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We show how systems of session types can enforce interactions to be bounded for all typable pro-
cesses. The type system we propose is based on Lafont’s soft linear logic and is strongly inspired
by recent works about session types as intuitionistic linear logic formulas. Our main result is the
existence, for every typable process, of a polynomial boundon the length of any reduction sequence
starting from it and on the size of any of its reducts.

1 Introduction

Session types are one of the most successful paradigms around which communication can be disciplined
in a concurrent or object-based environment. They can come in many different flavors, depending on the
underlying programming language and on the degree of flexibility they allow when defining the structure
of sessions. As an example, systems of session types for multi-party interaction have been recently
introduced [9], while a form of higher-order session has been shown to be definable [12]. Recursive
types, on the other hand, have been part of the standard toolset of session type theories since their
inception [8].

The key property induced by systems of session types is the following: if two (or more) processes
can be typed with “dual” session types, then they can interact with each other without “going wrong”, i.e.
avoiding situations where one party needs some data with a certain type and the other(s) offer something
of a different, incompatible type. Sometimes, one would like to go beyond that and design a type system
which guarantees stronger properties, including quantitative ones. An example of a property that we
find particularly interesting is the following: suppose that two processesP andQ interact by creating
a session having typeA through which they communicate. Is this interaction guaranteed to be finite?
How long would it last? Moreover,P andQ could be forced to interact with other processes in order
to be able to offerA. The question could then become: can the global amount of interaction be kept
under control? In other words, one could be interested inproving the interaction induced by sessions to
be bounded. This problem has been almost neglected by the research community in the area of session
types, although it is themanifestoof the so-called implicit computational complexity (ICC),where one
aims at giving machine-free characterizations of complexity classes based on programming languages
and logical systems.

Linear logic (LL in the following) has been introduced twenty-five years ago by Jean-Yves Girard [7].
One of its greatest merits has been to allow a finer analysis ofthe computational content of both intu-
itionistic and classical logic. In turn, this is possible bydistinguishing multiplicative as well as additive
connectives, by an involutive notion of negation, and by giving a new status to structural rules allowing
them to be applicable only to modal formulas. One of the many consequences of this new, refined way
of looking at proof theory has been the introduction of natural characterizations of complexity classes
by fragments of linear logic. This is possible because linear logic somehow “isolates” complexity in
the modal fragment of the logic (which is solely responsiblefor the hyperexponential complexity of cut
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elimination in, say intuitionistic logic), which can then be restricted so as to get exactly the expressive
power needed to capture small complexity classes. One of thesimplest and most elegant of those systems
is Lafont’s soft linear logic (SLL in the following), which has been shown to correspond to polynomial
time in the realm of classical [10], quantum [6] and higher-order concurrent computation [5].

Recently, Caires and Pfenning [1] have shown how a system of session types can be built around
intuitionistic linear logic, by introducingπDILL, a type system for theπ-calculus where types and rules
are derived from the ones of intuitionistic linear logic. Intheir system, multiplicative connectives like⊗
and⊸ allow to model sequentiality in sessions, while the additive connectives & and⊕ model external
and internal choice, respectively. The modal connective !,on the other hand, allows to model a server of
type !A which can offer the functionality expressed byA multiple times.

In this paper, we study a restriction ofπDILL, calledπDSLL, which can be thought of as being derived
from πDILL in the same way asSLL is obtained fromLL. In other words, the operator ! behaves inπDSLL
in the same way as inSLL. The main result we prove aboutπDSLL is precisely about bounded interaction:
wheneverP can be typed inπDSLL andP →n Q, then bothn and |Q| (the size of the processQ, to be
defined later) are polynomially related to|P|. This ensures an abstract but quite strong form of bounded
interaction. Another, perhaps more “interactive” formulation of the same result is the following: ifP and
Q interact via a channel of typeA, then the “complexity” of this interaction is bounded by a polynomial
on |P|+ |Q|, whose degree only depends onA.

We see this paper as the first successful attempt to bring techniques from implicit computational
complexity into the realm of session types. Although proving bounded interaction has been technically
nontrivial, due to the peculiarities of theπ-calculus, we think the main contribution of this work lies in
showing that bounded termination can be enforced by a natural adaptation of known systems of session
types. An extended version with more details is available [4].

2 πDILL, an Informal Account

In this section, we will outline the main properties ofπDILL, a session type system recently introduced
by Caires and Pfenning [1, 2]. For more information, please consult the two cited papers.

In πDILL, session types are nothing more than formulas of (propositional) intuitionistic linear logic
without atoms but with (multiplicative) constants:

A ::= 1 | A⊗A | A⊸ A | A⊕A | A&A | !A.

These types are assigned to channels (names) by a formal system deriving judgments in the form

Γ;∆ ⊢ P :: x : A,

whereΓ and ∆ are contexts assigning types to channels, andP is a process of the name-passingπ
calculus. The judgment above can be read as follows: the processP acts on the channelx according to
the session typeA whenevercomposed with processes behaving according toΓ and∆ (each on a specific
channel). Informally, the various constructions on session types can be explained as follows:
• 1 is the type of an empty session channel. A process offering tocommunicate via a session channel

typed this way simply synchronizes with another process through it without exchanging anything.
This is meant to be an abstraction for all ground session types, e.g. natural numbers, lists, etc. In
linear logic, this is the unit for⊗.
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• A⊗B is the type of a session channelx through which a message carrying another channel with type
A is sent. After performing this action, the underlying process behaves according toB on thesame
channelx.

• A⊸ B is the adjoint toA⊗B: on a channel with this type, a process communicate by first performing
an input and receiving a channel with typeA, then acting according toB, again onx.

• A⊕B is the type of a channel on which a process either sends a special messageinl and performs
according toA or sends a special messageinr and performs according toB.

• The typeA&B can be assigned to a channelx on which the underlying process offers the possibility
of choosing between proceeding according toA or toB, both onx. So, in a sense, & models external
choice.

• Finally, the type !A is attributed to a channelx only if a process can be replicated by receiving a
channely throughx, then behaving ony according toA.

The assignments inΓ and∆ are of two different natures:
• An assignment of a typeA to a channelx in ∆ signals the need byP of a process offering a session of

typeA on the channelx; for this reason,∆ is called thelinear context;
• An assignment of a typeA to a channelx in Γ, on the other hand, represents the need byP of a process

offering a session of type !A on the channelx; thus,Γ is theexponential context.
Typing rulesπDILL are very similar to the ones ofDILL, itself one of the many possible formulations of
linear logic as a sequent calculus. In particular, there aretwo cut rules, each corresponding to a different
portion of the context:

Γ;∆1 ⊢ P :: x : A Γ;∆2,x : A⊢ Q :: T
Γ;∆1,∆2 ⊢ (νx)(P | Q) :: T

Γ; /0⊢ P :: y : A Γ,x : A;∆ ⊢ Q :: T
Γ;∆ ⊢ (νx)(!x(y).P | Q) :: T

Please observe how cutting a processP against an assumption in the exponential context requires to
“wrap” P inside a replicated input: this allows toturn P into a server.

In order to illustrate the intuitions above, we now give an example. Suppose that a processP models
a service which acts onx as follows: it receives two natural numbers, to be interpreted as the number and
secret code of a credit card and, if they correspond to a validaccount, returns an MP3 file and a receipt
code to the client. Otherwise, the session terminates. To doso,P needs to interact with another service
(e.g. a banking service)Q through a channely. The banking service, among others, provides a way to
verify whether a given number and code correspond to a valid credit card. InπDILL, the processP would
receive the type

/0;y : (N ⊸ 1⊕1)&A⊢ P :: x : N ⊸ N ⊸ (S⊗N)⊕1,

whereN andS are pseudo-types for natural numbers and MP3s, respectively. A is the type of all the
other functionalitiesQ provides. As an example,P could be the following process:

x(nm1).x(cd1).y.inl;

(νnm2)y〈nm2〉.(νcd2)y〈cd2〉.

y.case(x.inl;(νmp)x〈mp〉.(νrp)x〈rp〉,x.inr;0)

Observe how the credit card number and secret code forwardedto Q are not the ones sent by the client:
the flow of information happening inside a process is abstracted away inπDILL. Similarly, one can write
a processQ and assign it a type as follows: /0; /0⊢ Q :: y : (N ⊸ 1⊕1)&A. Putting the two derivations
together, we obtain /0; /0⊢ (νx)(P | Q) :: x : N ⊸ N ⊸ (S⊗N)⊕1.

Let us now make an observation which will probably be appreciated by the reader familiar with
linear logic. The processesP andQ can be typed inπDILL without the use of any exponential rule, nor
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of cut. What allows to type the parallel composition(νx)(P | Q), on the other hand, is precisely the cut
rule. The interaction betweenP andQ corresponds to the elimination of that cut. Since there isn’t any
exponential around, this process must be finite, since the size of the underlying process shrinks at every
single reduction step. From a process-algebraic point of view, on the other hand, the finiteness of the
interaction is an immediate consequence of the absence of any replication inP andQ.

The banking serviceQ can only serve one single session and would vanish at the end of it. To make
it into apersistent serveroffering the same kind of session to possibly many differentclients,Q must be
put into a replication, obtainingR=!z(y).Q. In R, the channelz can be given type !((N ⊸ 1⊕ 1)&A)
in the empty context. The processP should be somehow adapted to be able to interact withR: before
performing the two outputs ony, it’s necessary to “spawn”R by performing an output onz and passing
y to it. This way we obtain a processSsuch that

/0;z :!((N ⊸ 1⊕1)&A) ⊢ S:: x : N ⊸ N ⊸ (S⊗N)⊕1,

and the composition(νz)(S| R) can be given the same type as(νx)(P | Q). Of course,Scould have used
the channelz more than once, initiating different sessions. This is meant to model a situation in which
the same client interacts with the same server by creating more than one session with the same type,
itself done by performingmore than one outputon the same channel. Of course, servers can themselves
depend on other servers. And these dependencies are naturally modeled by the exponential modality of
linear logic.

3 On Bounded Interaction

In πDILL, the possibility of modeling persistent servers which in turn depend on other servers makes it
possible to type processes which exhibit a very complex and combinatorially heavy interactive behavior.

Consider the following processes, the first one parameterized on anyi ∈ N:

dupseri
.
= !xi(y).(νz)xi+1〈z〉.(νw)xi+1〈w〉.;

dupclient
.
= (νy)x0〈y〉.

In πDILL, these processes can be typed as follows:

/0;xi+1 :!1⊢dupseri :: xi :!1;

/0;x0 :!1⊢dupclient:: z : 1.

Then, for everyn∈N one can type the parallel compositionmulsern+1
.
=(νx1 . . .xn)(dupsern|| . . . ||dupser0)

as follows

/0;xn :!1⊢ mulsern :: x0 :!1.

Informally, mulsern is a persistent server which offers a session type1 on a channelx0, provided a server
with the same functionality is available onxn. The processmulsern is the parallel composition ofn
servers in the formdupseri , each spawning two different sessions provided bydupseri+1 on the same
channelxi+1.

The processmulsern cannot be further reduced. But notice that, oncemulsern and dupclient are
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composed, the following exponential blowup is bound to happen:

(νx0)(mulsern | dupclient)≡ (νx0 . . .xn)(dupsern|| . . . ||dupser0 | dupclient)

→ (νx0 . . .xn)(dupsern|| . . . ||dupser1 | P1)

→2 (νx1 . . .xn)(dupsern|| . . . ||dupser2 | P2 | P2)

→4 (νx2 . . .xn)(dupsern|| . . . ||dupser3 | P3|| . . . ||P3
︸ ︷︷ ︸

4 times

)

→∗ (νxn)(dupsern | Pn|| . . . ||Pn
︸ ︷︷ ︸
2n times

)

→2n
0.

Here, for everyi ∈ N the processPi is simply(νy)xi〈y〉.(νz)xi〈z〉. Notice thatboth the number or reduc-
tion stepsand the size of intermediate processes are exponential inn, while the size of the initial process
is linear inn. This is a perfectly legal process inπDILL. Moreover the type !1 of the channelx0 through
which dupclientandmulsern communicate does not contain any information about the “complexity” of
the interaction: it is the same for everyn.

The deep reasons why this phenomenon can happen lie in the very general (and “generous”) rules
governing the behavior of the exponential modality ! in linear logic. It is this generality that allows the
embedding of propositional intuitionistic logic into linear logic. Since the complexity of normalization
for the former [13, 11] is nonelementary, the exponential blowup described above is not a surprise.

It would be desirable, on the other hand, to be sure that the interaction caused by any processP
is bounded: wheneverP →n Q, then there’s areasonably lowupper bound to bothn and |Q|. This is
precisely what we achieve by restrictingπDILL into πDSLL.

4 πDSLL: Syntax and Main Properties

In this section, the syntax ofπDSLL will be introduced. Moreover, some basic operational properties will
be given.

4.1 The Process Algebra

πDSLL is a type system for a fairly standardπ-calculus, exactly the one on top of whichπDILL is defined:

Definition 1 (Processes)Given an infinite set ofnamesor channelsx,y,z, . . ., the set ofprocessesis
defined as follows:

P ::= 0 | P | Q | (νx)P | x(y).P | x〈y〉.P | !x(y).P | x.inl;P | x.inr;P | x.case(P,Q)

The only non-standard constructs are the last three, which allow to define a choice mechanism: the
processx.case(P,Q) can evolve asP or asQ after having received a signal in the forminl o inr

throughx. Processes sending such a signal through the channelx, then continuing likeP are, respectively,
x.inl;P andx.inr;P. The set of names occurring free in the processP (hereby denotedfn(P)) is defined
as usual. The same holds for the capture avoiding substitution of a namex for y in a processP (denoted
P{x/y}), and forα-equivalence between processes (denoted≡α ).

Structural congruence is an equivalence relation identifying those processes which are syntactically
different but can be considered equal for very simple structural reasons:
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Definition 2 (Structural Congruence) The relation≡, called structural congruence, is the least con-
gruence on processes satisfying the following seven axioms:

P≡ Q whenever P≡α Q; (νx)0≡ 0;

P | 0≡ P; (νx)(νy)P≡ (νy)(νx)P;

P | Q≡ Q | P; ((νx)P) | Q≡ (νx)(P | Q) whenever x/∈ fn(Q);

P | (Q | R)≡ (P | Q) | R.

Formal systems for reduction and labelled semantics can be defined in a standard way. We refer the
reader to [1] for more details.

A quantitative attribute of processes which is delicate to model in process algebras is theirsize: how
can we measure the size of a process? In particular, it is not straightforward to define a measure which
both reflects the “number of symbols” in the process and is invariant under structural congruence (this
way facilitating all proofs). A good compromise is the following:

Definition 3 (Process Size)Thesize|P| of a process P is defined by induction on the structure of P as
follows:

|0|= 0; |x(y).P|= |P|+1; |x.inl;P|= |P|+1;

|P | Q|= |P|+ |Q|; |x〈y〉.P|= |P|+1; |x.inr;P|= |P|+1;

|(νx)P|= |P|; |!x(y).P| = |P|+1; |x.case(P,Q)|= |P|+ |Q|+1.

According to the definition above, the empty process 0 has null size, while restriction does not increase
the size of the underlying process. This allows for a definition of size which remains invariant under
structural congruence. The price to pay is the following: the “number of symbols” of a processP can be
arbitrarily bigger than|P| (e.g. for everyn∈N, |(νx)nP|= |P|). However, we have the following:

Lemma 1 For every P,Q, |P| = |Q| whenever P≡ Q. Moreover, there is a polynomial p such that for
every P, there is Q with P≡ Q and the number of symbols in Q is at most p(|Q|).

4.2 The Type System

The language of types ofπDSLL is exactly the same as the one ofπDILL, and the interpretation of type
constructs does not change (see Section 2 for some informal details). Typing judgments and typing rules,
however, are significantly different, in particular, in thetreatment of the exponential connective !.

Typing judgments become syntactical expressions in the form

Γ;∆;Θ ⊢ P :: x : A.

First of all, observe how the context is divided intothreechunks now:Γ and∆ have to be interpreted
as exponential contexts, whileΘ is the usual linear context fromπDILL. The necessity of havingtwo
exponential contexts is a consequence of the finer, less canonical exponential discipline ofSLL compared
to the one ofLL. We use the following terminology:Γ is said to be theauxiliary context, while∆ is the
multiplexorcontext.

Typing rules are in Figure 1. The rules governing the typing constant1, the multiplicatives (⊗ and
⊸) and the additives (⊕ and &) are exact analogues of the ones fromπDILL. The only differences come
from the presence of two exponential contexts: in binary multiplicative rules (⊗R and⊸ L) the auxiliary
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Γ;∆;Θ ⊢ P :: T
Γ;∆;Θ,x : 1⊢ P :: T 1L Γ;∆; /0⊢ 0 :: x : 1 1R

Γ;∆;Θ,y : A,x : B⊢ P :: T
Γ;∆;Θ,x : A⊗B⊢ x(y).P :: T

⊗L
Γ1;∆;Θ1 ⊢ P :: y : A Γ2;∆;Θ2 ⊢ Q :: x : B

Γ1,Γ2;∆;Θ1,Θ2 ⊢ (νy)x〈y〉.(P | Q) :: x : A⊗B
⊗R

Γ1;∆;Θ1,y : A⊢ P :: T Γ2;∆;Θ2,x : B⊢ Q :: T
Γ1,Γ2;∆;Θ1,Θ2,x : A⊸ B⊢ (νy)x〈y〉.(P | Q) :: T

⊸ L
Γ;∆;Θ,y : A⊢ P :: x : B

Γ;∆;Θ ⊢ x(y).P :: x : A⊸ B
⊸ R

Γ;∆;Θ,x : A⊢ P :: T Γ;∆;Θ,x : B⊢ P :: T
Γ;∆;x : A⊕B,Θ ⊢ y.case(P,Q) :: T

⊕L
Γ;∆;Θ ⊢ P :: x : A

Γ;∆;Θ ⊢ x.inl;P :: x : A⊕B
⊕R1

Γ;∆;Θ ⊢ P :: x : B
Γ;∆;Θ ⊢ x.inr;P :: x : A⊕B

⊕R2
Γ;∆;Θ,x : A⊢ P :: T

Γ;∆;Θ,x : A&B⊢ x.inl;P :: T
&L1

Γ;∆;Θ,x : B⊢ P :: T
Γ;∆;Θ,x : A&B⊢ x.inr;P :: T

&L2
Γ;∆;Θ ⊢ P :: x : A Γ;∆;Θ ⊢ P :: x : B

Γ;∆;Θ ⊢ y.case(P,Q) :: x : A&B
&R

Γ;∆,x : A;Θ,y : A⊢ P :: T
Γ;∆,x : A;Θ ⊢ (νy)x〈y〉.P :: T

♭#
Γ;∆;Θ,y : A⊢ P :: T

Γ,x : A;∆;Θ ⊢ (νy)x〈y〉.P :: T
♭!

Γ;∆,x : A;Θ ⊢ P :: T
Γ;∆;Θ,x :!A⊢ P :: T

!L#
Γ,x : A;∆;Θ ⊢ P :: T
Γ;∆;Θ,x :!A⊢ P :: T

!L!
Γ; /0; /0⊢ Q :: y : A

/0;∆; !Γ ⊢!x(y).Q :: x :!A
!R

Γ1;∆;Θ1 ⊢ P :: x : A Γ2;∆;Θ2,x : A⊢ Q :: T
Γ1,Γ2;∆;Θ1,Θ2 ⊢ (νx)(P | Q) :: T

cut
∆; /0; /0⊢ P :: y : A Γ;∆,x : A;Θ ⊢ Q :: T

Γ;∆;Θ ⊢ (νx)(!x(y).P | Q) :: T
cut#

Γ1; /0; /0⊢ P :: y : A Γ2,x : A;∆;Θ ⊢ Q :: T
Γ1,Γ2;∆;Θ ⊢ (νx)(!x(y).P | Q) :: T

cut!

Figure 1: Typing rules forπDSLL.

context is treated multiplicatively, while the multiplexor context is treated additively, as inπDILL1. Now,
consider the rules governing the exponential connective !,which are♭! , ♭#, !L!, !L# and !R:
• The rules♭! and♭# both allow to spawn a server. This corresponds to turning an assumptionx : A in

the linear context into oney : A in one of the exponential contexts; in♭#, x : A could be already present
in the multiplexor context, while in♭! this cannot happen;

• The rules !L! and !L# lift an assumption in the exponential contexts to the linearcontext; this requires
changing its type fromA to !A;

• The rule !R allows to turn an ordinary process into a server, by packaging it into a replicated input
and modifying its type.

1The reader familiar with linear logic and proof nets will recognize in the different treatment of the auxiliary and multiplexor
contexts, one of the basic principles ofSLL: contraction is forbidden on the auxiliary doors of exponential boxes. The channel
names contained in the auxiliary context correspond to the auxiliary doors of exponential boxes, so we treat them multiplica-
tively. The contraction effect induced by the additive treatment of the channel names in the multiplexor context corresponds to
the multiplexing rule ofSLL.
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Finally there arethreecut rules in the system, namelycut, cut! andcut#:
• cut is the usual linear cut rule, i.e. the natural generalization of the one fromπDILL.
• cut! andcut# allow to eliminate an assumption in one of the the two exponential contexts. In both

cases, the process which allows to do that must be typable with empty linear and multiplexor contexts.

4.3 Back to Our Example

Let us now reconsider the example processes introduced in Section 3. The basic building block over
which everything is built was the processdupseri =!xi(y).(νz)xi+1〈z〉.(νw)xi+1〈w〉.. We claim that for
every i, the processdupseri is not typable inπDSLL. To understand why, observe that the only way to
type a replicated input likedupseri is by the typing rule !R, and that its premise requires the body of
the replicated input to be typable with empty linear and multiplexor contexts. A quick inspection on the
typing rules reveals that every name in theauxiliary context occurs (free) exactly once in the underlying
process (provided we count two occurrences in the branches of a case as justa singleoccurrence).
However, the namexi+1 appearstwice in the body ofdupseri .

A slight variation on the example above, on the other hand,canbe typed inπDSLL, but this requires
changing its type. See [4] for more details.

4.4 Subject Reduction

A basic property most type systems for functional languagessatisfy is subject reduction: typing is pre-
served along reduction. For processes, this is often true for internal reduction: ifP→ Q and⊢P : A, then
⊢ Q : A. In this section, a subject reduction result forπDSLL will be given and some ideas on the underly-
ing proof will be described. Some concepts outlined here will become necessary ingredients in the proof
of bounded interaction, to be done in Section 5 below. Subject reduction is proved by closely following
the path traced by Caires and Pfenning; as a consequence, we proceed quite quickly, concentrating our
attention on the differences with their proof.

When proving subject reduction, one constantly work with type derivations. This is particularly true
here, where (internal) reduction corresponds to the cut-elimination process. A linear notation for proofs
in the form ofproof termscan be easily defined, allowing for more compact descriptions. As an example,
a proof in the form

π : Γ1;∆;Θ1 ⊢ P :: x : A ρ : Γ2;∆;Θ2,x : A⊢ Q :: T

Γ1,Γ2;∆;Θ1,Θ2 ⊢ (νx)(P | Q) :: T
cut

corresponds to the proof termcut(D,x.E), whereD is the proof term forπ andE is the proof term for
ρ . If D is a proof term corresponding to a type derivation for the processP, we writeD̂= P. From now
on, proof terms will often take the place of processes:Γ;∆;Θ ⊢ D :: T stands for the existence of a type
derivationD with conclusionΓ;∆;Θ ⊢ D̂ :: T. A proof termD is said to be normal if it does not contain
any instances of cut rules.

Subject reduction will be proved by showing that ifP is typable by a type derivationD andP→ Q,
then a type derivationE for Q exists. Actually,E can be obtained by manipulatingD using techniques
derived from cut-elimination. Noticeably, not every cut-elimination rule is necessary to prove subject
reduction. In other words, we are in presence of a weak correspondence between proof terms and pro-
cesses, and remain far from a genuine Curry-Howard correspondence.

Those manipulations of proof-terms which are necessary to prove subject reduction can be classified
as follows:
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• First of all, a binary relation=⇒ on proof terms calledcomputational reductioncan be defined. At
the logical level, this corresponds to proper cut-elimination steps, i.e. those cut-elimination steps
in which two rules introducing the same connective interact. At the process level, computational
reduction correspond to internal reduction.=⇒ is not symmetric.

• A binary relation7−→ on proof terms calledshift reduction, distinct from=⇒ must be introduced. At
the process level, it corresponds to structural congruence. As=⇒, 7−→ is not a symmetric relation.

• Finally, an equivalence relation≡ on proof terms calledproof equivalenceis necessary. At the logical
level, this corresponds to the so-called commuting conversions, while at the process level, the induced
processes are either structurally congruent or strongly bisimilar.

The reflexive and transitive closure of7−→ ∪ ≡ is denoted with֒→, i.e. →֒= (7−→ ∪ ≡)∗. There is
not enough space here to give the rules defining=⇒, 7−→ and≡. Let us give only some relevant
examples:
• Let us consider the proof termD = cut((⊗R(F,G)),x.⊗ L(x,y.x.H)) which corresponds to the⊗-

case of cut elimination. By a computational reduction rule,D =⇒ E = cut(F,y.cut(G,x.H)). From
the process side,̂D= (νx)(((νy)x〈y〉.(F̂ | Ĝ)) | x(y).Ĥ) andÊ= (νx)(νy)((F̂ | Ĝ) | Ĥ), whereÊ is the
process obtained from̂D by internal passing the channely through the channelx.

• Let D = cut(!R(F,x1, . . . ,xn),x.!L!(x.G)) be the proof obtained by composing a proofF (whose last
rule is !R) with a proofG (whose last rule is !L!) through acut rule. A shift reduction rule tells us that
D 7−→ E = !L!(x1.!L!(x2. . . . !L!(xn.cut!(F,y.G)) . . .)), which corresponds to the opening of a box in
SLL. The shift reduction does not have a corresponding reduction step at process level, sincêD ≡ Ê;
nevertheless, it is defined as an asymmetric relation, for technical reasons connected to the proof of
bounded interaction.

• LetD= cut#(F,x.cut(G,y.H)). A defining rule for proof equivalence≡, states that inD thecut# rule
can be permuted over thecut rule, by duplicatingF; namelyD≡E= cut(cut#(F,x.G),y.cut#(F,x.H)).
This is possible because the channelx belongs to the multiplexor contexts of bothG,H, such con-
texts being treated additively. At the process level,D̂ = (νx)((!x(y).F̂) | (νy)(Ĝ | Ĥ)) , while Ê =
(νy)(((νx)(!x(y).F̂) | Ĝ)) | ((νx)(!x(y).F̂) | Ĥ))), D̂ andÊ being strongly bisimilar.

Before proceeding to Subject Reduction, we give the following two lemmas, concerning structural prop-
erties of the type system:

Lemma 2 (Weakening lemma) If Γ;∆;Θ ⊢ D :: T and whenever∆ ⊆ Φ, it holds thatΓ;Φ;Θ ⊢ D :: T .

Proof. By a simple induction on the structure ofD. ✷

Lemma 3 (Lifting lemma) If Γ;∆;Θ ⊢ D :: T then there exists anE such that/0;Γ,∆;Θ ⊢ E :: T where
Ê= D̂. We denoteE byD⇓.

Proof. Again, a simple induction on the structure of the proof termD. ✷

Finally:

Theorem 1 (Subject Reduction)Let Γ;∆;Θ ⊢ D :: T. Suppose that̂D = P→ Q. Then there isE such
that Ê= Q,D →֒=⇒→֒ E andΦ;Ψ;Θ ⊢ E :: T, whereΓ,∆ = Φ,Ψ.

Let us give a sketch of the proof of Theorem 1. We reason by induction on the structure ofD. Since
D̂= P→ Q the only possible last rules ofD can be:1L, !L!, !L#,, a linear cut (cut) or an exponential cut
(cut! or cut#). In all the other cases, the underlying process can only perform a visible action, as can be
easily verified by inspecting the rules from Figure 1. With this observation in mind, let us inspect the
operational semantics derivation proving thatP→ Q. At some point we will find two subprocesses ofP,
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call themR andS, which communicate, causing an internal reduction. We hereclaim that this can only
happen in presence of a cut, and only the communication betweenRandSmust occur along the channel
involved in the cut. Now, it’s only a matter of showing that the just described situation can be “resolved”
preserving types. And this can be done by way of several lemmas, like the following:

Lemma 4 Assume that:

1. Γ1;∆;Θ1 ⊢ D :: x : A⊗B with D̂= P
(νy)x〈y〉
−−−−→ Q;

2. Γ2;∆;Θ2,x : A⊗B⊢ E :: z : C with Ê= R
x(y)
−−→ S.

Then:
1. cut(D,x.E) →֒=⇒→֒ F for someF;
2. Γ1,Γ2;∆;Θ1,Θ2 ⊢ F :: z : C, wherêF≡ (νx)(Q | S).

The other lemmas can be found in [4]. By the way, this proof technique is very similar to the one
introduced by Caires and Pfenning [1].

5 Proving Polynomial Bounds

In this section, we prove the main result of this paper, namely some polynomial bounds on the length
of internal reduction sequences and on the size of intermediate results for processes typable inπDILL.
In other words, interaction will be shown to be bounded. The simplest formulation of this result is the
following:

Theorem 2 For every type A, there is a polynomial pA such that whenever/0; /0;x : A ⊢ D :: y : 1 and
/0; /0; /0⊢ E :: x : A whereD andE are normal and(νx)(D̂ | Ê)→n P, it holds that n, |P| ≤ pA(|D̂|+ |Ê|)

Intuitively, what Theorem 2 says is that the complexity of the interaction between two processes typable
without cuts and communicating through a channel with session typeA is polynomial in their sizes,
where the specific polynomial involved only depends onA itself. In other words, the complexity of the
interaction is not only bounded, but can be somehow “read off” from the types of the communicating
parties.

How does the proof of Theorem 2 look like? Conceptually, it can be thought of as being structured
into four steps:

1. First of all, a natural numberW(D) is attributed to any proof termD. W(D) is said to be theweight
of D.

2. Secondly, the weight of any proof term is shown to strictlydecrease along computational reduction,
not to increase along shifting reduction and to stay the samefor equivalent proof terms.

3. Thirdly,W(D) is shown to be bounded by a polynomial on|D̂|, where the exponent only depends
on the nesting depth of boxes ofD, denotedB(D).

4. Finally, the box depthB(D) of any proof termD is shown to be “readable” from its type interface.
This is exactly what we are going to do in the rest of this section. Please observe how points 1–3 above
allow to prove the following stronger result, from which Theorem 2 easily follows, given point 4:

Proposition 1 For every n∈N, there is a polynomial pn such that for every process P withΓ;∆;Θ ⊢ P ::
T, if P→m Q, then m, |Q| ≤ pB(P)(|P|).

5.1 Preliminary Definitions

Some concepts have to be given before we can embark in the proof of Proposition 1. First of all, we
need to define what the box-depth of a process is. Simply, given a processP, its box-depthB(P) is the
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nesting-level of replications2 in P. As an example, the box-depth of !x(y).!z(w).0 is 2, while the one of
(νx)y(z) is 0. Analogously, the box-depth of a proof termD is simplyB(D̂).

Now, suppose thatΓ;∆;Θ⊢D :: T and thatx : A belongs to eitherΓ or ∆, i.e. thatx is an “exponential”
channel inD. A key parameter is thevirtual number of occurrencesof x in D, which is denoted as
FO(x,D). This parameter, as its name suggests, is not simply the number of literal occurrences ofx in D,
but takes into account possible duplications derived from cuts. So, for example,FO(w,cut!(D,x.E)) =
FO(x,E) ·FO(w,D)+FO(w,E), while FO(w,⊗R(D,E)) is merelyFO(w,D)+FO(w,E). Obviously,
FO(w, ♭!(x,w.D)) = 1 andFO(w, ♭#(x,w.D)) = 1.

A channel in either the auxiliary or the exponential contextcan “float” to the linear context as an effect
of rules !L! or !L#. From that moment on, it can only be treated as a linear channel. As a consequence, it
makes sense to define theduplicability factorof a proof termD, writtenD(D), simply as the maximum
of FO(x,D) over all instances of the rules !L! or !L# in D, wherex is the involved channel. For example,
D(!L!(x.D)) = max{D(D),FO(y,D)} andD(⊸ L(x,D,y.E)) = max{D(D),D(E)}.

It’s now possible to give the definition ofW(D), namely theweight of the proof termD. Before
doing that, however, it is necessary to give a parameterizednotion of weight, denotedWn(D). Intuitively,
Wn(D) is defined similarly to|D̂|. However, every input and output action in̂D can possibly count for
more than one:
• Everything insideD in !R(x1, . . . ,xn,D) counts forn;
• Everything insideD in eithercut!(D,x.E) or cut#(D,x.E) counts forFO(x,E).

For example,Wn(cut#(D,x.E)) = FO(x,E) ·Wn(D)+Wn(E), while Wn(&L2(x,y.D)) = 1+Wn(D).
Now, W(D) is simply WD(D)(D). The concepts we have just introduced are more precisely defined
in [4].

5.2 Monotonicity Results

The crucial ingredient for proving polynomial bounds are a series of results about how the weightD

evolves whenD is put in relation with another proof termE by way of either=⇒, 7−→ or≡. Whenever
a proof termD computationally reduces toE, the underlying weight is guaranteed to strictly decrease:

Proposition 2 If Γ;∆;Θ ⊢D :: T andD=⇒ E, thenΦ;Ψ;Θ ⊢ E :: T (whereΓ,∆ = Φ,Ψ), D(E)≤D(D)
andW(E)<W(D).

Proof. By induction on the proof thatD=⇒ E. Some interesting cases:
• Suppose thatD= cut(⊸ R(y.F),x.⊸ L(x,G,x.H)) =⇒ cut(cut(G,y.F),x.H) = E. Then,

D(D) = max{D(F),D(G),D(H)} = D(E);

W(D) =WD(D)(D) = 3+WD(D)(F)+WD(D)(G)+WD(D)(H)

> 2+WD(E)(F)+WD(E)(G)+WD(E)(H) =WD(E)(E) =W(E).

• Suppose thatD= cut(&R(F,G),x.&L1(x,y.H)) =⇒ cut(F,x.H) = E. Then,

D(D) = max{D(F),D(G),D(H)} = D(E);

W(D) =WD(D)(D) = 3+WD(D)(F)+WD(D)(G)+WD(D)(H)

> 2+WD(E)(F)+WD(E)(G)+WD(E)(H) =WD(E)(E) =W(E).

2This terminology is derived from linear logic, where proofsobtained by the promotion rule are usually called boxes
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• Suppose thatD= cut!(F,x.♭!(x,y.G)) =⇒ cut(F⇓,y.cut#(F,x.G⇓)) = E. Then,

D(D) = max{D(F⇓),D(G⇓)}= max{D(F),D(F),D(G)}= D(E);

W(D) =WD(D)(D) = FO(x, ♭!(x,y.G)) ·WD(D)(F⇓)+WD(D)(♭!(x,y.G))

=WD(D)(F)+WD(D)(♭!(x,y.G)) =WD(D)(F)+1+WD(D)(G)

≥WD(E)(F)+1+WD(E)(G)

>WD(E)(F)+WD(E)(G) =WD(E)(F)+0·WD(E)(F)+WD(E)(G)

=WD(E)(F)+FO(x,G) ·WD(E)(F)+WD(E)(G)

=WD(E)(E) =W(E).

• Suppose that
D= cut#(F,x.♭#(x,y.G)) =⇒ cut(F⇓,y.cut#(F,x.G)) = E.

Then we can proceed exactly as in the previous case.
This concludes the proof. ✷

Shift reduction, on the other hand, isnot guaranteed to induce a strict decrease on the underlying weight
which, however, cannot increase:

Proposition 3 If Γ;∆;Θ ⊢ D :: T andD 7−→ E, thenΓ;∆;Θ ⊢ E :: T,D(E)≤D(D) andW(E)≤W(D).

Proof. By induction on the proof thatD 7−→ E. Some interesting cases:
• Suppose that

D= cut(!R(x1, . . . ,xn,F),x.!L!(x.G)) 7−→ !L!(x1.!L!(x2. . . . !L!(xn.cut!(F,y.G)))) = E.

Then,

D(D) = max{D(F),D(G)}= D(E)

W(D) =WD(D)(D) =D(D) ·WD(D)(F)+WD(D)(G)≥ FO(y,G) ·WD(D)(F)+WD(D)(G)

= FO(y,G) ·WD(E)(F)+WD(E)(G) =WD(E)(E) =W(E).

• Suppose that

D= cut(!R(x1, . . . ,xn,F),x.!L#(x.G)) 7−→ !L#(x1.!L#(x2. . . . !L#(xn.cut#(F,y.G)))) = E.

Then we can proceed as in the previous case.
This concludes the proof. ✷

Finally, equivalence leaves the weight unchanged:

Proposition 4 If Γ;∆;Θ ⊢ D :: T andD≡ E, thenΓ;∆;Θ ⊢ E :: T,D(E) = D(D) andW(E) =W(D).

Proof. By induction on the proof thatD≡ E. Some interesting cases:
• Suppose that

D= cut(F,x.cut(Gx,y.Hy))≡ cut(cut(F,x.Gx),y.Hy) = E.

Then:

D(D) = max{D(F),D(Gx),D(Hy)}= D(E)

W(D) =WD(D)(D) =WD(D)(F)+WD(D)(Gx)+WD(D)(Hy)

=WD(E)(F)+WD(E)(Gx)+WD(E)(Hy) =WD(E)(E) =W(E).
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• Suppose that
D= cut(F,x.cut(G,y.Hxy))≡ cut(G,x.cut(F,y.Hxy)) = E.

Then we can proceed as in the previous case.
• Suppose that

D= cut(F,x.cut!(G,y.Hxy))≡ cut!(G,y.cut(F,x.Hxy)) = E.

Then, sinceFO(y,F) = 0,

D(D) = max{D(F),D(G),D(Hxy)}= D(E)

W(D) =WD(D)(D) =WD(D)(F)+FO(y,Hxy) ·WD(D)(G)+WD(D)(Hxy)

=WD(D)(F)+FO(y,cut(F,x.Hxy)) ·WD(D)(G)+WD(D)(Hxy)

=WD(E)(F)+FO(y,cut(F,x.Hxy)) ·WD(E)(G)+WD(E)(Hxy)

=WD(E)(E) =W(E).

• Suppose that

D= cut#(F,x.cut(Gx,y.Hxy))≡ cut(cut#(F,x.Gx),y.cut#(F,x.Hxy)) = E.

Then,

D(D) = max{D(F),D(Gx),D(Hxy)}= D(E)

W(D) = FO(x,cut(Gx,y.Hxy)) ·WD(D)(F)+WD(D)(Gx)+WD(D)(Hxy)

= (FO(x,Gx)+FO(x,Hxy)) ·WD(D)(F)+WD(D)(Gx)+WD(D)(Hxy)

= (FO(x,Gx) ·WD(D)(F)+FO(x,Hxy)) ·WD(D)(F)+WD(D)(Gx)+WD(D)(Hxy)

=WD(D)(cut#(F,x.Gx))+WD(D)(cut#(F,x.Hxy))

=WD(D)(E) =WD(E)(E) =W(E).

This concludes the proof. ✷

Now, consider again the subject reduction theorem (Theorem1): what it guarantees is that whenever
P→ Q andD̂ = P, there isE with Ê = Q andD →֒=⇒→֒ E. In view of the three propositions we have
just stated and proved, it’s clear thatW(D) > E. Altogether, this implies thatW(D) is an upper bound
on the number or internal reduction stepsD̂ can perform. But isW(D) itself bounded?

5.3 Bounding the Weight

What kind of bounds can we expect to prove forW(D)? More specifically, how related areW(D) and
|D̂|?

Lemma 5 SupposeΓ;∆;Θ ⊢ D :: T. ThenD(D)≤ |D|.

Proof. An easy induction on the structure of a type derivationπ for Γ;∆;Θ ⊢ D :: T. ✷

Lemma 6 If Γ;∆;Θ ⊢ D :: T, then for every n≥D(D), Wn(D)≤ |D̂| ·nB(D̂)+1.

Proof. By induction on the structure ofD. Some interesting cases:
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• If D= cut!(D,x.E), then:

Wn(cut!(D,x.E)) = FO(x,E) · (Wn(D)+1)+Wn(E)

≤ FO(x,E) · (|D| ·nB(D)+1+1)+ |E| ·nB(E)+1

≤ n· |D| ·nB(D)+1+n+ |E| ·nB(E)+1

≤ |D| ·nB(D)+2+nB(E)+1+ |E| ·nB(E)+1

≤ (|D|+ |E|+1) ·nmax{B(D)+2,B(E)+1}

= |cut!(D,x.E)| ·n
B(cut!(D,x.E)).

• If D= !R(x1, . . . ,xn,E), then:

Wn(!R(x1, . . . ,xn,E)) = n· (Wn(E)+1)

≤ n· |E| ·nB(E)+1+n

≤ |E| ·nB(E)+2+nB(E)+2

= (1+ |E|) ·nB(!R(x1,...,xn,E))+1

= |!R(x1, . . . ,xn,E)| ·n
B(!R(x1,...,xn,E))+1.

This concludes the proof. ✷

5.4 Putting Everything Together

We now have almost all the necessary ingredients to obtain a proof of Proposition 1: the only missing
tales are the bounds on the size of any reducts, since the polynomial bounds on the length of internal
reductions are exactly the ones from Lemma 6. Observe, however, that the latter induces the former:

Lemma 7 Suppose that P→n Q. Then|Q| ≤ n· |P|.

Proof. By induction onn, enriching the statement as follows: wheneverP→n Q, both |Q| ≤ n· |P| and
|R| ≤ |P| for every subprocessRof Q in the form !x(y).S. ✷

Let us now consider Theorem 2: how can we deduce it from Proposition 1? Everything boils down to
show that for normal processes, the box-depth can be read offfrom their type. In the following lemma,
B(A) andB(Γ) are the nesting depths of ! inside the typeA and inside the types appearing inΓ (for every
typeA and contextΓ).

Lemma 8 Suppose thatΓ;∆;Θ ⊢ D :: x : A and thatD is normal. ThenB(D̂) = max{B(Γ),B(∆),B(Θ),
B(A)}.

Proof. An easy induction onD. ✷

6 Conclusions

In this paper, we introduced a variation on Caires and Pfenning’s πDILL, calledπDSLL, being inspired
by Lafont’s soft linear logic. The key feature ofπDSLL is the fact that the amount of interaction induced
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by allowing two processes to interact with each other is bounded by a polynomial whose degree can be
“read off” from the type of the session channel through whichthey communicate.

What we consider the main achievement of this paper is definitely not the proof of these polynomial
bounds, which can be obtained by adapting the ones in [6] or in[5], although this anyway presents some
technical difficulties due to the low-level nature of theπ-calculus compared to the lambda calculus or
to higher-orderπ-calculus. Instead, what we found very interesting is that the operational properties
induced by typability inπDSLL, bounded interactionin primis, are not only very interesting and useful in
practice, but different from the ones obtained in soft lambda calculi: in the latter, it’s thenormalization
time which is bounded, while here it’s theinteraction time. Another aspect that we find interesting is
the following: it seems that the constraints on processes induced by the adoption of the more stringent
typing disciplineπDSLL, as opposed toπDILL, are quite natural and do not rule out too many interesting
examples. In particular, the way sessions can be defined remains essentially untouched: what changes is
the way sessions can be offered, i.e. the discipline governing the offering of multiple sessions by servers.
All the examples in [1] and the one from Section 2 are indeed typable inπDSLL.

Topics for future work include the accommodation of recursive types intoπDSLL. This could be
easier than expected, due to the robustness of light logics to the presence of recursive types [3].
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