Meta SOS — A Maude Based SOS Meta-Theory Framework

Luca Acetd-? Eugen-loan Goridc Anna Ingolfsdottit
[luca,egoriacl0,annai]@ru.is

1 ICE-TCS, School of Computer Science, Reykjavik Univerditgland

2 SysMA, IMT Lucca Institute for Advanced Studies, Lucca 5818aly

Meta SOS is a software framework designed to integrate the resuwts the meta-theory of struc-
tural operational semantics (SOS). These results incledieidg semantic properties of language
constructs just by syntactically analyzing their ruledmhslefinition, as well as automatically de-
riving sound and ground-complete axiomatizations for laages, when considering a notion of be-
havioural equivalence. This paper describes\eea SOS framework by blending aspects from the
meta-theory of SOS, details on their implementation in Mauwhd running examples.

1 Introduction

Structural Operational Semanti¢s [31] is a well known apphofor intuitively specifying the semantics
of programming and specification languages by means of.rlifesse rules can be analyzed using meta-
theoretic results in order to infer certain properties alemguage constructs by purely syntactic means.
Research on SOS meta-theory has at its core the developrharie dormats that, if respected, will
guarantee that some language constructs have certainrfiespsuch as commutativity, associativity,
and idempotence. We refer the reader(td [10] for an overvievhaw to derive these properties as
well as axiomatizations. Rule formats can also be used @irobbngruence properties for behavioural
equivalences (see, e.d.l [7]) and semantic propertiesaaideterminism of transition relations [1].

Despite the large body of research on the meta-theory of &Dife best of our knowledge, there
currently does not exist an extensible software tool irstgg the results obtained so far in that research
area. (We briefly review some of the existing software to@kkw.) This is an unsatisfactory state of
affairs since such a software framework would allow langudgsigners to benefit from the results in
the meta-theory of SOS while experimenting with their laanggi designs. The design of programming
and specification languages is a highly non-trivial endeaamd tool support is needed in order to sup-
port prototyping of language designs, their algorithmialgsis and early checking of desired semantic
properties. The meta-theory of SOS provides, for examplgastic criteria guaranteeing the validity of
semantic properties, but checking such criteria by hand@g prone and quickly becomes infeasible.

In this paper we introduc®leta SOSEL a framework for handling SOS specifications, with the pur-
pose of performing simulations, deriving axiomatizatiomsd checking for rule formats. Though it has
a different line of implementationleta SOS continues the work we started with a prototype named
PREG Axiomatizer [4], dedicated to deriving axiom systems from SOS specifinat

We are aware of other software tools that are somewhat detat®leta SOS. In [27] the authors
show how to prototype SOS meta-theory in Maude [16]. Thaepams a good point of reference for

*The authors have been partially supported by the projectdMteeory of Algebraic Process Theories’ (nr. 100014021)
of the Icelandic Research Fund. Eugen-loan Goriac is alsdeful by the project ‘Extending and Axiomatizing Structural
Operational Semantics: Theory and Tools’ (nr. 1102940@61the Icelandic Research Fund. The authors want to thank
Alberto Lluch Lafuente for his comments on an earlier varsibthe paper.

The framework is downloadable frdhttp://goriac.info/tools/meta-sos/}

J. Borgstrom and B. Luttik (Eds.): Combined Workshop on
Expressiveness in Concurrency and Structural Operational
Semantics (EXPRESS/SOS 2013)

EPTCS 120, 2013, pp. 93=107, d0i:10.4204/EPTCS.120.8

(© Aceto, Goriac & Ingolfsdottir
This work is licensed under the Creative Comnions
Attribution-Noncommercial-No Derivative Works License.

http://dx.doi.org/10.4204/EPTCS.120.8
http://creativecommons.org
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://goriac.info/tools/meta-sos/

94 Meta SOS — A Maude Based SOS Meta-Theory Framework

us both for implementation details and future work ideas.e Phocess Algebra Manipulator (PAM)
[25] is designed to perform algebraic reasonings on programitten only in CCS|[[26], CSP [24] and
LOTOS [13]. PAM does not allow the user to define their own laage. The Maude MSOS Tool
(MMT) [15] does provide this facility, however it does notcfts on axiomatizations or rule formats,
and, unfortunately, neither does it facilitate a naturdeegion with new features. LETOS [22] is a
lightweight tool to aid the development of operational setita, which supports execution and tracing,
as well as quality rendering usingTEX. LETOS makes some first steps towards checking operational
conservativity along the lines proposed in the paper [21].

The rest of the paper is organized as follows. In Sedfion 2 n@egmt some preliminaries on SOS,
Maude andVieta SOS. Sectior B describes the three components the framewor&ntlyr provides: a
simulator and bisimilarity checker (Sectibn13.1), a sound ground-complete axiom schema deriver
(Sectior3.R), and a commutativity format checker (Sed8@&). It also includes Sectidn 3.4, where we
present a case study that integrates all the previouslyiomeat components, and Sect[onl3.5, where we
briefly show how to extend the framework with more functidties. Finally, Section4 concludes the
paper and points out possible directions for future re$earc

2 Preliminaries

Maude [16] is a high-level language providing support faafying multi-sorted signatures, equational
and rewrite theories. Not only is it an excellent environim@nperform reasonings with these theories
at object level, but also, due to its reflective capabiljttesanalyze and operate with them at meta-level.
Previous efforts/[4, 1%, 27, 33, 34] have shown its suitghili facilitating SOS specifications.

Meta SOS is implemented in Maude as a metalanguage applicatioh [40lis means that the
framework extends Maude with capabilities such as progidd®S specifications and operating with
them. After opening the Maude environment and loading taméwork by using the commandad
metasos.maude, @ Specification is given using the standard syntax for impmtfunctional modules:
(fmod SPECIFICATION is ... endfm), Where “ ..” consists of constructs that are discussed in the
remainder of the paper.

We assume aignaturey:, which is a set of function symbols with fixed arities (typicaembers:f,

g). Function symbols with arity O are referred to@mstants Moreover, we assume an infinite set of
variablesV (typical membersz, y).

Open termare inductively built using variables and function symbwojgespecting their arities. The
set of open terms is denoted BY>)) (typical memberss, t). By T'(X) we denote the set of terms formed
without variables, referred to afosed termgtypical membersp, ¢). Substitutionswhich are functions
of the typeo : V' — T(X), have the role of replacing variables in an open term witleio¢hossibly open)
terms.

Meta SOS has a basic set of sorts. One of them represents the domairoa#ss term&'(X)
and has the nameTerm. It is important to note that we did not use the namemn due to it being
reserved for operating at meta-level with general termséat using Maude multi-sorted signatures. In
order to have access to the sBTerm one needs to include a cokteta SOS module name®ULES in
the specification:including RULES . Operations are given using a standard syntax. For instanee,
following construct declares a binary operatiprover process termssp f : PTerm PTerm -> PTerm
[metadata "sos"] . Notice the use of the attribute in square brackets, whichasékpossible forf to
be used in SOS specifications. Variables are also given asstgndard syntaxiar x y : PTerm .

Aceto, Goriac & Ingolfsdottir 95

2.1 Transition System Specifications irMeta SOS

We will now describe how transition system specificatioresexpressed iiVieta SOS.
Definition 1 (Transition System SpecificatianConsider a signatur&: and a set of label& (with typical
members, '), t,t' € T(X) andl € L. Apositive transition formulés a triple (¢,1,t'), writtent 5 ¢, with
the intended meaning: procesperforms the action labelled dsand becomes procegs A negative
transition formulds a tuple(t,), writtent - , with the meaning that procegsannot perform the action
labelled agl.
A transition ruleis a pair (H,«), whereH is a set of formulae and is a formula. The formulae
from H are calledpremisesand the formulax is called theconclusion A transition rule is often denoted
H _ .
by — and has the following generic shape:
[0

. 1
{5t ieDU{t; 5 |je g}

tLe
wherel, J are index sets;, ', t;,t;,t; € T(X), andl;,l; € L. Atransition system specificatiqabbrevi-
ated TSS) is a tripl¢X, L, R) whereX. is a signature,L is a set of labels, an® is a set of transition
rules of the provided shape.

In Meta SOS, positive and negative formulae are denoted by expressiocis as -(1)-> t’ and
t -(1)/>, respectively. Here, t’ are variables of somTerm and1 is a variable of another provided

sort, PLabel. A transition rule— is declared a& === c, whereH consists of a (possibly empty) list

of comma-separated formulaec. The entire set of transititesris given as a list of rules wrapped in a
Maude membership axiom declaratiam: ... : PA11Rules .

To exemplify a fullMeta SOS specification, consider the BCCSP system from [19]. Its atigre
Ysccspincludes thedeadlockprocesd), a collection ofprefixoperatord._ (I € L) and the binarychoice
operator_+_. For a fixedL = {a,b,c}, the deduction rules for these operators are:

z z , Wherel € L.
le—z z+y—2 x+y—y
(fmod SPECIFICATION is including RULES . mb
op 0 : -> PClosedTerm . 1. x-(-—>x
op _._ : PLabel PTerm -> PTerm
[metadata "sos"] . x —()-—> x?
op _+_ : PTerm PTerm -> PTerm ===
[metadata "sos"] . x +y -(1)-> x?
ops a b ¢ : -> PAction . y -(L)-> y’
var x y x’ y’ : PTerm . x +y -(1)->y’ : PAllRules .
var 1 : PLabel . endfm)

As illustrated, Maude provides good support for workinghwifperators in infix notation. As an
improvement ovePREG Axiomatizer [4], we use the generic labglof sortPLabel as syntactic sugar,
instead of writing rules for each of the three concrete astioThese actions are declared as constants,
operations without a domain, of s®tction, which is a subsort afLabel described later starting with
Sectior 3.1L. (We can have other types of labels, not justraefi The deadlock process is also declared
as a constant of saPt1losedTerm, which stands fof'(X) and is declared internally as a subsoreoérm.

96 Meta SOS — A Maude Based SOS Meta-Theory Framework

3 Meta SOS Components

ThoughMeta SOS is conceived as a general SOS framework, we have so far tiraitedevelopment to
case studies involving only GSOS systems [12]. These sgshewve certain desirable properties and, in
spite of their restricted format, they cover most of the afiens in the literature [7].

Definition 2 (GSOS rule format) Consider a process signatuke A GSOS rulep over: has the shape:
{zi—>yiylielje LyU{x» i€ JjeJi}

F@ 5 oz, g

where all variables are distinctf is an operation symbol frorit with arity n, I,J C {1,...,n}, I;,J;
are finite index sets, thig;’s and! are labels standing for actions ranging over the seandC[z, v is
a X-context with variables including at most thgs andy;;’s.

A GSOS systens a TSS X, L, R) such that: and L are finite, andR is a finite set of rules in the
GSOS format.

The operational semantics of a TSS in the GSOS format is divéerms of a labelled transition
system (LTS), whose transition relations are defined bycsiral induction over closed terms using
the rules. An essential property we make use of is that LTi&lsiced by GSOS systems are finitely
branching[[12]. It is easy to see that BCCSP respects the GO ALt.

In what follows we present three main features provided kyMhta SOS framework.

9

3.1 Simulator and Bisimilarity Checker

The purpose of the simulator associated to a TSS is to findaasitions for a given closed term. For-

mally, the simulator finds, for a given closed tepall the labeld and closed termg’ such thatoi>p’.
This is a slightly more general approach than the ong_ ih [Fgre the user needs to give not only the
initial term, but also the label as input.

To illustrate how to use the simulator, considér, the interleaving parallel composition without
communication. We want to also define its behaviour in thdedrof the termination predicate As
Meta SOS does not currently provide direct support for working witlegicates, unliké®REG Axiom-
atizer, we model predicate satisfiability by means of transitioBy. adding the termination predicate
trigger as a label, the rules for the prefix and choice opesatanain the same. The rules for interleaving
parallel composition are:

xS Yy zha yhy

vlySaly allySely @)y>0
Here o stands for any of the considered actions from the{seb,c}, but not for the termination
predicate trigger. Also, we want to make sure that the ldstisuapplied only for|, but for none of the
actions. To specify this we enhance the previous speciicatith a new sort for predicates as a subset
of labels, add the termination predicate, a variable ranginly over actions, and the rules:

sort PPredicate . op | : -> PPredicate .

subsort PPredicate < PLabel . var alpha : PAction .

(alpha)-> x’ y —-(alpha)-> y’
X

| y -(alpha)-> x’ || y | v -(alpha)-> x || y’

Aceto, Goriac & Ingolfsdottir 97

We first need to set up a simulatdfierive simulator SPECIFICATION .). Not only does this
prepare the metalanguage application to perform simulgtiout also outputs a pure Maude specification
that can be used outside teta SOS environment for simulations within the specified systeme Th
advantage of using this generated simulator is a minor ggaeiformance due to the elimination of the
overhead that comes with any metalanguage applicationdditian, this allows for the use of Maude
tools such as the reachability analyzer and the LTL modetidre

To perform a one step simulation for a given term we use thentand (simulate). For
instance, the concrete call to observe how | .0 || .0 is simulated iS(simulate | . 0 || a . 0 .).
The output is a list of pairs of the shagel # p’ >, wherel is a label of a provable transition apdis
the resulting term. In our case the outputBsssible steps: < a # | . 0 || 0 >. Note that due to
our making a clear distinction between actions and preekcahly one of the rules involving actions is
applicable. The terni| .0+ 5.0) || (c.0+ | .0), on the other hand, does involve all the specified rules:

> (simulate | . 0 +Db . 0 ||l c .0+ 1] .0.)
Possible steps:

<b#O0 Il c .0+ | . 0>

<c# | .0+Db .0l 0>

< | #0>

From the implementation perspective we tackled one of theets suggested as future work[in![27].
The caveat of the tool presented in that paper is that thengsmts to provide term matching and sub-
stitution definitions by hand for every operator. Our apploases and extends Maude’s meta-level
functionality of working with substitutions in such a wayatht becomes transparent to the user.

As the idea of rewrite-based SOS simulators has already dsqalared in [15[27, 34], we focused
only on performing one step simulations. Having that fumaaiity, it was natural to derive a strong
bisimilarity checker that implements the following defioit.

Definition 3 (Strong Bisimilarity [30]) Consider a TSS = (3,L,R). ArelationR C T'(X) x T'(X) is
a strong bisimulatiorif and only if it is symmetric and

1 1
Vpa(p,q) € R= (vl,p’P—W’ = Hq/q—>q'/\ (¢,4") € R).

Two closed termg and g are strongly bisimilar denoted by «7 ¢, if there exists a strong bisimulation
relation R such that(p,q) € R. Whenevefl is known from the context, we simply write- g.

In [12] it is shown that bisimilarity is a congruence for GS&&tems and that the LTS’s defined
using these systems are finitely branching. These propeatie necessary when checking for strong
bisimilarity by means of the axiom schema that we will preseiSectior 3.2. Before that, let us present
how to check strong bisimilarity usingleta SOS.

In order to check if, for instance,.0 || .0 <+ a.b.0+b.a.0 holds, we use the command

> (check (a. 0|l b.0) ~(Cda.b.0O+b.a.o0).)

result: true.Bool

The Maude specification output when setting up the simubasw includes the bisimilarity checker.
Running this specification allows one to directly use thecfioms that implement the simulator and
bisimilarity checker features, which have the same namdasiser interface commands. These are
called usingreduce in the core Maude environmenizduce simulate andreduce check ... ~

The bisimilarity checker does not currently handle prot¢esss with infinite behaviour. The module
presented in the next section, however, can check if twogdrom Xgccsp defined using guarded
recursion, are bisimilar.

98 Meta SOS — A Maude Based SOS Meta-Theory Framework

3.2 Axiom Schema Deriver

As an alternative method for reasoning about strong bianityl Meta SOS includes a component for
generating axiom schemas that are sound and ground-cempletiulo bisimilarity. There has been
a notable amount of effort put into developing algorithms dgiomatizations for GSOS-like systems
[2,13,[11], yet all involve several transformations of thigoral system before deriving the axioms. After
implementing one such algorithm in the td® Axiomatizer [4], a simpler method was developed in
[18]. We slightly adapt that approach here by using an exdénarsion of the prefix operation and by
also showing how to axiomatize operations defined using nwigh negative premises, not just positive
ones.

When given a signatur® that includes-gccsp the purpose of an axiomatization of strong bisimilar-
ity is to rewrite each terme 7'(X), that is semantically well founded in the sense of DefiniBahfrom
[2], to another ternt’ such thatt <+t" andt¢’ € T'(Xgccsp. This reduces the problem of axiomatizing
bisimilarity overT'(X) to that of axiomatizing it over BCCSP. It is well known [23%ththe following
axiomatization (denoted b¥gccsp is sound and ground-complete for bisimilarity on BCCSP:

rT+y=y+z rt+r=x
(x+y)+z=a+(y+2) r+0=zx

In order to set up Maude to perform equational reasoningguUsizcsp We can declare that+_is as-
sociative and commutative so that rewrites are performediulodhese two propertiesp _+_ : PTerm
PTerm -> PTerm [assoc comm metadata "sos"] . AIS0, even though we could specify idempotence
and identity element as attributes, for performance reas@nadd the last two equations explicitly to the
specificationeq x + x = x . eq x + 0 = x . For convenienc®leta SOS already includes a module
with the signature and equations for BCCSP nameaccsp that can be included in the specification.
For this reason, the namesand+ are reserved, which means that if the user wants to specfidri
own version of the prefix and choice operations some otheeraraed to be used.

Definition 4 (Head Normal Form)Let > be a signature such thalgccspC X. Atermt in T(X) is in
head normal fornffor short, h.n.f.) ift =%, _;1;.t;. The empty surf/ = () is denoted by the deadlock
constantO.

Definition 5 (Disjoint extension) A GSOS syste’ is a disjoint extension of a GSOS syst@written
G C @, if the signature and the rules 6¥ include those of7, and G’ does not introduce new rules for
operations inG.

Definition 6 (Axiomatization schema)Let7 = (3, L,R) be a TSS in GSOS format such tB&@CSPC
T. By E we denote the axiom system that exteAgscspwith the following axiom schema for every
operationf in 7, parameterized over the vector of closed process tgrimd.n.f.:

H
L =
f(Z) = ClZ, 7]
wherey is defined as v/ (p,p) = A, ey V' (0k, %, p),

p:

f(p) = Z{Z-C[ﬁ,fﬂ

€R,p=0(T),q=0(y) and/(;?,p)},

lij . . lij . .
i > Yiq EI, EIZ' A GJ, GJZ‘
and v’ pk,k,{x Yij | jﬁ l}{fﬁyz J } —
f(&) = Clz. 9]
if kel theanEJk EIp’,p"ET(Ep) Pr = lkj-p,+p,/ and
ifkelJ thenvjejk vp’,p"ET(Ep) Pk ;7é lkj.p/—l—p”,
where = denotes equality up tBsccsp

Aceto, Goriac & Ingolfsdottir 99

Intuitively, the axiom transformg(p) into a sum of closed terms covering all its execution pobsibi
ties. Thisis akin to Milner’s well known expansion law forrpliel composition of head normal forms. In
order to obtain them we iterate through the sef-afefining rules and check jfsatisfies their hypotheses
by means of/. The predicate” makes sure that, for a given rule, every component isfa term with
enough action prefixed summands satisfying all the positieenises that involve the component, and
no summands prefixed with the actions from any of the corredipg negative premises.

Theorem 7. Consider a TSS = (X, L, R) that is semantically well founded in the sense_of [2, Defini-
tion 5.1], such thaBCCSPC 7. E7 is sound and ground-complete for strong bisimilarity 5 p).

Proof. Soundness follows in the standard fashion. Every tramsitipy) can perform is matched by the
right hand side of the equation and vice versa due to thealatarivation of the execution tree according
to the defining rules.

As shown in[[2], in order to prove ground-completeness ofxaam system, it is sufficient to show
that it is head normalizing, which means that it can bring eloged term to a h.n.f. Note that the
axiomatization presented in Definitibh 6 always derivesgin h.n.f. O

In order to generate a Maude equational theory for the dperain a specification we use the com-
mand(derive axiom schemas SPECIFICATION .). Justlike in the case of the simulator component, the
command both prepares the environment to perform equétiedactions according to the generated ax-
ioms, and outputs a Maude specification that can be usechakigrindependently of the environment.
The generated equational theory has the name of the sp#offieith the suffix ““SCHEMA” and is se-
lected using the comman@elect SPECIFICATION-SCHEMA .).

The standard comman@duce derives the normal form of a given closed term. For exameiny

loaded the specification of|_ from Sectiori 311, this is how we obtain the normal fornud¥ || 5.0:
> (reduce a . O || b . 0 .)

result PClosedTerm : a . b . O0O+b . a .o

To illustrate what the axiomatizations look like, considegeneral binary operation between labels
mix and an operatiop defined as:

k., Lo, k I, Ly
r—=x y=y v y- =z y—y

mix(k,) I '
g(z,y) ——=a' +y g(z,y)—0

The first equation derives a sum of new operatignsand go, one for each rule defining. These
new operations have the same domaim,asnly extended with one parameter that will ultimately hold
the tree of all execution paths that start with the corredpanrule — its head normal form. Initially this
parameter is set t0.

eq g(x,y) = gi(x,y,0) + g2(x,y,0) .

Let us first present the axiom fgt, which is given as a standard Maude conditional equatiod, an

then discuss all of its aspects.

ceq gl(x,y,SOLUTION) = gi(x,y,SOLUTION’) --- (0)
if k . x? + x1 := x + dummy m—)
/N1 .y’ +x2 :=y + dummy - (2)
/\ not(x can 1) -— (3)
/\ not(y can k) - (1)
/\ NEW-SUMMAND := mix(k, 1).(x’ + y’) -—- (5)
/\ SOLUTION’ := SOLUTION + NEW-SUMMAND --- ()

/\ SOLUTION =/= SOLUTION’ -—= (7)

100 Meta SOS — A Maude Based SOS Meta-Theory Framework

Condition (1) requires that the first parameter satisfieddhaula x £, 4. The variabler needs to
be matched by a term that has’ as a summandr(is a generic variable of soptrerm). If x is exactly
of the shapé:._then Maude cannot find a match betwéer’ + x; andz, not knowing that it can assign
0to x1, which explains the use of a constant of ®mérm denoted bydiummy added as a summand on the
right hand side.

Condition (3) requires that satisfies the formula - . The natural inductive definition of the oper-
ationcanis included in the moduleT-Bccsp:

op _can_ : PTerm PLabel -> Bool .

eq 0 can 1 = false . eq (1 . x) can 1 = true .
eq (x +y) canl = (xcan 1) or (y can 1) . ceq (1 . x) can k = false if 1 =/=k .

If conditions (1)—(4) are satisfied, then the premisegy'sffirst rule are met. This means that
mix(k,l).(z' + '), set at line (5) as the value for the varialies-suMMAND, has to be a summand of
the resulting head normal form. This head normal form is aategh incrementally, by finding such
summands individually, using the third parametergof SOLUTION and soLUTION’ hold the head nor-
mal forms computed before and, respectively after the ntigall of g;. The aforementioned summand
is added only if it is not already part gbLuTION (conditions (6)—(7)). Should all conditions hold, a
recursive call ofy; is initiated (line (0)).

An important fact to keep in mind is that, in the specificatitmm any given rule, the labels of negative
transitions given as variables need to also appear on sothe pbsitive ones. For instance, had we not

had the premis&ﬁm’, wherek is a variable over the set of labels= {a,b,c}, it would have been
impossible to tell if condition (4) is met due to the missirgsignment foik that should have resulted
when evaluating condition (1). It is possible, however, &wéha rule with negative premises labelled
directly with constants, without the need for those cortstemappear in other premises of the same rule.

If any of the conditions (1) —(4) does not hold, or if no newusign is found, then the following
base-case equation is called:

eq gl(x,y,SOLUTION) = SOLUTION [owise] .

The equations fog, are generated in a similar fashion:

ceq g2(x,y,SOLUTION) = g2(x,y,SOLUTION’)
if 1l . x? +x1 :=x + dummy /\ NEW-SOLUTION :=1 . O
/N1 .y +x2 :=y + dummy /\ SOLUTION’ := SOLUTION + NEW-SOLUTION
/\ SOLUTION =/= SOLUTION’ .
eq g2(x,y,SOLUTION) = SOLUTION [owise] .

In Meta SOS one can also specify recursive processes. If two such meseme given in BCCSP
with guarded recursion in order to determine whether theykasimilar, the user can call a decision
procedure implementing a unique fixed point induction atgar. Currently the user needs to make sure
that the guardedness condition is met.

By way of example, consider the following transition system

We specify this behaviour iMeta SOS by means of the reserved operatinsz:

Aceto, Goriac & Ingolfsdottir 101

ops pl p2 p3 q1 g2 : -> PClosedTerm . ops i o : —-> PAction .

eq def(pl) =i . p2 . eq def(ql) =i . q2 . eq def(g3) =0 . g2 .
eq def(p2) =i . p3+o0 .pl . eqdef(gq2) =i .93 +0 . g4 . eqdef(gd) =1 . q2 .
eq def(p3) = o . p2 .

The commandreduce areEqual(pl, q1) .) checks whethep; andg; are bisimilar. The output
in this case is the pak true ; < pl ; q1 > < pl ; g4 > <p2 ; g2 > < p3 ; g3 > >, where the
first element of the pair indicates whether the processebisgirailar, and, if this is indeed the case, the
second one is a representation of the found bisimulation.

3.3 Commutativity Format Checker

Besides automatically deriving sound and ground-comg@giematizations, the focus dfleta SOS is
also to check for algebraic properties of operations, bygtledVe have implemented a component that
analyzes the provided SOS specification in order to find io@erations that are commutative. We
adapt the format for binary operations frdm|[29] to GSOSeayst that may have negative premises.

Definition 8 (Commutativity) Given a TSS and a binary process operafan its process signaturef,
is calledcommutative w.r.t. a relatior, if the following equation is sound w.r::

f(zo,21) = f(x1,20).

Definition 9 (Commutativity format[[®|_209]) A transition system specification over signatdids in
comm-form format with respect to a set of binary function symbols COMM if all its f-defining
transition rules withf € COMM have the following form

{xili—j>yij |i€{0,1},j € Iz'}U{SUz‘LZ”i |1€{0,1},j € Ji}
(c)

f(aco,wl) L)t

whereI; and J; are finite index sets for eache {0,1}, and variables appearing in the source of the
conclusion and target of the premises are all pairwise didti We denote the set of premisegadty
H. Moreover, for each such rule, there exist a transition rial¢ of the following form in the transition
system specification
H/

(©) ————
fxg,2h) =t
and a bijective mapping (substitutior) on variables such that (1)(z() = =1 and fi(z}) = zo, (2)
h(t") ~. t and (3)A(K') € H, for eachh’ € H'. Here~.. means equality up to swapping of arguments
of operators in COMM in any context. Transition ryle) is called thecommutative mirroiof (c).
Theorem 10(Commutativity forcomm-form [9, [29]). If a transition system specification is &@mm-

form format with respect to a set of operators COMM, then all opaisin COMM are commutative
with respect to strong bisimilarity.

We implement an algorithm that, for a given operation, degsdor all of its rules that are commu-
tative mirrors. It is well know that parallel compositiondsmmutative. To check this using our tool we
load the specification presented in Secfion 3.1 and(ealick formats SPECIFICATION .). The output
shows that the first two rules defining- are commutative mirrors, and that the third rule involvihg t
termination predicaté is a commutative mirror of itself, by pointing out the bijeet mapping:

102 Meta SOS — A Maude Based SOS Meta-Theory Framework

ll is commutative:

(alpha)-> y’
=== mirrors

x -(alpha)-> x’ y
x |l y -(alpha)-> x’ || y X

| v -(alpha)-> x || y’
with: alpha <- alpha x’ <-y’ x<-y y’ <-x’ y<-x
x -(Hh->x%x> , 3y -(H)->y

x -
=== mirrors ===
x 1ly-(Hh->0 x |

(N->=x , y-H->y’

with: x’ <-y’ x<-y y’ <-x’ y<-x

WhatMeta SOS does internally is to generate a Maude theory that has the wathe specification
with the suffix “-FORMATS”. It is the same as the initial specification, only that ak ttxos" operators
that are found commutative are enhanced with the attribetie. This is of use both when having to
perform rewrites modulo commutativity involving those og@ns, and as meta-information for future
components that may need it. One of these components coulihstance, be dedicated to optimizing
axiomatizations, using the approach presented|in [9].

An important thing to remark is that the label mappiigha <- alpha appears amongst the process
variables mapping. The reason we extend the mapping teslaieis the fact that the user should not be
forced to use the same variable name for matching premisgifferfent rules. We would thus find that
the first two rules are commutative mirrors even if they hdfidint variables for actions, e.glpha and
beta, respectively.

Aside from giving the user more freedom when choosing namefabel variables, extending the
mapping to labels is actually necessary for proving thatesaperators are commutative. Consider,
for example, the operation introduced in Sectioh 3.2 and assume that the operaticrover labels
is declared as commutative. Suppose label variables weriaken into account when searching for
commutative mirrors. Then there would be no way of directigving thatg is commutative, unless the
user specified the 6 instantiations of the first ruledgoinvolving the concrete action labeisb, c.

> (check formats SPECIFICATION .)
g is commutative:

x—(k)->x’,y-(1)->y’ ,x- (1) />,y- (k) /> . x—(k)->x’ ,y-(1)->y’ ,x- (1) />,y- (k) />
=== mirrors ===
gx,y) -(mix(k,1))-> x’ + y’ g(x,y) -(mix(k,1))-> x’ + y’

with: k <-1 1<-k x’ <-y’ x<-y y’ <-x’ y<-x

x -(D->x> , 3y -(L)->y’ x-(->x%x> , 5y -(L->y
=== mirrors ===

glx,y) -(1)-> 0 g(x,y) -(1)-> 0

with: 1 <-1 x’ <-y’ x<-y y’ <-x y<-x

If we look at the first rule, note that when applying the sub#tn on labels, in order to check for
the commutativity format, we need to make sure thiai(k,1) andmix(1,k) stand for the same label.
This holds in our case because we do not merely check forajmtquality, but for equality within the
algebra defined for labels. Recall that we considerto be commutative.

The first rule is found as a mirror of itself based on the conatinity of _+_. Had the consequent of
the rule been of the shape * y’ (_x_ being a new binary operationyjeta SOS would have attempted

Aceto, Goriac & Ingolfsdottir 103

to prove first that *_ is commutative.

3.4 Linda - Integrating Components

In this section we present another case study and show hagwitaago make use of the functionality
provided by all the previously described components. Lébags on the tuple-space based coordination
language Linda [14] and its SOS semantics, as giveln_in [28].

Consider a minimalistic signature for the data componEnt, that consists of constants for tuples
(typical members:, v) and two operations for working with multisets of tuplésfor the empty multiset
and__ (blank) as a commutative and associative binary sepamattiné elements from the multiset. The
operation__ has() as identity element. We prefer to use constructs insteadeo$tandard mathematical
ones (braces{", “ }" for set separators, commas “,” for separating elementkiw# set, and set union
operator U") for implementation purposes. For instance, the multisetv} U {u} U is written as
uwvuinT(Xp), which is the same as v u becausd) is the identity element. (That is actually the
standard Maude notation for sets and multisets.) This iswewleclare the above mentioned signature:

sort PData PClosedData . subsort PClosedData < PData

op empty : -> PData .

op __ : PData PData -> PData [assoc comm id: empty] .
ops u v : —> PClosedData .

Linda has several constructs for manipulating a sharedadeitgponent of the language:
e asku) andnasKu) check, respectively, whether tuplds (or is not) in the data space,
o tell(u) adds tuple: to the data space,

e get(u) removes tuple: from the data space.

Theask«) andgetu) operations are blocking, in the sense that a process emgdh&ém blocks if
u is not in the data space.

In [18] we show how to use labels for operating with the datagonent. For Linda, the set of labels
L is extended to triples of the froktp, —,tp’), wheretp,tp" are open data terms froff(X), standing
for the store before and, respectively, after the transitiche language does not have actions, hence the
use of the placeholder—” within the triple. As shown later, in order to have a finit¢ sélabels and
rules, which is necessary to have a proper GSOS system, w&yogmlic names instead of open data
terms.

Besides the four constructs for operating with the storee]dhguage includes the prefix operation
(for everyl in L), nondeterministic choice+_, parallel composition||_, and sequential composition,,
all in the context of the already introduced terminationdicate . Linda also comes with a successfully
terminated process, which we denotehy.

In order to handle the store, our approach of extending tkéxpoperation to triples is slightly
different from the one in[18]. Though less intuitive, it iaster to implement than the one involving two
new operations;heckandupdate because it requires no extra core axioms aside from thoBgdasp

op <_,_,_> : PData PAction PData -> PLabel . op - : -> PAction .

We first make sure that the SOS specification disjointly eddeBICCSP, as required by TheorEm 7.
The rules forXgccsp are declared as presented in Secfibn 2 because they arentkebsth for the
extended labels and the termination predicate.

104 Meta SOS — A Maude Based SOS Meta-Theory Framework

Given thaty is a variable to be replaced by any considered constant, tilgleules for the operations
manipulating the data component are:

ask() EETID I | g tell(u) SRR o getu) SRATTR) |
Linda also has a basic operation nammeskthat checks if a tuple is not in the tuple space. The
operation, however, is defined using side conditions, anetly we provide no support for such rules.
For the purpose of demonstration, we will only implemennatied and artificial version of Linda:

ops ask tell get : PClosedData -> PTerm
[metadata "sos"]
op d : -> PData . ===
var mu : PClosedData . ask(mu) -(<(d mu), -, (d mu)>)-> |.0

tell(mu) -(<d, -, (d mu)>)-> |.0 get(mu) -(<(d mw), -, d>)-> [|.0

The limitation consists in the use of a symbolic constamtenoting a data term, instead of a variable
of the same sort. This is because[in/[18] it is presented hodetive a sound and ground-complete
axiomatization modulo a notion of bisimilarity only for $gms with a data component whose domain is
a finite set of constants, and not a (possibly infinite) sefpeicterms. In our case the domain of the data
component can be thought of as a set of constants, limitdetoumber of tuples taken into account plus
one (for the symbolic constant). Using the consiaig also useful during the axiomatization process
because it helps avoiding generating equations with fraslalMes on the right hand side. For instance,
according to the schema from Definitibh 6, the following awitll(.) = (d,—,d u). | .0 is generated,
and here it is required thdtis not a variable.

The rules for_||_ are very similar to those shown in Sectfon]3.1, and those;fare:

x <xD7_7"ED> l‘, l‘gl‘ y <mD7_7:ED> y xgm/ yi}y/
T !)T J/
x; yﬁzf————jéx Y a:;yffg——jZﬁéy’ z;y—0

The rules for the last two operations do not introduce newesafor data terms on the consequent
transitions (all the names are known from the premises);hvmeans that no axioms with fresh variables
on the right hand side can be generated. Therefore it iscaledare them using variables of serkta
instead of symbolic constants.

op _;_ : PTerm PTerm -> PTerm [metadata "sos"] . var xD xD’ : PData .
x -(<xD,-,xD’>)-> x’ x =-(D->x", y -(kxD,-,xD’>)->y’> x -()->x, vy -()-> 7y’
x;y —(<xD,-,xD’>)-> (x’;y) x;y -(<xD,-,xD’>)-> y’ x;7 -()-> 3

A use case scenario involving all the components illustratefar may start with loading the speci-
fication for Linda and checking which operations are comtinga check formats LINDA .). Remark
that_; _’'s commutativity cannot be proven:

- —

Could not prove commutativity for: _;_
Could not find commutative mirrors within:
x -(<xD,-,xD’>)-> x’ x =-(D->x", y -(kxD,-,xD’>)->y’> x -()->x’, vy -()-> 7y’

x;y —(<xD,-,xD’>)-> (x’;y) x;y -(<xD,-,xD’>)-> y’ x;7 -()-> 3’

We could continue by deriving the axiom schema and detengitiie normal form of a term such as
asku) ; tell(v). Finally we can check if indeed the found normal form is bitmto the initial term.

Aceto, Goriac & Ingolfsdottir 105

> (derive axiom schemas LINDA-FORMATS .)
> (select LINDA-FORMATS-SCHEMA .)
> (reduce ask(u) ; tell(v) .)

result PClosedTerm : <du,-,du> . <d,-,dv>.1] .0
> (derive simulator LINDA-FORMATS .)
> (check (ask(u) ; tell(v)) ~ (< du,-,du>.<d,-,dv>. 1.0 .)

result: true.Bool

3.5 Adding Components

Meta SOS is conceived in a way to be easily extended with new compaendBésides the three com-
ponents presented in Sectidns| 8.1] 3.2[anH 3.3 the tooldesla file namedomponent-sample.maude
which the user can adapt to implement a new desired funditipteg following the patterns presented in
[20].

In what follows, the name “sample” is generic and is meantetodplaced by some other name sug-
gesting the functionality of a new component. Each compbhas two modulesAMPLE-LANG-SIGN and
SAMPLE-STATE-HANDLING, dedicated for the signature of the implemented commandsraspectively,
their semantics. Once implemented, the functionality étiided in theMeta SOS framework by follow-
ing these steps: (1) in the filetasos-interface.maude the signature for the new commands needs to
be included in thelETASOS-LANG-SIGN module and their semantics needs to be included in the module
METAS0OS-STATE-HANDLING, (2) in the filemetasos.maude the new component needs to be loaded just like
the othersload component-sample.maude.

It is worth mentioning that, in order to ease the developnagole, the framework provides support
for unit testing. It is beyond the scope of this paper, thouglpresent how to make use of this facility.

4 Conclusion and Future Work

Meta SOS addresses many of the extensions foreseen in [27]. Namegpriesents a core framework
dedicated to implementing SOS meta-theorems, it providpp@t for generating axiomatizations, and
it frees the user from implementing matching procedurespecified language constructs. In its present
form, Meta SOS can handle languages whose operational specification eilGSOS format, such
as most classic process calculi and Linda. Another aspetressed in[[27] is the support for more
general SOS frameworks that allow for terms as labels, alsasehulti-sorted and binding signatures.
This would allow the framework to handle name-passing awghdriorder languages such as the
calculus [32]. Thoughvieta SOS does not provide this kind of support yet, the general way hirctv it
handles labels is a good step towards that goal.

There are, naturally, many ways to improve and extend thle ®esides checking for the commu-
tativity format, there are many other formats to check foetedminism and idempotendel [1, 8], zero
and unit elements [6], associativify |[17], and distribityif5]. Adapting PREG Axiomatizer and adding
it as a component tdeta SOS as presented in Sectign B.5 would also be of value due tofferett
approach to generating axiomatizations, and becausdities a GSOS format checker. The axiomati-
zation process could be enhanced using the technique pedser{9]. This would lead to smaller and
more natural axiom systems. It would also be of interestiestigate axiomatizations that are sound and
ground-complete modulo other notions of equivalence, siscveak bisimilarity. From the theoretical
viewpoint, it is worth investigating if the results on axiatizations can be extended to coalgebras and
whether a framework for SOS using the bialgebraic approaanhoe developed.

106 Meta SOS — A Maude Based SOS Meta-Theory Framework

References

[1] Luca Aceto, Arnar Birgisson, Anna Ingolfsdéttir, Mammad Reza Mousavi & Michel A. Reniers (2012):
Rule formats for determinism and idempoten8eience of Computer Programmiiig(7-8), pp. 889-907,
doi{10.1016/j.scico.2010.04.002.

[2] Luca Aceto, Bard Bloom & Frits W. Vaandrager (1992)rning SOS rules into equationgformation and
Computatior111, pp. 1-52, d0i:10.1006/inc0.1994.1040.

[3] Luca Aceto, Georgiana Caltais, Eugen-loan Goriac & Almgdlfsdottir (2011):Axiomatizing GSOS with
Predicates In Michel A. Reniers & Pawel Sobocinski, editoBroceedings Eighth Workshop on Structural
Operational Semantics 20JHAPTCS62, pp. 1-15, doi:10.4204/EPTCS.€2.1.

[4] Luca Aceto, Georgiana Caltais, Eugen-loan Goriac & Ahmgolfsdottir (2011): PREG Axiomatizer - A
Ground Bisimilarity Checker for GSOS with Predicat&és Andrea Corradini, Bartek Klin & Corina Cirstea,
editors: Algebra and Coalgebra in Computer Science - 4th InternatiGonference, CALCO 2011, Winch-
ester, UK, August 30-September 2, 2011. Proceedingsture Notes in Computer Sciené859, Springer,
pp. 378-385, d0i:10.1007/978-3-642-2294272

[5] Luca Aceto, Matteo Cimini, Anna Ing6lfsdottir, Mohanad Reza Mousavi & Michel A. Reniers (2011):
Rule Formats for Distributivity In Adrian Horia Dediu, Shunsuke Inenaga & Carlos Martidey edi-
tors: Language and Automata Theory and Applications - 5th Intéwnal Conference, LATA 2011, Tarrag-
ona, Spain, May 26-31, 2011. Proceedirigscture Notes in Computer Sciené&38, Springer, pp. 80-91,
doi{10.1007/978-3-642-2125453

[6] Luca Aceto, Matteo Cimini, Anna Ingolfsdottir, Mohamad Reza Mousavi & Michel A. Reniers (2011):
SOS rule formats for zero and unit element$heoretical Computer Scieneel2(28), pp. 3045-3071,
doi{10.1016/j.tcs.2011.01.024.

[7] Luca Aceto, Wan Fokkink & Chris Verhoef (2001gtructural Operational Semantic$n Jan A. Bergstra,
Alban Ponse & Scott A. Smolka, editorstandbook of Process Algebra, ChapteEBevier Science, Dor-
drecht, The Netherlands, pp. 197-292,/doi:10.1016/B38182830-9/50021-7.

[8] Luca Aceto, Eugen-loan Goriac & Anna Ingolfsdottin®3): SOS Rule Formats for Idempotent Terms and
Idempotent Unary Operatorsn: SOFSEM pp. 108-120, doi:10.1007/978-3-642-3584.312

[9] Luca Aceto, Eugen-loan Goriac, Anna Ingolfsdottir, Mohmad Reza Mousavi & Michel Reniers (2013):
Exploiting Algebraic Laws to Improve Mechanized Axionatitns In: Proceedings of the 5th Conference
on Algebra and Coalgebra in Computer Science (CALCO 2QI8)jture Notes in Computer Scieng@g9,
Springer-Verlag, Berlin, Germany, 2013.

[10] Luca Aceto, Anna Ingoblfsdétti, Mohammad Reza MoussaMichel A. Reniers (2009)Algebraic Proper-
ties for Free! Bulletin of the European Association for Theoretical Conegpiscienc®9, pp. 81-104.

[11] Jos C. M. Baeten & Erik P. de Vink (2004)xiomatizing GSOS with terminatiod. Log. Algebr. Program.
60-61, pp. 323—-351, dni:10.1016/}.jlap.2004.03.001.

[12] Bard Bloom, Sorin Istrail & Albert R. Meyer (1995Risimulation can’'t be traced]. ACM42, pp. 232-268,
doi{10.1145/200836.200876.

[13] Ed Brinksma (1985)A Tutorial onLoTOsS In Michel Diaz, editor:Proc. Protocol Specification, Testing and
Verification V, North-Holland, Amsterdam, Netherlands, pp. 171-194.

[14] Antonio Brogi & Jean-Marie Jacquet (1998pn the Expressiveness of Linda-like Concurrent Languages
Electr. Notes Theor. Comput. S&6(2), pp. 75-96, d0i:10.1016/S1571-0661(04)00118-5.

[15] Fabricio Chalub & Christiano Braga (200Mtaude MSOS ToolElectron. Notes Theor. Comput. Sti(6,
pp. 133-146, di:10.1016/j.entcs.2007.06.012.

[16] Manuel Clavel, Francisco Duran, Steven Eker, Patticicoln, Narciso Marti-Oliet, José Meseguer & Car-
olyn L. Talcott, editors (2007)All About Maude - A High-Performance Logical Framework, HmwSpec-

ify, Program and Verify Systems in Rewriting Lagiecture Notes in Computer Sciend850, Springer,
doi{10.1007/978-3-540-7199911

http://dx.doi.org/10.1016/j.scico.2010.04.002
http://dx.doi.org/10.1006/inco.1994.1040
http://dx.doi.org/10.4204/EPTCS.62.1
http://dx.doi.org/10.1007/978-3-642-22944-2_27
http://dx.doi.org/10.1007/978-3-642-21254-3_5
http://dx.doi.org/10.1016/j.tcs.2011.01.024
http://dx.doi.org/10.1016/B978-044482830-9/50021-7
http://dx.doi.org/10.1007/978-3-642-35843-2_11
http://dx.doi.org/10.1016/j.jlap.2004.03.001
http://dx.doi.org/10.1145/200836.200876
http://dx.doi.org/10.1016/S1571-0661(04)00118-5
http://dx.doi.org/10.1016/j.entcs.2007.06.012
http://dx.doi.org/10.1007/978-3-540-71999-1_1

Aceto, Goriac & Ingolfsdottir 107

[17] Sjoerd Cranen, Mohammad Reza Mousavi & Michel A. Ren{@008): A Rule Format for Associativity
In Franck van Breugel & Marsha Chechik, editoiBroceedings of the 19th International Conference on
Concurrency Theory (CONCUR’08)ecture Notes in Computer Sciens201, Springer-Verlag, pp. 447—
461, doi:10.1007/978-3-540-8536139.

[18] Daniel Gebler, Eugen-loan Goriac & Mohammad Reza Moi@813): Algebraic Meta-Theory of Processes
with Data In: Proceedings Tenth Workshop on Structural Operational 8803a2013 Lecture Notes in
Computer Science, Springer-Verlag, Berlin, Germany, 20i.3he current volume.

[19] R.J. van Glabbeek (2001The Linear Time - Branching Time Spectrum |. The Semanti€ontrete, Se-
guential Processedn A. Ponse S.A. Smolka J.A. Bergstra, editblandbook of Process Algehralsevier,
pp. 3-99, doi:10.1007/3-540-5720852

[20] Eugen-loan Goriac, Georgiana Caltais, Dorel Lucanan®Andrei & Gheorghe Grigoras (2009pat-
terns for Maude Metalanguage ApplicationsElectr. Notes Theor. Comput. SA38(3), pp. 121-138,
doi{10.1016/j.entcs.2009.05.016.

[21] Jan Friso Groote & Frits W. Vaandrager (1998¢ructured Operational Semantics and Bisimulation as a
CongruenceInformation and Computatiob00(2), pp. 202—260, d0i:10.1016/0890-5401(92)90013-6.

[22] Pieter H. Hartel (1999): LETOS - a lightweight execution tool for opera-
tional semantics Software: Practice and Experience?9(15), pp. 1379-1416,
doi{10.1002/(SICI)1097-024X(19991225)29:15%3C13KMD:-SPE286%3E3.0.CO;2+V.

[23] Matthew Hennessy & Robin Milner (19854lgebraic laws for nondeterminism and concurrendy ACM
32(1), pp. 137-161, d0i:10.1145/2455.2460.

[24] C. A. R. Hoare (1985)Communicating Sequential ProcessEsentice Hall.

[25] Huimin Lin (1995): PAM: A Process Algebra ManipulatorFormal Methods in System Desigi3), pp.
243-259, doi:10.1007/BF01384078.

[26] Robin Milner (1989):Communication and ConcurrenciPrentice Hall.
[27] Mohammad Reza Mousavi & Michel A. Reniers (200Bjototyping SOS meta-theory in Maudglectron.
Notes Theor. Comput. SA56, pp. 135-150, d6i:10.1016/j.entcs.2005.09.030.

[28] Mohammad Reza Mousavi, Michel A. Reniers & Jan Friso @30(2005): Notions of Bisimulation
and Congruence Formats for SOS with Datalnformation and Computatio200(1), pp. 107-147,
doi{10.1016/}.ic.2005.03.002.

[29] Mohammad Reza Mousavi, Michel A. Reniers & Jan Friso@ed2005)A Syntactic Commutativity Format
for SOS Information Processing Lette®8, pp. 217-223, d0i:10.1016/].ipl.2004.11.007.

[30] David Michael Ritchie Park (1981)oncurrency and Automata on Infinite SequendesPeter Deussen,
editor: Theoretical Computer Scienckecture Notes in Computer Scien&®4, Springer, pp. 167-183,
doi{10.1007/BFb0017309.

[31] Gordon D. Plotkin (1981)A structural approach to operational semantidgechnical Report DAIMI FN-19,
Computer Science Department, Aarhus University, Aarhesybark.

[32] Davide Sangiorgi & David Walker (2001)The n-Calculus: A Theory of Mobile Processe€ambridge
University Press, Cambridge. With a foreword by Robin Milne

[33] Traian-Florin Serbanuta, Grigore Rosu & José Mese@@09): A rewriting logic approach to operational
semanticsInformation and Computatio207(2), pp. 305-340, doi:10.1016/).ic.2008.03/026.

[34] Alberto Verdejo & Narciso Marti-Oliet (2006 Executable structural operational semantics in Maudée
Journal of Logic and Algebraic Programmifg(12), pp. 226 — 293, d0i:10.1016/j.jlap.2005.09.008.

http://dx.doi.org/10.1007/978-3-540-85361-9_35
http://dx.doi.org/10.1007/3-540-57208-2_6
http://dx.doi.org/10.1016/j.entcs.2009.05.016
http://dx.doi.org/10.1016/0890-5401(92)90013-6
http://dx.doi.org/10.1002/(SICI)1097-024X(19991225)29:15%3C1379::AID-SPE286%3E3.0.CO;2-V
http://dx.doi.org/10.1145/2455.2460
http://dx.doi.org/10.1007/BF01384078
http://dx.doi.org/10.1016/j.entcs.2005.09.030
http://dx.doi.org/10.1016/j.ic.2005.03.002
http://dx.doi.org/10.1016/j.ipl.2004.11.007
http://dx.doi.org/10.1007/BFb0017309
http://dx.doi.org/10.1016/j.ic.2008.03.026
http://dx.doi.org/10.1016/j.jlap.2005.09.008

	1 Introduction
	2 Preliminaries
	2.1 Transition System Specifications in Meta SOS

	3 Meta SOS Components
	3.1 Simulator and Bisimilarity Checker
	3.2 Axiom Schema Deriver
	3.3 Commutativity Format Checker
	3.4 Linda – Integrating Components
	3.5 Adding Components

	4 Conclusion and Future Work

