analysis and early checking of desired semantic
properties. The meta-theory of SOS provides, for example, syntactic criteria guaranteeing the validity of
semantic properties, but checking such criteria by hand is error prone and quickly becomes infeasible.

In this paper we introduceMeta SOS1, a framework for handling SOS specifications, with the pur-
pose of performing simulations, deriving axiomatizations, and checking for rule formats. Though it has
a different line of implementation,Meta SOS continues the work we started with a prototype named
PREG Axiomatizer [4], dedicated to deriving axiom systems from SOS specifications.

We are aware of other software tools that are somewhat related to Meta SOS. In [27] the authors
show how to prototype SOS meta-theory in Maude [16]. That paper was a good point of reference for
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us both for implementation details and future work ideas. The Process Algebra Manipulator (PAM)
[25] is designed to perform algebraic reasonings on programs written only in CCS [26], CSP [24] and
LOTOS [13]. PAM does not allow the user to define their own language. The Maude MSOS Tool
(MMT) [15] does provide this facility, however it does not focus on axiomatizations or rule formats,
and, unfortunately, neither does it facilitate a natural extension with new features. LETOS [22] is a
lightweight tool to aid the development of operational semantics, which supports execution and tracing,
as well as quality rendering using LATEX. LETOS makes some first steps towards checking operational
conservativity along the lines proposed in the paper [21].

The rest of the paper is organized as follows. In Section 2 we present some preliminaries on SOS,
Maude andMeta SOS. Section 3 describes the three components the framework currently provides: a
simulator and bisimilarity checker (Section 3.1), a sound and ground-complete axiom schema deriver
(Section 3.2), and a commutativity format checker (Section3.3). It also includes Section 3.4, where we
present a case study that integrates all the previously mentioned components, and Section 3.5, where we
briefly show how to extend the framework with more functionalities. Finally, Section 4 concludes the
paper and points out possible directions for future research.

2 Preliminaries

Maude [16] is a high-level language providing support for specifying multi-sorted signatures, equational
and rewrite theories. Not only is it an excellent environment to perform reasonings with these theories
at object level, but also, due to its reflective capabilities, to analyze and operate with them at meta-level.
Previous efforts [4, 15, 27, 33, 34] have shown its suitability in facilitating SOS specifications.

Meta SOS is implemented in Maude as a metalanguage application [20].This means that the
framework extends Maude with capabilities such as providing SOS specifications and operating with
them. After opening the Maude environment and loading the framework by using the commandload
metasos.maude, a specification is given using the standard syntax for inputting functional modules:
(fmod SPECIFICATION is ... endfm), where “...” consists of constructs that are discussed in the
remainder of the paper.

We assume asignatureΣ, which is a set of function symbols with fixed arities (typical members:f ,
g). Function symbols with arity 0 are referred to asconstants. Moreover, we assume an infinite set of
variablesV (typical members:x,y).

Open termsare inductively built using variables and function symbolsby respecting their arities. The
set of open terms is denoted byT(Σ) (typical members:s,t). By T (Σ) we denote the set of terms formed
without variables, referred to asclosed terms(typical members:p,q). Substitutions, which are functions
of the typeσ : V → T(Σ), have the role of replacing variables in an open term with other (possibly open)
terms.

Meta SOS has a basic set of sorts. One of them represents the domain of process termsT(Σ)
and has the namePTerm. It is important to note that we did not use the nameTerm due to it being
reserved for operating at meta-level with general terms formed using Maude multi-sorted signatures. In
order to have access to the sortPTerm one needs to include a coreMeta SOS module namedRULES in
the specification:including RULES . Operations are given using a standard syntax. For instance,the
following construct declares a binary operationf over process terms:op f : PTerm PTerm -> PTerm

[metadata "sos"] . Notice the use of the attribute in square brackets, which makes it possible forf to
be used in SOS specifications. Variables are also given usinga standard syntax:var x y : PTerm .



Aceto, Goriac & Ingolfsdottir 95

2.1 Transition System Specifications inMeta SOS

We will now describe how transition system specifications are expressed inMeta SOS.
Definition 1 (Transition System Specification). Consider a signatureΣ and a set of labelsL (with typical

membersl, l′), t, t′ ∈ T(Σ) andl ∈ L. A positive transition formulais a triple (t, l, t′), written t
l
−→ t′, with

the intended meaning: processt performs the action labelled asl and becomes processt′. A negative

transition formulais a tuple(t, l), writtent
l
9 , with the meaning that processt cannot perform the action

labelled asl.
A transition ruleis a pair (H,α), whereH is a set of formulae andα is a formula. The formulae

fromH are calledpremisesand the formulaα is called theconclusion. A transition rule is often denoted

by
H

α
and has the following generic shape:

{ti
li−→ t′i | i ∈ I}∪{tj

lj
9 | j ∈ J}

t
l
−→ t′

,

whereI,J are index sets,t, t′, ti, t′i, tj ∈ T(Σ), andli, lj ∈ L. A transition system specification(abbrevi-
ated TSS) is a triple(Σ,L,R) whereΣ is a signature,L is a set of labels, andR is a set of transition
rules of the provided shape.

In Meta SOS, positive and negative formulae are denoted by expressionssuch ast -(l)-> t’ and
t -(l)/>, respectively. Heret, t’ are variables of sortPTerm andl is a variable of another provided

sort, PLabel. A transition rule
H

c
is declared asH === c, whereH consists of a (possibly empty) list

of comma-separated formulae. The entire set of transition rules is given as a list of rules wrapped in a
Maude membership axiom declaration:mb ... : PAllRules .

To exemplify a fullMeta SOS specification, consider the BCCSP system from [19]. Its signature
ΣBCCSPincludes thedeadlockprocess0, a collection ofprefixoperatorsl. (l ∈ L) and the binarychoice
operator + . For a fixedL= {a,b,c}, the deduction rules for these operators are:

l.x
l
−→x

x
l
−→x′

x+ y
l
−→x′

y
l
−→y′

x+ y
l
−→y′

, wherel ∈ L.

(fmod SPECIFICATION is including RULES .

op 0 : -> PClosedTerm .
op _._ : PLabel PTerm -> PTerm

[metadata "sos"] .
op _+_ : PTerm PTerm -> PTerm

[metadata "sos"] .

ops a b c : -> PAction .

var x y x’ y’ : PTerm .
var l : PLabel .

mb
===
l . x -(l)-> x

x -(l)-> x’
===
x + y -(l)-> x’

y -(l)-> y’
===
x + y -(l)-> y’ : PAllRules .

endfm)

As illustrated, Maude provides good support for working with operators in infix notation. As an
improvement overPREG Axiomatizer [4], we use the generic labell of sortPLabel as syntactic sugar,
instead of writing rules for each of the three concrete actions. These actions are declared as constants,
operations without a domain, of sortPAction, which is a subsort ofPLabel described later starting with
Section 3.1. (We can have other types of labels, not just actions.) The deadlock process is also declared
as a constant of sortPClosedTerm, which stands forT (Σ) and is declared internally as a subsort ofPTerm.
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3 Meta SOS Components

ThoughMeta SOS is conceived as a general SOS framework, we have so far limited our development to
case studies involving only GSOS systems [12]. These systems have certain desirable properties and, in
spite of their restricted format, they cover most of the operations in the literature [7].

Definition 2 (GSOS rule format). Consider a process signatureΣ. A GSOS ruleρ overΣ has the shape:

{xi
lij
−→yij | i ∈ I,j ∈ Ii}∪{xi

lij
9 | i ∈ J,j ∈ Ji}

f(~x)
l
−→ C[~x,~y]

,

where all variables are distinct,f is an operation symbol fromΣ with arity n, I,J ⊆ {1, . . . ,n}, Ii,Ji
are finite index sets, thelij ’s and l are labels standing for actions ranging over the setL, andC[~x,~y] is
aΣ-context with variables including at most thexi’s andyij ’s.

A GSOS systemis a TSS(Σ,L,R) such thatΣ andL are finite, andR is a finite set of rules in the
GSOS format.

The operational semantics of a TSS in the GSOS format is givenin terms of a labelled transition
system (LTS), whose transition relations are defined by structural induction over closed terms using
the rules. An essential property we make use of is that LTS’s induced by GSOS systems are finitely
branching [12]. It is easy to see that BCCSP respects the GSOSformat.

In what follows we present three main features provided by theMeta SOS framework.

3.1 Simulator and Bisimilarity Checker

The purpose of the simulator associated to a TSS is to find all transitions for a given closed term. For-

mally, the simulator finds, for a given closed termp, all the labelsl and closed termsp′ such thatp
l
−→p′.

This is a slightly more general approach than the one in [27],where the user needs to give not only the
initial term, but also the label as input.

To illustrate how to use the simulator, consider‖ , the interleaving parallel composition without
communication. We want to also define its behaviour in the context of the termination predicate↓. As
Meta SOS does not currently provide direct support for working with predicates, unlikePREG Axiom-

atizer, we model predicate satisfiability by means of transitions.By adding the termination predicate
trigger as a label, the rules for the prefix and choice operators remain the same. The rules for interleaving
parallel composition are:

x
α
−→x′

x ‖ y
α
−→x′ ‖ y

y
α
−→y′

x ‖ y
α
−→x ‖ y′

x
↓
−→x y

↓
−→y′

x ‖ y
↓
−→0

.

Hereα stands for any of the considered actions from the set{a,b,c}, but not for the termination
predicate trigger. Also, we want to make sure that the last rule is applied only for↓, but for none of the
actions. To specify this we enhance the previous specification with a new sort for predicates as a subset
of labels, add the termination predicate, a variable ranging only over actions, and the rules:

sort PPredicate .
subsort PPredicate < PLabel .

x -(alpha)-> x’
===
x || y -(alpha)-> x’ || y

op | : -> PPredicate .
var alpha : PAction .

y -(alpha)-> y’
===
x || y -(alpha)-> x || y’

x -(|)-> x’ , y -(|)-> y’
===
x || y -(|)-> 0
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We first need to set up a simulator(derive simulator SPECIFICATION .). Not only does this
prepare the metalanguage application to perform simulations, but also outputs a pure Maude specification
that can be used outside theMeta SOS environment for simulations within the specified system. The
advantage of using this generated simulator is a minor gain in performance due to the elimination of the
overhead that comes with any metalanguage application. In addition, this allows for the use of Maude
tools such as the reachability analyzer and the LTL model checker.

To perform a one step simulation for a given term we use the command(simulate ... .). For
instance, the concrete call to observe howp=↓ .0 ‖ a.0 is simulated is(simulate | . 0 || a . 0 .).
The output is a list of pairs of the shape< l # p′ >, wherel is a label of a provable transition andp′ is
the resulting term. In our case the output is:Possible steps: < a # | . 0 || 0 >. Note that due to
our making a clear distinction between actions and predicates only one of the rules involving actions is
applicable. The term(↓ .0+ b.0) ‖ (c.0+ ↓ .0), on the other hand, does involve all the specified rules:
> (simulate | . 0 + b . 0 || c . 0 + | . 0 .)

Possible steps:
< b # 0 || c . 0 + | . 0 >
< c # | . 0 + b . 0 || 0 >
< | # 0 >

From the implementation perspective we tackled one of the issues suggested as future work in [27].
The caveat of the tool presented in that paper is that the userneeds to provide term matching and sub-
stitution definitions by hand for every operator. Our approach uses and extends Maude’s meta-level
functionality of working with substitutions in such a way that it becomes transparent to the user.

As the idea of rewrite-based SOS simulators has already beenexplored in [15, 27, 34], we focused
only on performing one step simulations. Having that functionality, it was natural to derive a strong
bisimilarity checker that implements the following definition.
Definition 3 (Strong Bisimilarity [30]). Consider a TSST = (Σ,L,R). A relationR⊆ T (Σ)×T (Σ) is
a strong bisimulationif and only if it is symmetric and

∀p,q(p,q) ∈R⇒ (∀l,p′p
l
−→p′ ⇒∃q′q

l
−→q′∧ (q,q′) ∈R).

Two closed termsp andq are strongly bisimilar, denoted byp↔T q, if there exists a strong bisimulation
relationR such that(p,q) ∈R. WheneverT is known from the context, we simply writep↔ q.

In [12] it is shown that bisimilarity is a congruence for GSOSsystems and that the LTS’s defined
using these systems are finitely branching. These properties are necessary when checking for strong
bisimilarity by means of the axiom schema that we will present in Section 3.2. Before that, let us present
how to check strong bisimilarity usingMeta SOS.

In order to check if, for instance,a.0 ‖ b.0 ↔ a.b.0+ b.a.0 holds, we use the command

> (check (a . 0 || b . 0) ∼ (a . b . 0 + b . a . 0) .)

result: true.Bool

The Maude specification output when setting up the simulatoralso includes the bisimilarity checker.
Running this specification allows one to directly use the functions that implement the simulator and
bisimilarity checker features, which have the same name as the user interface commands. These are
called usingreduce in the core Maude environment:reduce simulate ... . andreduce check ... ∼

... .

The bisimilarity checker does not currently handle processterms with infinite behaviour. The module
presented in the next section, however, can check if two terms from ΣBCCSP, defined using guarded
recursion, are bisimilar.
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3.2 Axiom Schema Deriver

As an alternative method for reasoning about strong bisimilarity, Meta SOS includes a component for
generating axiom schemas that are sound and ground-complete modulo bisimilarity. There has been
a notable amount of effort put into developing algorithms for axiomatizations for GSOS-like systems
[2, 3, 11], yet all involve several transformations of the original system before deriving the axioms. After
implementing one such algorithm in the toolPREG Axiomatizer [4], a simpler method was developed in
[18]. We slightly adapt that approach here by using an extended version of the prefix operation and by
also showing how to axiomatize operations defined using rules with negative premises, not just positive
ones.

When given a signatureΣ that includesΣBCCSP, the purpose of an axiomatization of strong bisimilar-
ity is to rewrite each termt ∈ T (Σ), that is semantically well founded in the sense of Definition5.1 from
[2], to another termt′ such thatt↔t′ andt′ ∈ T (ΣBCCSP). This reduces the problem of axiomatizing
bisimilarity overT (Σ) to that of axiomatizing it over BCCSP. It is well known [23] that the following
axiomatization (denoted byEBCCSP) is sound and ground-complete for bisimilarity on BCCSP:

x+ y = y+x x+x = x

(x+ y)+ z = x+(y+ z) x+0 = x

In order to set up Maude to perform equational reasoning usingEBCCSP, we can declare that+ is as-
sociative and commutative so that rewrites are performed modulo these two properties:op _+_ : PTerm

PTerm -> PTerm [assoc comm metadata "sos"] . Also, even though we could specify idempotence
and identity element as attributes, for performance reasons we add the last two equations explicitly to the
specification:eq x + x = x . eq x + 0 = x . For convenienceMeta SOS already includes a module
with the signature and equations for BCCSP namedET-BCCSP that can be included in the specification.
For this reason, the names. and+ are reserved, which means that if the user wants to specify his/her
own version of the prefix and choice operations some other names need to be used.

Definition 4 (Head Normal Form). LetΣ be a signature such thatΣBCCSP⊆ Σ. A termt in T(Σ) is in
head normal form(for short, h.n.f.) ift=

∑

i∈I li.ti. The empty sum(I = ∅) is denoted by the deadlock
constant0.

Definition 5 (Disjoint extension). A GSOS systemG′ is a disjoint extension of a GSOS systemG, written
G⊑G′, if the signature and the rules ofG′ include those ofG, andG′ does not introduce new rules for
operations inG.

Definition 6 (Axiomatization schema). LetT = (Σ,L,R) be a TSS in GSOS format such thatBCCSP⊑
T . ByET we denote the axiom system that extendsEBCCSPwith the following axiom schema for every
operationf in T , parameterized over the vector of closed process terms~p in h.n.f.:

f(~p) =
∑

{

l.C[~p,~q]

∣

∣

∣

∣

∣

ρ=
H

f(~x)
l
−→ C[~x,~y]

∈R, ~p = σ(~x),~q = σ(~y) andX(~p,ρ)

}

,

whereX is defined asX(~p,ρ) =
∧

pk∈~p
X

′(pk,k,ρ),

and X
′



pk,k,
{xi

lij
−→yij | i ∈ I,j ∈ Ii} {xi

lij
9 | i ∈ J,j ∈ Ji}

f(~x)
l
−→ C[~x,~y]



=

if k ∈ I then∀j∈Jk ∃p′,p′′∈T (ΣP ) pk ≡ lkj.p
′+p′′ and

if k ∈ J then∀j∈Jk ∀p′,p′′∈T (ΣP ) pk 6≡ lkj.p
′+p′′,

where ≡ denotes equality up toEBCCSP.
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Intuitively, the axiom transformsf(~p) into a sum of closed terms covering all its execution possibili-
ties. This is akin to Milner’s well known expansion law for parallel composition of head normal forms. In
order to obtain them we iterate through the set off -defining rules and check if~p satisfies their hypotheses
by means ofX. The predicateX makes sure that, for a given rule, every component of~p is a term with
enough action prefixed summands satisfying all the positivepremises that involve the component, and
no summands prefixed with the actions from any of the corresponding negative premises.

Theorem 7. Consider a TSST = (Σ,L,R) that is semantically well founded in the sense of [2, Defini-
tion 5.1], such thatBCCSP⊑ T . ET is sound and ground-complete for strong bisimilarity onT (ΣP ).

Proof. Soundness follows in the standard fashion. Every transition f(~p) can perform is matched by the
right hand side of the equation and vice versa due to the natural derivation of the execution tree according
to the defining rules.

As shown in [2], in order to prove ground-completeness of an axiom system, it is sufficient to show
that it is head normalizing, which means that it can bring anyclosed term to a h.n.f. Note that the
axiomatization presented in Definition 6 always derives terms in h.n.f.

In order to generate a Maude equational theory for the operations in a specification we use the com-
mand(derive axiom schemas SPECIFICATION .). Just like in the case of the simulator component, the
command both prepares the environment to perform equational reductions according to the generated ax-
ioms, and outputs a Maude specification that can be used externally, independently of the environment.
The generated equational theory has the name of the specification with the suffix “-SCHEMA” and is se-
lected using the command(select SPECIFICATION-SCHEMA .).

The standard commandreduce derives the normal form of a given closed term. For example, having
loaded the specification of‖ from Section 3.1, this is how we obtain the normal form ofa.0 ‖ b.0:
> (reduce a . 0 || b . 0 .)

result PClosedTerm : a . b . 0 + b . a . 0

To illustrate what the axiomatizations look like, considera general binary operation between labels
mix and an operationg defined as:

x
k
−→x′ y

l
−→y′ x

l
9 y

k
9

g(x,y)
mix(k,l)
−−−−→x′+ y′

x
l
−→x′ y

l
−→y′

g(x,y)
l
−→0

.

The first equation derives a sum of new operations,g1 andg2, one for each rule definingg. These
new operations have the same domain asg, only extended with one parameter that will ultimately hold
the tree of all execution paths that start with the corresponding rule – its head normal form. Initially this
parameter is set to0.
eq g(x,y) = g1(x,y,0) + g2(x,y,0) .

Let us first present the axiom forg1, which is given as a standard Maude conditional equation, and
then discuss all of its aspects.
ceq g1(x,y,SOLUTION) = g1(x,y,SOLUTION’) --- (0)
if k . x’ + x1 := x + dummy --- (1)
/\ l . y’ + x2 := y + dummy --- (2)
/\ not(x can l) --- (3)
/\ not(y can k) --- (4)
/\ NEW-SUMMAND := mix(k, l).(x’ + y’) --- (5)
/\ SOLUTION’ := SOLUTION + NEW-SUMMAND --- (6)
/\ SOLUTION =/= SOLUTION’ --- (7)
.
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Condition (1) requires that the first parameter satisfies theformulax
k
−→x′. The variablex needs to

be matched by a term that hask.x′ as a summand (x1 is a generic variable of sortPTerm). If x is exactly
of the shapek. then Maude cannot find a match betweenk.x′+x1 andx, not knowing that it can assign
0 to x1, which explains the use of a constant of sortPTerm denoted bydummy added as a summand on the
right hand side.

Condition (3) requires thatx satisfies the formulax
l
9 . The natural inductive definition of the oper-

ationcan is included in the moduleET-BCCSP:

op _can_ : PTerm PLabel -> Bool .

eq 0 can l = false . eq (l . x) can l = true .
eq (x + y) can l = (x can l) or (y can l) . ceq (l . x) can k = false if l =/= k .

If conditions (1) – (4) are satisfied, then the premises ofg’s first rule are met. This means that
mix(k, l).(x′ + y′), set at line (5) as the value for the variableNEW-SUMMAND, has to be a summand of
the resulting head normal form. This head normal form is computed incrementally, by finding such
summands individually, using the third parameter ofg1: SOLUTION andSOLUTION’ hold the head nor-
mal forms computed before and, respectively after the current call of g1. The aforementioned summand
is added only if it is not already part ofSOLUTION (conditions (6) – (7)). Should all conditions hold, a
recursive call ofg1 is initiated (line (0)).

An important fact to keep in mind is that, in the specification, for any given rule, the labels of negative
transitions given as variables need to also appear on some ofthe positive ones. For instance, had we not

had the premisex
k
−→x′, wherek is a variable over the set of labelsL = {a,b,c}, it would have been

impossible to tell if condition (4) is met due to the missing assignment fork that should have resulted
when evaluating condition (1). It is possible, however, to have a rule with negative premises labelled
directly with constants, without the need for those constants to appear in other premises of the same rule.

If any of the conditions (1) – (4) does not hold, or if no new solution is found, then the following
base-case equation is called:

eq g1(x,y,SOLUTION) = SOLUTION [owise] .

The equations forg2 are generated in a similar fashion:
ceq g2(x,y,SOLUTION) = g2(x,y,SOLUTION’)

if l . x’ + x1 := x + dummy /\ NEW-SOLUTION := l . 0
/\ l . y’ + x2 := y + dummy /\ SOLUTION’ := SOLUTION + NEW-SOLUTION

/\ SOLUTION =/= SOLUTION’ .
eq g2(x,y,SOLUTION) = SOLUTION [owise] .

In Meta SOS one can also specify recursive processes. If two such processes are given in BCCSP
with guarded recursion in order to determine whether they are bisimilar, the user can call a decision
procedure implementing a unique fixed point induction algorithm. Currently the user needs to make sure
that the guardedness condition is met.

By way of example, consider the following transition systems.

q3
o

p1
i

p2
o

i

p3
o

q1
i q2

i

o

q4i

We specify this behaviour inMeta SOS by means of the reserved operationdef:
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ops p1 p2 p3 q1 q2 : -> PClosedTerm . ops i o : -> PAction .

eq def(p1) = i . p2 . eq def(q1) = i . q2 . eq def(q3) = o . q2 .
eq def(p2) = i . p3 + o . p1 . eq def(q2) = i . q3 + o . q4 . eq def(q4) = i . q2 .
eq def(p3) = o . p2 .

The command(reduce areEqual(p1, q1) .) checks whetherp1 andq1 are bisimilar. The output
in this case is the pair< true ; < p1 ; q1 > < p1 ; q4 > < p2 ; q2 > < p3 ; q3 > >, where the
first element of the pair indicates whether the processes arebisimilar, and, if this is indeed the case, the
second one is a representation of the found bisimulation.

3.3 Commutativity Format Checker

Besides automatically deriving sound and ground-completeaxiomatizations, the focus ofMeta SOS is
also to check for algebraic properties of operations, by design. We have implemented a component that
analyzes the provided SOS specification in order to find binary operations that are commutative. We
adapt the format for binary operations from [29] to GSOS systems that may have negative premises.

Definition 8 (Commutativity). Given a TSS and a binary process operatorf in its process signature,f
is calledcommutative w.r.t. a relation∼, if the following equation is sound w.r.t.∼:

f(x0,x1) = f(x1,x0).

Definition 9 (Commutativity format [9, 29]). A transition system specification over signatureΣ is in
comm-form format with respect to a set of binary function symbols COMM⊆ Σ if all its f -defining
transition rules withf ∈ COMM have the following form

(c)
{xi

lij
−→yij | i ∈ {0,1}, j ∈ Ii}∪{xi

lij
9 | i ∈ {0,1}, j ∈ Ji}

f(x0,x1)
l
−→ t

whereIi and Ji are finite index sets for eachi ∈ {0,1}, and variables appearing in the source of the
conclusion and target of the premises are all pairwise distinct. We denote the set of premises of(c) by
H. Moreover, for each such rule, there exist a transition rule(c’) of the following form in the transition
system specification

(c’)
H ′

f(x′0,x
′
1)

l
−→ t′

and a bijective mapping (substitution)̄h on variables such that (1)̄h(x′0) = x1 and h̄(x′1) = x0, (2)
h̄(t′)∼cc t and (3)h̄(h′) ∈H, for eachh′ ∈H ′. Here∼cc means equality up to swapping of arguments
of operators in COMM in any context. Transition rule(c’) is called thecommutative mirrorof (c).

Theorem 10(Commutativity forcomm-form [9, 29]). If a transition system specification is incomm-

form format with respect to a set of operators COMM, then all operators in COMM are commutative
with respect to strong bisimilarity.

We implement an algorithm that, for a given operation, searches for all of its rules that are commu-
tative mirrors. It is well know that parallel composition iscommutative. To check this using our tool we
load the specification presented in Section 3.1 and call(check formats SPECIFICATION .). The output
shows that the first two rules defining‖ are commutative mirrors, and that the third rule involving the
termination predicate↓ is a commutative mirror of itself, by pointing out the bijective mapping:
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_||_ is commutative:

x -(alpha)-> x’ y -(alpha)-> y’
=== mirrors ===
x || y -(alpha)-> x’ || y x || y -(alpha)-> x || y’

with: alpha <- alpha x’ <- y’ x <- y y’ <- x’ y <- x

x -(|)-> x’ , y -(|)-> y’ x -(|)-> x’ , y -(|)-> y’
=== mirrors ===
x || y -(|)-> 0 x || y -(|)-> 0

with: x’ <- y’ x <- y y’ <- x’ y <- x

WhatMeta SOS does internally is to generate a Maude theory that has the name of the specification
with the suffix “-FORMATS”. It is the same as the initial specification, only that all the "sos" operators
that are found commutative are enhanced with the attributecomm. This is of use both when having to
perform rewrites modulo commutativity involving those operations, and as meta-information for future
components that may need it. One of these components could, for instance, be dedicated to optimizing
axiomatizations, using the approach presented in [9].

An important thing to remark is that the label mappingalpha <- alpha appears amongst the process
variables mapping. The reason we extend the mapping to labels too is the fact that the user should not be
forced to use the same variable name for matching premises ofdifferent rules. We would thus find that
the first two rules are commutative mirrors even if they had different variables for actions, e.g.alpha and
beta, respectively.

Aside from giving the user more freedom when choosing names for label variables, extending the
mapping to labels is actually necessary for proving that some operators are commutative. Consider,
for example, the operationg introduced in Section 3.2 and assume that the operationmix over labels
is declared as commutative. Suppose label variables were not taken into account when searching for
commutative mirrors. Then there would be no way of directly proving thatg is commutative, unless the
user specified the 6 instantiations of the first rule forg, involving the concrete action labelsa,b,c.

> (check formats SPECIFICATION .)

g is commutative:

x-(k)->x’,y-(l)->y’,x-(l)/>,y-(k)/> x-(k)->x’,y-(l)->y’,x-(l)/>,y-(k)/>
=== mirrors ===
g(x,y) -(mix(k,l))-> x’ + y’ g(x,y) -(mix(k,l))-> x’ + y’

with: k <- l l <- k x’ <- y’ x <- y y’ <- x’ y <- x

x -(l)-> x’ , y -(l)-> y’ x -(l)-> x’ , y -(l)-> y’
=== mirrors ===
g(x,y) -(l)-> 0 g(x,y) -(l)-> 0

with: l <- l x’ <- y’ x <- y y’ <- x’ y <- x

If we look at the first rule, note that when applying the substitution on labels, in order to check for
the commutativity format, we need to make sure thatmix(k,l) andmix(l,k) stand for the same label.
This holds in our case because we do not merely check for syntactic equality, but for equality within the
algebra defined for labels. Recall that we considermix to be commutative.

The first rule is found as a mirror of itself based on the commutativity of _+_. Had the consequent of
the rule been of the shapex’ * y’ (_*_ being a new binary operation),Meta SOS would have attempted
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to prove first that_*_ is commutative.

3.4 Linda – Integrating Components

In this section we present another case study and show how easy it is to make use of the functionality
provided by all the previously described components. Let usfocus on the tuple-space based coordination
language Linda [14] and its SOS semantics, as given in [28].

Consider a minimalistic signature for the data component,ΣD, that consists of constants for tuples
(typical membersu,v) and two operations for working with multisets of tuples:∅ for the empty multiset
and (blank) as a commutative and associative binary separator for the elements from the multiset. The
operation has∅ as identity element. We prefer to use constructs instead of the standard mathematical
ones (braces “{”, “ }” for set separators, commas “,” for separating elements within a set, and set union
operator “∪”) for implementation purposes. For instance, the multiset{u,v} ∪ {u} ∪ ∅ is written as
u v u ∅ in T(ΣD), which is the same asu v u because∅ is the identity element. (That is actually the
standard Maude notation for sets and multisets.) This is howwe declare the above mentioned signature:

sort PData PClosedData . subsort PClosedData < PData .
op empty : -> PData .
op __ : PData PData -> PData [assoc comm id: empty] .
ops u v : -> PClosedData .

Linda has several constructs for manipulating a shared datacomponent of the language:

• ask(u) andnask(u) check, respectively, whether tupleu is (or is not) in the data space,

• tell(u) adds tupleu to the data space,

• get(u) removes tupleu from the data space.

Theask(u) andget(u) operations are blocking, in the sense that a process executing them blocks if
u is not in the data space.

In [18] we show how to use labels for operating with the data component. For Linda, the set of labels
L is extended to triples of the from〈tD,−, tD

′〉, wheretD, tD ′ are open data terms fromT(ΣD), standing
for the store before and, respectively, after the transition. The language does not have actions, hence the
use of the placeholder “−” within the triple. As shown later, in order to have a finite set of labels and
rules, which is necessary to have a proper GSOS system, we usesymbolic names instead of open data
terms.

Besides the four constructs for operating with the store, the language includes the prefix operationl.

(for everyl in L), nondeterministic choice+ , parallel composition‖ , and sequential composition; ,
all in the context of the already introduced termination predicate↓. Linda also comes with a successfully
terminated process, which we denote by↓ .0.

In order to handle the store, our approach of extending the prefix operation to triples is slightly
different from the one in [18]. Though less intuitive, it is easier to implement than the one involving two
new operations,checkandupdate, because it requires no extra core axioms aside from those inEBCCSP.

op <_,_,_> : PData PAction PData -> PLabel . op - : -> PAction .

We first make sure that the SOS specification disjointly extends BCCSP, as required by Theorem 7.
The rules forΣBCCSP are declared as presented in Section 2 because they are the same both for the
extended labels and the termination predicate.
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Given thatµ is a variable to be replaced by any considered constant tuple, the rules for the operations
manipulating the data component are:

ask(µ)
〈xD µ,−,xD µ〉
−−−−−−−−−→↓ .0 tell(µ)

〈xD ,−,xD µ〉
−−−−−−−−→↓ .0 get(µ)

〈xD µ,−,xD〉
−−−−−−−−→↓ .0

.

Linda also has a basic operation namednask that checks if a tuple is not in the tuple space. The
operation, however, is defined using side conditions, and currently we provide no support for such rules.

For the purpose of demonstration, we will only implement a limited and artificial version of Linda:

ops ask tell get : PClosedData -> PTerm
[metadata "sos"] .

op d : -> PData . ===
var mu : PClosedData . ask(mu) -( <(d mu), -, (d mu)> )-> |.0

=== ===
tell(mu) -(<d, -, (d mu)>)-> |.0 get(mu) -( <(d mu), -, d> )-> |.0

The limitation consists in the use of a symbolic constantd, denoting a data term, instead of a variable
of the same sort. This is because in [18] it is presented how toderive a sound and ground-complete
axiomatization modulo a notion of bisimilarity only for systems with a data component whose domain is
a finite set of constants, and not a (possibly infinite) set of open terms. In our case the domain of the data
component can be thought of as a set of constants, limited to the number of tuples taken into account plus
one (for the symbolic constant). Using the constantd is also useful during the axiomatization process
because it helps avoiding generating equations with fresh variables on the right hand side. For instance,
according to the schema from Definition 6, the following axiom tell(µ) = 〈d,−,d µ〉. ↓ .0 is generated,
and here it is required thatd is not a variable.

The rules for ‖ are very similar to those shown in Section 3.1, and those for; are:

x
〈xD ,−,x′

D
〉

−−−−−−−→x′

x ; y
〈xD ,−,x′

D〉
−−−−−−−→x′ ; y

x
↓
−→x′ y

〈xD ,−,x′

D
〉

−−−−−−−→y′

x ; y
〈xD ,−,x′

D〉
−−−−−−−→y′

x
↓
−→x′ y

↓
−→y′

x ; y
↓
−→0

.

The rules for the last two operations do not introduce new names for data terms on the consequent
transitions (all the names are known from the premises), which means that no axioms with fresh variables
on the right hand side can be generated. Therefore it is safe to declare them using variables of sortPData

instead of symbolic constants.

op _;_ : PTerm PTerm -> PTerm [metadata "sos"] . var xD xD’ : PData .

x -(<xD,-,xD’>)-> x’ x -(|)-> x’, y -(<xD,-,xD’>)-> y’ x -(|)-> x’, y -(|)-> y’
=== === ===
x;y -(<xD,-,xD’>)-> (x’;y) x;y -(<xD,-,xD’>)-> y’ x;y -(|)-> y’

A use case scenario involving all the components illustrated so far may start with loading the speci-
fication for Linda and checking which operations are commutative (check formats LINDA .). Remark
that_;_’s commutativity cannot be proven:

Could not prove commutativity for: _;_
Could not find commutative mirrors within:
x -(<xD,-,xD’>)-> x’ x -(|)-> x’, y -(<xD,-,xD’>)-> y’ x -(|)-> x’, y -(|)-> y’
=== === ===
x;y -(<xD,-,xD’>)-> (x’;y) x;y -(<xD,-,xD’>)-> y’ x;y -(|)-> y’

We could continue by deriving the axiom schema and determining the normal form of a term such as
ask(u) ; tell(v). Finally we can check if indeed the found normal form is bisimilar to the initial term.
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> (derive axiom schemas LINDA-FORMATS .)
> (select LINDA-FORMATS-SCHEMA .)
> (reduce ask(u) ; tell(v) .)
result PClosedTerm : < d u,-,d u > . < d,-,d v > . | . 0
> (derive simulator LINDA-FORMATS .)
> (check (ask(u) ; tell(v)) ∼ (< d u,-,d u > . < d,-,d v > . | . 0) .)
result: true.Bool

3.5 Adding Components

Meta SOS is conceived in a way to be easily extended with new components. Besides the three com-
ponents presented in Sections 3.1, 3.2 and 3.3 the tool includes a file namedcomponent-sample.maude
which the user can adapt to implement a new desired functionality by following the patterns presented in
[20].

In what follows, the name “sample” is generic and is meant to be replaced by some other name sug-
gesting the functionality of a new component. Each component has two modulesSAMPLE-LANG-SIGNand
SAMPLE-STATE-HANDLING, dedicated for the signature of the implemented commands and, respectively,
their semantics. Once implemented, the functionality is included in theMeta SOS framework by follow-
ing these steps: (1) in the filemetasos-interface.maude the signature for the new commands needs to
be included in theMETASOS-LANG-SIGN module and their semantics needs to be included in the module
METASOS-STATE-HANDLING, (2) in the filemetasos.maude the new component needs to be loaded just like
the others:load component-sample.maude.

It is worth mentioning that, in order to ease the developmentcycle, the framework provides support
for unit testing. It is beyond the scope of this paper, though, to present how to make use of this facility.

4 Conclusion and Future Work

Meta SOS addresses many of the extensions foreseen in [27]. Namely, it represents a core framework
dedicated to implementing SOS meta-theorems, it provides support for generating axiomatizations, and
it frees the user from implementing matching procedures forspecified language constructs. In its present
form, Meta SOS can handle languages whose operational specification is in the GSOS format, such
as most classic process calculi and Linda. Another aspect addressed in [27] is the support for more
general SOS frameworks that allow for terms as labels, as well as multi-sorted and binding signatures.
This would allow the framework to handle name-passing and higher-order languages such as theπ-
calculus [32]. ThoughMeta SOS does not provide this kind of support yet, the general way in which it
handles labels is a good step towards that goal.

There are, naturally, many ways to improve and extend the tool. Besides checking for the commu-
tativity format, there are many other formats to check for: determinism and idempotence [1, 8], zero
and unit elements [6], associativity [17], and distributivity [5]. AdaptingPREG Axiomatizer and adding
it as a component toMeta SOS as presented in Section 3.5 would also be of value due to its different
approach to generating axiomatizations, and because it includes a GSOS format checker. The axiomati-
zation process could be enhanced using the technique presented in [9]. This would lead to smaller and
more natural axiom systems. It would also be of interest to investigate axiomatizations that are sound and
ground-complete modulo other notions of equivalence, suchas weak bisimilarity. From the theoretical
viewpoint, it is worth investigating if the results on axiomatizations can be extended to coalgebras and
whether a framework for SOS using the bialgebraic approach can be developed.
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[1] Luca Aceto, Arnar Birgisson, Anna Ingólfsdóttir, Mohammad Reza Mousavi & Michel A. Reniers (2012):
Rule formats for determinism and idempotence. Science of Computer Programming77(7–8), pp. 889–907,
doi:10.1016/j.scico.2010.04.002.

[2] Luca Aceto, Bard Bloom & Frits W. Vaandrager (1994):Turning SOS rules into equations. Information and
Computation111, pp. 1–52, doi:10.1006/inco.1994.1040.

[3] Luca Aceto, Georgiana Caltais, Eugen-Ioan Goriac & AnnaIngólfsdóttir (2011):Axiomatizing GSOS with
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