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We study two different ways to enhance PAFAS, a process algebra for modelling asynchronous timed
concurrent systems, with non-blocking reading actions. Wefirst add reading in the form of a read-
action prefix operator. This operator is very flexible, but its somewhat complex semantics requires
two types of transition relations. We also present a read-set prefix operator with a simpler semantics,
but with syntactic restrictions. We discuss the expressiveness of read prefixes; in particular, we
compare them to read-arcs in Petri nets and justify the simple semantics of the second variant by
showing that its processes can be translated into processesof the first with timed-bisimilar behaviour.
It is still an open problem whether the first algebra is more expressive than the second; we give a
number of laws that are interesting in their own right, and can help to find a backward translation.

1 Introduction

Non-blocking reading is an important feature e.g. for proving the liveness of MUTEX solutions under
the progress assumption (aka weak fairness). We study the first process algebra with non-blocking read
actions, where ‘read’ refers to accessing a variable, e.g. modelled as a separate processVar. Observe that
read is an activity ofVar, and in a setting with explicit modelling of data, it would rather be an output
than an input action ofVar.

Non-blocking reading is known from Petri nets, where it has been added in the form of read arcs;
these allow multiple concurrent reading of the same resource, a quite frequent situation in many dis-
tributed systems. Read arcs representpositive context conditions, i.e. elements which are needed for an
event to occur, but are not affected by it. As argued in [17], the importance of such elements is twofold.
Firstly, they allow a faithful representation of systems where the notion of “reading without consuming”
is commonly used, like database systems [20] or any computation framework based on shared memory.
Secondly, they allow to specify directly and naturally a level of concurrency greater than in classical nets:
two transitions reading the same place may also occur simultaneously; in classical nets, the transitions
would be connected to the place by loops (namely, i.e. reading is modelled through a “rewrite” operation)
which does not allow the simultaneous execution of two tasksthat read the same resource. Read arcs
have been used to model a variety of applications such as transaction serialisability in databases [20],
concurrent constraint programming [18], asynchronous systems [22], and cryptographic protocols [14].
Reading is also related to the notion ofpersistencee.g. in several calculi for describing and analysing
security protocols; in particular, persistent messages (that can be read but not consumed) are used to
model that every message can be remembered by the spy (see [4]and the references therein).
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Semantics and expressivity of read arcs have been studied e.g. in the following: [5] discusses a step
semantics; [2] shows that timed Petri nets with read arcs unify timed Petri nets and timed automata.
Finally, [22] shows that read arcs add relevant expressivity; the MUTEX problem can be solved with
nets having read arcs but not with ordinary nets having no read arcs.

In this paper, we present two different ways to enhance PAFAS[11], a process algebra for modelling
asynchronous timed concurrent systems, with non-blockingreading actions. PAFAS was introduced for
evaluating the worst-case efficiency of asynchronous systems. It was also used in [7, 8] for studying
(weak) fairness of actions and components in system computations, similarly to results of [22] for a Petri
net setting. This fairness requires that an action has to be performed (a component has to perform an
action, resp.), whenever it is enabled continuously in a run. Fairness can be defined in an intuitive but
complicated way in the spirit of [13, 12], and we proved that each everlasting (or non-Zeno maximal)
timed run is fair and vice versa [7]. We used these characterisations in [8] to prove that Dekker’s MUTEX
algorithm satisfies the respective liveness property underthe assumption offairness of components, while
this fails underfairness of actions. To improve this, one needs suitable assumptions about the hardware,
cf. [19], namely that reading a value from a storage cell is non-blocking; to model this we introduce
specific reading prefixes for PAFAS.

We first add reading in the form of a read-action prefixα ⊲Q (the new process language is called
PAFASr), which behaves asQ but, like a variable or a more complex data structure, can also be read
with the actionα . Since being read should not change the state,α can be repeated until the execution of
some ordinary action ofQ. Thus, e.g.a⊲b.nil can perform any number ofa’s until it terminates via an
ordinaryb. The operational semantics forα ⊲Q needs two types of transition relations to properly deal
e.g. with sequences of read actions.

Under some syntactic restrictions, the semantics can be simplified. To be still able to express se-
quences of read actions directly, we introduced a read-set operator{a1, · · · ,an} ⊲Q in the language
PAFASs. In [9], we already used PAFASs to show the correctness of Dekker’s algorithm: regarding
some actions as reading, this algorithm satisfies MUTEX liveness already under the assumption offair-
ness of actions. It had long been an open problem how to achieve such a result in a process algebra [23].
The simpler semantics of PAFASs is helpful for building tools. Indeed, we have already proved some
MUTEX algorithms correct or incorrect with the aid of the automated verification toolFASE [3]. We
plan to continue this work by also considering the efficiencyof MUTEX algorithms and other systems.

In this paper, we study PAFASr and PAFASs further with special attention to expressiveness. The first
issue is that PAFASr models non-blocking reading in an intuitive way, while the necessary restrictions
in case of PAFASs are not so obvious. In fact, the investigations for this paper have disclosed that the
restrictions in [9] still allowed processes with a contra-intuitive semantics. To rectify this subtle mistake,
we give an improved definition ofproperPAFASs processes1, and we show how to translate each proper
processQ into a PAFASr process whose timed behaviour is bisimilar and even isomorphic to that ofQ.
This shows at the same time that a proper process really has anintuitive behaviour and that PAFASr is at
least as expressive as the proper fragment of PAFASs.

In this paper, we additionally show that safe Petri nets withread-arcs as in [22] can be modelled with
proper PAFASs processes. It is still an open problem whether PAFASr is more expressive than PAFASs;
we present a number of laws that are interesting in their own right and give a backward translation for
a fragment of PAFASr. Constructing a general backward translation seems to be related to finding an
expansion law for PAFASr processes, a law that is not even known for standard PAFAS processes.

We have also extended the correspondence between fair and everlasting runs; thus, also in PAFASr

1Luckily, the model of Dekker’s algorithm in [9] is also proper as defined here.
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and in PAFASs, we capture fairness with timed behaviour. To demonstrate the extended expressiveness
of reading with a concrete example, we prove that no finite-state process in standard PAFAS has the same
fair language asa⊲b.nil (Theorem 2.5).

The rest of the paper is organised as follows. Sections 2 and 3introduce PAFASr and PAFASs
with their respective timed operational semantics and prove result regardinga⊲b. Section 4 provides
a mapping from PAFASs to PAFASr and presents the result for Petri nets. The backward translation is
discussed in Section 5. Finally, Section 6 presents some concluding remarks. Some proofs can be found
in the appendices.

2 A process algebra for describing read behaviours

In this section, we introduce PAFASr and give a first expressiveness result. PAFAS is a CCS-like process
description language [16] (with aTCSP-like parallel composition [1]), where actions are atomic and
instantaneous but have associated an upper time bound (either 0 or 1, for simplicity) interpreted as a
maximal time delay for their execution. As explained in [11], these upper time bounds can be used for
evaluating the performance of asynchronous systems, but donot influencefunctionality (which actions
are performed); so compared to CCS, also PAFAS treats the full functionality of asynchronous systems.
W.r.t. the original language, here we introduce the newread prefix⊲ to represent non-blocking behaviour
of processes. Intuitively, the termα ⊲P models a process like a variable or a more complex data structure
that behaves asP but can additionally be read withα : since being read does not change the state,α
can be performed repeatedly until the execution of some ordinary action ofP, and it does not block a
synchronisation partner (a reading process) as described below.

We use the following notation.A is an infinite set ofvisible actions. An additional actionτ is used
to represent internal activity, which is unobservable for other components. We defineAτ = A∪ {τ}.
Elements ofA are denoted bya,b,c, . . . and those ofAτ by α ,β , . . . . Actions inAτ can let time 1 pass
before their execution, i.e. 1 is their maximal delay. Afterthat time, they becomeurgentactions written
a or τ ; these cannot be delayed. The set of urgent actions is denoted byAτ = {a |a ∈ A}∪{τ} and is
ranged over byα ,β , . . . . Elements ofAτ ∪Aτ are ranged over byµ . X (ranged over byx,y,z, . . .) is the
set of process variables, used for recursive definitions.Φ : Aτ → Aτ is a general relabelling function
if the set{α ∈ Aτ | /0 6= Φ−1(α) 6= {α}} is finite andΦ(τ) = τ . Such a function can also be used to
definehiding: P/A, where the actions inA are made internal, is the same asP[ΦA], where the relabelling
functionΦA is defined byΦA(α) = τ if α ∈ A andΦA(α) = α if α /∈ A.

We assume that time elapses in a discrete way2. Thus, an action prefixed processa.P can either do
actiona and become processP (as usual in CCS) or can let one time step pass and becomea.P; a is
calledurgent a, anda.P cannot delaya, but as a stand-alone processcan only doa to becomeP. In
the following, initial processes are just processes of a standard process algebra extended with⊲. General
processes include all processes reachable from the initialones according to the operational semantics to
be defined below.

The sets̃P1 of initial (timed) process terms PandP̃ of (general)(timed) process terms Qis generated
by the following grammar:

2PAFAS is not time domain dependent, meaning that the choice of discrete or continuous time makes no difference for the
testing-based semantics of asynchronous systems, see [11]for more details.
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P ::= nil
∣

∣ x
∣

∣ α .P
∣

∣ α ⊲P
∣

∣ P+P
∣

∣ P‖A P
∣

∣ P[Φ]
∣

∣ recx.P

Q ::= P
∣

∣ α .P
∣

∣ µ ⊲Q
∣

∣ Q+Q
∣

∣ Q‖A Q
∣

∣ Q[Φ]
∣

∣ recx.Q

wherenil is a constant,x∈ X , α ∈ Aτ , µ ∈ Aτ ∪Aτ , Φ is a general relabelling function andA⊆ A

possibly infinite. We say that a variablex∈ X is guardedin Q if it only appears in the scope of some
µ ∈Aτ ∪Aτ . We assume that recursion isguarded, i.e. for recx.Q variablex is guarded inQ. A process
term isclosedif every variablex is bound by the correspondingrec x-operator; the set of closed timed
process terms iñP andP̃1, simply calledprocessesand initial processesresp., is denoted byP andP1

resp.
We briefly describe the operators. Thenil-process cannot perform any action, but may let time pass

without limit. A trailing nil will often be omitted, so e.g.a.b+ c abbreviatesa.b.nil+ c.nil. µ .Q is
(action-)prefixing known from CCS. Read-prefixed termsα ⊲Q andα ⊲Q behave likeQ except for the
(lazy and urgent, resp.) non-blocking actionα . In both casesα is always enabled until componentQ
evolves via some ordinary action; moreover,α stays urgent even if it is performed.Q1 +Q2 models
the choice between processesQ1 andQ2. Q1‖AQ2 is the parallel composition of two processesQ1 and
Q2 that run in parallel and have to synchronise on all actions from A; this synchronisation discipline is
inspired fromTCSP. Q[Φ] behaves asQ but with the actions changed according toΦ. recx.Q models a
recursive definition. We often use equations to define recursive processes, e.g.P⇐ a.P+b; in contrast,
≡ stands for syntactically equal. Below we use the (syntactic) sort of a process that contains all visible
actions the process can ever perform.

Definition 2.1 (sort) For a general relabelling functionΦ let ib(Φ) = {a∈ A | /0 6= Φ−1(a) 6= {a}} (the
image base ofΦ); by definition of a general relabelling function,ib(Φ) is finite. Thesort of Q∈ P̃ is the
setL (Q) = {a∈ A |a occurs inQ}∪

⋃

Φ occurs inQ ib(Φ).

The transitional semantics describing the functional behaviour of PAFASr terms indicates which
actions they can perform. We need two different transition relations

α
7→ and

α
 to describe, resp., the

ordinary and the reading behaviour of PAFASr processes. The functional behaviour is the union of these
two kinds of behaviour.

Definition 2.2 (functional operational semantics) Let Q∈ P̃ andα ∈Aτ . We say thatQ
α
−→ Q′ if Q

α
7→ Q′

or Q
α
 Q′, where the SOS-rules defining the transition relations

α
7→⊆ (P̃× P̃) (the ordinary action

transitions) and
α
 ⊆ (P̃× P̃) (theread action transitions) for α ∈Aτ , are given in Tables 1 and 2, resp.3.

As usual, we writeQ
α
−→ Q′ if (Q,Q′) ∈

α
−→ andQ

α
−→ if Q

α
−→ Q′ for someQ′ ∈ P̃; and analogously for

other types of transition relations.

Rule PREFo in Table 1 describes the behaviour of an action-prefixed process as usual in CCS. Note
that timing can be disregarded: when an action is performed,one cannot see whether it was urgent or
not, and thusα .P

α
7→ P; furthermore,α .P has to actwithin time 1, i.e. it can also act immediately, giving

α .P
α
7→ P. Rule READo says thatµ ⊲Q performs the same ordinary actions asQ removing the read-

prefix at the same time. Note that in rule PARo2, an ordinary action transition can synchronise with both
an ordinary and aread actiontransition. The other rules are as expected. Symmetric rules have been
omitted.

3We do here without functionsclean andunmark, used e.g. in [7] to get a closer relationship between statesof untimed fair
runs and timed non-Zeno runs. They do not change the behaviour (up to an injective bisimulation) and would complicate the
setting.
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PREFo
µ ∈ {α,α}

µ .P α
7→ P

READo
Q

α
7→ Q′

µ ⊲Q
α
7→ Q′

SUMo
Q1

α
7→ Q′

Q1+Q2
α
7→ Q′

PARo1
α /∈ A, Q1

α
7→ Q′

1

Q1‖AQ2
α
7→ Q′

1‖AQ2

PARo2
α ∈ A, Q1

α
7→ Q′

1, Q2
α
−→ Q′

2

Q1‖AQ2
α
7→ Q′

1‖AQ′
2

RELo
Q

α
7→ Q′

Q[Φ]
Φ(α)
7→ Q′[Φ]

RECo
Q{recx.Q/x}

α
7→ Q′

recx.Q
α
7→ Q′

Table 1: Ordinary behaviour of PAFASr processes

READr1
µ ∈ {α,α}

µ ⊲Q
α
 µ ⊲Q

READr2
Q

α
 Q′

µ ⊲Q
α
 µ ⊲Q′

SUMr
Q1

α
 Q′

1

Q1+Q2
α
 Q′

1+Q2

PARr1
α /∈ A, Q1

α
 Q′

1

Q1‖AQ2
α
 Q′

1‖AQ2

PARr2
α ∈ A, Q1

α
 Q′

1, Q2
α
 Q′

2

Q1‖AQ2
α
 Q′

1‖AQ′
2

RELr
Q

α
 Q′

Q[Φ]
Φ(α)
 Q′[Φ]

RECr
Q{recx.Q/x}

α
 Q′

recx.Q
α
 Q′

Table 2: Reading Behaviour of PAFASr processes

Most of the rules in Table 2 say that the execution of reading actions does not change the state of a
term Q. Rule READr2 is crucial to manage arbitrarily nested reading actions; contrast it with READo.
Due to technical reasons, rule RECr allows unfolding of recursive terms; thus e.g.rec x.a⊲ b.x

a
 a⊲

b.(rec x.a⊲b.x). Notice that this leads to a timed bisimilar process, cf. Section 4.

To give SOS-rules for the time steps of process terms, we consider (partial)time-stepslike Q
X
−→r Q′

where the setX ⊆A (called arefusal set) consists of non-urgent actions. HenceQ is justified in delaying,
i.e. refusing them;Q can take part in a real time step only if it has to synchronise on its urgent actions,
and these are delayed by the environment. IfX = A thenQ is fully justified in performing this full unit-

time step; i.e.,Q can perform it independently of the environment. IfQ
A
−→r Q′, we writeQ

1
−→ Q′; we say

thatQ performs a1-step.

Definition 2.3 (refusal transitional semantics) The inference rules in Table 3 define
X
−→r⊆ P̃× P̃ where

X ⊆ A. A refusal trace of a termQ ∈ P̃ records from arun of Q which visible actions are performed

(Q
a
−→ Q′, a∈ A) and which actionsQ refuses to perform when time elapses (Q

X
−→r Q′, X ⊆ A); i.e. a

refusal trace ofQ is the sequence of actions fromA and refusal sets⊆ A occurring in a finite transition
sequence fromQ (abstracting fromτ-transitions).

Rule PREFt1 says thatα .P can let time pass and refuse to perform any action while rule PREFt2 says
thatα .P can let time pass in an appropriate context, but cannot refuse the actionα . Processτ.P cannot
let time pass at all since, in any context,τ.P has to performτ before time can pass further. Rule PARt

defines which actions a parallel composition can refuse during a time-step.Q1‖AQ2 can refuse the action
α if either α /∈ A andα can be refused by bothQ1 andQ2 or α ∈ A and at least one ofQ1 andQ2 can
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NIL t
nil

X
−→r nil

PREFt1
α.P

X
−→r α.P

PREFt2
α /∈ X∪{τ}

α .P
X
−→r α.P

READt1
Q

X
−→r Q′

α ⊲Q
X
−→r α ⊲Q′

READt2
Q

X
−→r Q′, α /∈ X∪{τ}

α ⊲Q
X
−→r α ⊲Q′

SUMt
Qi

X
−→r Q′

i for i = 1,2

Q1+Q2
X
−→r Q′

1+Q′
2

RELt
Q

Φ−1(X∪{τ})\{τ}
−−−−−−−−−−→r Q′

Q[Φ]
X
−→r Q′[Φ]

RECt
Q{recx.Q/x}

X
−→r Q′

recx.Q
X
−→r Q′

PARt
Qi

Xi−→r Q′
i for i = 1,2,X ⊆ (A∩ (X1∪X2))∪ ((X1∩X2)\A)

Q1‖AQ2
X
−→r Q′

1‖AQ′
2

Table 3: Refusal transitional semantics of PAFASr processes

delay it, forcing the otherQi to wait. Thus, an action is urgent (cannot be further delayed) only when all
synchronising ‘local’ actions are urgent. The other rules are as expected.

Example 2.4 As an example for the definitions given so far, consider anarray with two Boolean values
t and f and define its behaviour asBt f ≡ Pt ‖AQf wherePt ⇐ rtt ⊲ (r1

t ⊲w1
f .Pf )+ rt f ⊲ (r1

t ⊲w1
f .Pf ), Qf ⇐

rt f ⊲ (r2
f ⊲w2

t .Qt)+ r f f ⊲ (r2
f ⊲w2

t .Qt) andA = {r i j | i, j ∈ {t, f}}. Actions r i j , wherei, j ∈ {t, f}, allow

reading both entries at the same time, whilerk
j andwk

j represent, resp., the reading and the writing of

the value j ∈ {t, f} for the entryk ∈ {1,2}. By rules READr1 and READr2, Bt f
rt f
 Bt f andBt f

r1
t
 Bt f

describing non-blocking reading.Pt offers a choice betweenrt f andrtt , where synchronisation disallows
the latter. Performingw1

f after a 1-step does not change the second component, sor2
f is still urgent; this

shows thatw1
f does not blockr2

f . With just one type of action transition,Pt would lose the prefixrt f ⊲

when performingr1
t . Only the execution of an ordinary action can change the state of the array, e.g.

Bt f
w1

f
7→ Bf f ≡ Pf ‖AQf by Rule READo.

In [11], it is shown that inclusion of refusal traces characterises an efficiency preorder which is intuitively
justified by a testing scenario. In this sense, e.g.P ≡ a⊲ b is faster than the functionally equivalent
Q≡ recx.(a.x+b), since only the latter has the refusal traces 1a(1a)∗: after 1a, Q returns to itself, since
recursion unfolding creates fresha andb; intuitively, b is disabled during the occurrence ofa, soa and
alsob can be delayed again. In contrast, after a time step and any number ofas,P turns intoa⊲b and no
further 1-step is possible. Since read actions do not block or delay other activities, they make processes
faster and, hence, have an impact on timed behaviour of systems. If a models the reading of a value
stored byP or Q and two parallel processes want to read it, this should take at most time 1 in a setting
with non-blocking reads. And indeed, whereasQ‖{a} (a‖ /0 a) has the refusal trace 1a1a, this behaviour
is not possible forP‖{a} (a‖ /0 a). Thus,P offers afasterservice.

Another application of refusal traces is the modelling ofweak fairness of actions. Weak fairness re-
quires that an action must be performed whenever continuously enabled in a run. Thus, a run fromP with
infinitely manya’s is not fair; the read action does not blockb or change the state, so the sameb is always
enabled but never performed. In contrast, ifQ performsa, a freshb is created; in conformance to [12],
a run with infinitely manya’s is fair. In [10], generalising [7], fair traces for PAFASr (and PAFASs) are
first defined in an intuitive, but very complex fashion in the spirit of [12] and then characterised: they are
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the sequences of visible actions occurring in transition sequences with infinitely many 1-steps4. Due to
lack of space, we cannot properly formulate this as a theorem, but take it as a (time-based)definition of
fair tracesinstead;FairL(R) is the set of fair traces ofR. With this, infinitely manya’s are a fair trace of
Q since it can repeat 1a indefinitely, but the fair traces of finite-stateP are those that end withb. This
shows an added expressivity of read prefixes:

Theorem 2.5 If R∈ P̃ is a finite-state process without read-prefixes and with sortL (R) = {a,b}, then
FairL(R) 6= {aib| i ≥ 0}= FairL(a⊲b).

We can view fairness as imposing a kind of priority forb in P since, in contrast toa, it must be
executed in a fair trace. This is of course very different from the usual treatment of priorities [6], since
a can be prefered tob for a number of times. The following example shows that read actions can model
more than two levels of priority.

Example 2.6 In P≡ a⊲ ((rec x.b.x) ‖{b} b⊲c), there are three levels of priority: in a fair trace we can
perform arbitrarily manya’s while bothb andc remain enabled and have priority – so far, we can have
at most one 1-step. Ifb occurs, the actiona disappears but we can perform arbitrarily manyb’s while c
remains enabled and has priority – with, still, at most one 1-step. Formally, with a 1-stepP evolves into
P≡ a⊲ (b.(rec x.b.x) ‖{b} b⊲c). P can perform ana to itself, ac (and becomeb.(rec x.b.x) ‖{b} nil), or
repeatedb’s to ((recx.b.x) ‖{b} b⊲c; no further 1-steps are possible due to the urgentc; so in a fair trace,
finally c is performed to((recx.b.x) ‖{b} nil) – where infinitely many 1-steps are possible.

3 A read operator with a simpler semantics

The special reading transitions of PAFASr are needed to properly derive e.g.P≡ a⊲b⊲Q
b
−→ a⊲b⊲Q.

To get a simpler semantics, the idea is to collect all enabledreading actions of a ‘sequential component’
in a set and write e.g.P as{a,b} ⊲ c. Thus, we define a new kind of read operator{µ1, . . . ,µn} ⊲Q
with a slightly different syntax. In this way we try to avoid terms with nested reading actions and, as a
consequence, we can describe the behaviour of the new PAFASs processes by means of a simpler timed
operational semantics with just one type of action transitions. A price to pay is that not all PAFASs pro-
cesses have a reasonable semantics; but the subset with a reasonable semantics is practically expressive
enough (e.g. for expressing MUTEX solutions adequately) due to thesetof reading actions, cf. [9].

The sets̃S1 of initial (timed) process terms PandS̃ of (general)(timed) process terms Qis generated
by the following grammar:

P ::= nil
∣

∣ x
∣

∣ α .P
∣

∣ {α1, . . . ,αn}⊲P
∣

∣ P+P
∣

∣ P‖A P
∣

∣ P[Φ]
∣

∣ recx.P

Q ::= P
∣

∣ α .P
∣

∣ {µ1, . . . ,µn}⊲Q
∣

∣ Q+Q
∣

∣ Q‖A Q
∣

∣ Q[Φ]
∣

∣ recx.Q

wherenil is a constant,x ∈ X , α ∈ Aτ , {α1, . . . ,αn} ⊆ Aτ finite, {µ1, . . . ,µn} is a finite subset of
Aτ ∪Aτ that cannot contain two copies (one lazy and the other one urgent) of the same actionα , i.e.
∣

∣{α ,α} ∩ {µ1, . . . ,µn}
∣

∣ ≤ 1 for any α ∈ Aτ . Again, Φ is a general relabelling function andA ⊆ A

possibly infinite. Also in this section, recursion is guarded. The sets of closed timed process terms inS̃

andS̃1, simply calledprocessesandinitial processesresp., areS andS1 resp.

4Observe that [9] just contains the application presented in[10]; PAFASr is not treated there at all.
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Definition 3.1 (functional operational semantics) The SOS-rules defining the transition relations
α
−→⊆

(S̃× S̃) (theaction transitions) are those in Table 15 where we replace the rule READo with:

READs1
µi ∈ {α,α}

{µ1, . . . ,µn} ⊲Q
α
−→ {µ1, . . . ,µn} ⊲Q

READs2
Q

α
−→ Q′

{µ1, . . . ,µn} ⊲Q
α
−→ Q′

Definition 3.2 (refusal transitional semantics) The inference rules defining the transition relation
X
−→r⊆

S̃× S̃ whereX ⊆ A are those in Table 3 where we replace the rules READt1 and READt2 with:

READt
Q

X
−→r Q′, U ({µ1, . . . ,µn})∩ (X∪{τ}) = /0

{µ1, . . . ,µn} ⊲Q
X
−→r {µ1, . . . ,µn}⊲Q′

where U ({µ1, . . . ,µn}) = {α |µi = α for somei ∈ [1,n]} and {µ1, . . . ,µn} is the set obtained from
{µ1, . . . ,µn} by replacing eachα by α .

A termQ∈ S̃ is read-guardedif every subterm ofQ of the form{µ1, . . . ,µn}⊲Q′ is in the scope of some
action prefixµ .(). Q∈ S̃ is read-properif each subtermQ1+Q2 is read-guarded and, for each subterm
{µ1, . . . ,µn}⊲Q1, Q1 is read-guarded. We say thatQ is x-proper if any freex is guarded in any subterm
Q1+Q2, {µ1, · · · ,µn}⊲Q1 andrec y.Q1. Q is rec-properif for any subtermrec x.Q1, Q1 is either read-
guarded orx-proper. A termQ is proper if it is read- and rec-proper. Below, we will prove that proper
terms have a reasonable semantics by relating them to PAFASr processes with the same behaviour. An
important feature of properness is that processes without read-prefixes are proper.

According to the definitions given so far, neitherP ≡ {a} ⊲ {b} ⊲Q nor P′ ≡ {a} ⊲Q′ + {b} ⊲Q
are read-proper because of{b} ⊲Q. An essential idea of reading is that it does not change the state

of a process and therefore does not block other actions. Withthis, we should haveP
b
−→ P, but really

we haveP
b
−→ {b} ⊲Q. Similarly, we haveP′ b

−→ {b} ⊲Q instead ofP′ b
−→ P′. Hence, we exclude such

processes. There is also a problem with the termP ≡ rec x.{a} ⊲b.(c+ x). Indeed,P can perform ab
and evolve toc+ rec x.{a}⊲b.(c+ x) which is not read-proper. Since the body of this recursion isnot
read-guarded,x has to be treated as a read-prefix term, i.e. the body has to bex-proper. A subtle detail is
the consideration of recursive subterms in the definition ofx-proper. Without this detail,Q≡ recx.{a}⊲

b.recy.(c.(c+y)‖ /0 x) would be proper. But,Q
b
−→ recy.(c.(c+y)‖ /0 Q)

c
−→ (c+ recy.(c.(c+y)‖ /0 Q))‖ /0 Q.

Notice thatrecy.(c.(c+y)‖ /0 Q), and hencec+ recy.(c.(c+y)‖ /0 Q), is not read-proper.
In contrast to the restriction to proper terms, we can freelyuse read-prefixes in PAFASr , see e.g. the

process in Example 2.4; this would have thewrong semanticsin PAFASs, i.e. if we changer i j ⊲ and
rk

j ⊲ (for i, j ∈ {t, f} andk∈ {1,2}) into {r i j }⊲ and{rk
j}⊲. The restriction only makes sense because of

Prop. 3.3, which requires a careful, detailed proof.

Proposition 3.3 Let Q∈ S̃ be proper. Q
α
−→ Q′ or Q

X
−→r Q′ implies Q′ proper.

Actually, the result in [10] is not correct since we used an insufficient restriction there. But, luckily the
PAFASs process we used to model Dekker’s MUTEX algorithm is proper.This can been easily seen
since proper processes are closed w.r.t. parallel composition and relabelling.

5To be formally precise: we have to replace all arrows7→ in Table 1 by−→.
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4 Expressivity of PAFASs

In this section we compare the expressivity of PAFASs with that of PAFASr and Petri nets. A first result
shows that for each properQ ∈ S̃ there is a term iñP whose behaviour is (timed) bisimilar and even
isomorphic to that ofQ.

Definition 4.1 (timed bisimulation) A binary relationS ⊆ P×P over processes is atimed bisimulation
if (Q,R) ∈ S implies, for allα ∈ Aτ and allX ⊂ A:

- wheneverQ
α
 Q′ (Q

α
7→ Q′, Q

X
−→r Q′) then, for someR′, R

α
 R′ (R

α
7→ R′, R

X
−→r R′, resp.) and

(Q′,R′) ∈ S ;

- wheneverR
α
 R′ (R

α
7→ R′, R

X
−→r R′ ) then, for someQ′, Q

α
 Q′ (Q

α
7→ Q′, Q

X
−→r Q′, resp.) and

(Q′,R′) ∈ S .

Two processesQ,R∈ P̃ are timed bisimilar (bisimilar for short, writtenQ∼ R) if (Q,R) ∈ S for some
timed bisimulationS . This definition is extended to open terms as usual; two open terms are bisimilar
if they are so for all closed substitutions. It can be proved in a standard fashion that timed bisimilarity
is acongruencew.r.t. all PAFASr operators. The same definition, but omitting the reading transitions,
applies to PAFASs.

We start by providing a translation function[[ ]]r that maps terms iñS into corresponding terms iñP; to
regard[[ ]]r as a function in the read-case, we have to assume that actionsare totally ordered, and that the
actions of a read-set are listed according to this order.

Definition 4.2 (a translation function) ForQ∈ S̃ proper,[[Q]]r is defined by induction onQ (subterms of
Q are also proper) as follows :

Nil, Var, Pref : [[nil]]r ≡ nil, [[x]]r ≡ x, [[µ .P]]r ≡ µ .[[P]]r
Read: [[{µ1, . . . ,µn}⊲Q]]r ≡ µ1 ⊲ . . . ⊲µn ⊲ [[Q]]r
Sum: [[Q1+Q2]]r ≡ [[Q1]]r +[[Q2]]r
Par: [[Q1‖A Q2]]r ≡ [[Q1]]r ‖A [[Q2]]r
Rel: [[Q[Φ]]]r ≡ [[Q]]r [Φ]
Rec: [[recx.Q]]r ≡ recx.[[Q]]r

This translation is pretty obvious, but its correctness is not; observe that Theorem 4.3 does not hold
for all PAFASs processes; cf. the processesP ≡ {a} ⊲ {b} ⊲Q andP′ ≡ {a} ⊲Q′ + {b} ⊲Q at the end
of Section 3. Function[[]]r is injective on proper terms; except for the read-case, thisis easy since[[]]r
preserves all other operators. In the read-case,Q is read-guarded, i.e. the top-operator ofQ and[[Q]]r is
not ⊲; the read-set can be read off from[[{µ1, . . . ,µn} ⊲Q]]r as the maximal sequence of⊲-prefixes the
term starts with. With this observation, the following result, together with Prop. 3.3, shows that[[]]r is an
isomorphism between labelled transition systems, if we restrict them, on the one hand, to proper terms
and their transitions and, on the other, to the images of proper terms and the transitions of these images.

Theorem 4.3 For all properQ∈ S̃:

1. Q
α
−→ Q′ (Q

X
−→r Q′) implies [[Q]]r

α
−→ [[Q′]]r ([[Q]]r

X
−→r [[Q′]]r , resp.);

2. if [[Q]]r
α
−→ Q′′ ([[Q]]r

X
−→r Q′′) thenQ

α
−→ Q′ (Q

X
−→r Q′) with [[Q′]]r ≡ Q′′.
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The above theorem shows that the expressivity of proper PAFASs processes is at most that of PAFASr.
On the other hand, it is enough to model safe Petri nets with read-arcs. To illustrate the proof idea, which
is based on a well-known view of a net as a parallel composition, consider an empty place of a net with
preset{t1, t2} and postset{t3, t4}, and being read byt5 and t6. This is translated into processP0 with
P0 ⇐ t1.P1 + t2.P1 and P1 ⇐ {t5, t6} ⊲ (t3.P0 + t4.P0); P1 models the marked place. All the analogous
translations of places are composed in parallel, synchronising each time over all common actions (e.g.
net transitions). Finally, a relabelling corresponding tothe labelling of the net is applied.

Theorem 4.4 For each safe Petri nets with read-arcs in [22] there is a bisimilar proper PAFASs process.

5 The backward translation from PAFASr to PAFASs

In this section we study the problem whether PAFASr is more expressive than PAFASs or whether each
PAFASr term can be translated into a bisimilar proper PAFASs term. We first exhibit a subset ofP̃ that is
essentially the image of[[.]]r and so has an easy translation; we say these terms are inread normal form
(RNF) (see Def. 5.1). We then discuss how PAFASr terms can be brought into RNF and illustrate, by
means of examples, the problems of such a normalisation.

Definition 5.1 (read normal form) For PAFASr terms, we define read-guarded, andx- and rec-proper
as above except for considering read-action prefixes instead of read-set prefixes. We call such a term
ra-proper if each subtermQ1+Q2 is read-guarded, and for each subtermµ ⊲Q′ eitherQ′ is read-guarded
or Q′ ≡ ν ⊲Q′′. A term isRNF if it is rec- and ra-proper. The sets of terms and processes inRNF are
denoted bỹPrn andPrn, resp.

Below we provide the function that translates eachQ∈ P̃rn into a proper term iñS. We will need an
additional function to deal with read prefixes. A term such asµ1⊲Q is in RNF if eitherQ is read-guarded
or, by iterative applications of Def. 5.1,Q has the formµ1⊲ · · ·⊲µn⊲Qn whereQn ∈ P̃rn is read-guarded.
In the latter case, the actionsµ1, · · · ,µn must be collected in a read set. Since read sets cannot contain
multiple copies (lazy and urgent) of the same actionα , we use the following notation: ifµ1, · · · ,µn are
generic actions inAτ ∪Aτ , [[µ1, · · · ,µn]] denotes the set of actions{ν1, · · · ,νm} such that:∃ i ∈ [1,m]
with νi = α iff ∃ j ∈ [1,n] with µ j = α ; (2) ∃ i ∈ [1,m] with νi = α iff ∃ j ∈ [1,n] such thatµ j = α and,
for eachk∈ [1,n], µk 6= α.

Definition 5.2 (a translation function from̃Prn to S̃) For Q∈ P̃rn, we define the process term[[Q]]s ∈ S̃

by induction onQ as in Definition 4.2 except for:

Read:[[µ1⊲Q]]s ≡ [[µ1, · · · ,µn]]⊲ [[Qn]]s
if Q≡ µ1⊲ · · · ⊲µn ⊲Qn andQn is read-guarded

With the laws L1 and L2 below, we can rearrange successive read-action prefixes in a process in RNF
such that the result is in the image of[[]]r , which essentially proves the second item of following result.

Theorem 5.3 For allQ∈ P̃rn:

1. Q
α
−→ Q′ or Q

X
−→r Q′ imply Q′ ∈ P̃rn;

2. Q and[[Q]]s are timed bisimilar (in the sense of PAFASs).
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Translating terms into read normal form

For translating a term that isnot in read normal form, one idea is to use laws to rewrite the terminto a
bisimilar one in RNF. E.g. although(a⊲b)+c does not belong tõPrn, it has the same timed behaviour
asa⊲ (b+c) ∈ P̃rn, cf. L3.

Besides commutativity and associativity of+ and‖, we have shown the laws in Fig. 1. Here,Φ{a→
α} denotes the relabelling function that renamesa to α , and all other actions asΦ. For the discussion,
we also write[a→ α ] as a shorthand forΦI{a→ α} whereΦI is the identity relabelling function. The

L1 µ ⊲ (ν ⊲Q)∼ ν ⊲ (µ ⊲Q)
L2 α ⊲ (µ ⊲Q)∼ µ ⊲Q, α ⊲ (µ ⊲Q)∼ α ⊲Q provided thatµ ∈ {α ,α}
L3 (µ ⊲Q)+R∼ µ ⊲ (Q+R)
L4 a⊲ (Q1 ‖A Q2)∼ ((a⊲Q1) ‖A∪{a} (a⊲Q2)),

a⊲ (Q1 ‖A Q2)∼ ((a⊲Q1) ‖A∪{a} (a⊲Q2)) provided thata /∈ L (Q)

L5 (α ⊲Q)[Φ]∼ Φ(α)⊲ (Q[Φ]), (α ⊲Q)[Φ]∼ Φ(α)⊲ (Q[Φ])

L6 (Q[Φ])[Ψ] ∼ Q[Ψ◦Φ]
L7 recx.Q∼ Q{recx.Q/x}

Figure 1: A set of laws

idea of the translation into RNF is to perform rewriting by induction on the term size; since action-prefix,
parallel composition and relabelling preserve RNF, these operators are no problem. Read-prefixesµ ⊲Q
can be dealt with distributingµ amongQ’s components. But choice and recursion pose still unsolved
problems.

Regarding read prefixes, we have to show the stronger claim that for eachQ in RNF we can normalise
µ ⊲Q in such a way that, for any variabley, y guarded inQ implies y guarded in the RNF, and if
additionallyQ is y-proper this is also preserved. The proof is by induction onQ; some cases are easy
becauseµ ⊲Q is in RNF itself (by the definition of RNF or by induction). We consider one of the
three remaining cases, namely the Par-case. The Rel-case iseasier, while the Rec-case is much more
complicated. Their proofs can be found in the appendix. For afresh actiona we have:

α ⊲ (Q1‖AQ2)∼ (a⊲ (Q1‖AQ2))[a→ α ]∼ ((a⊲Q1)‖A∪{a} (a⊲Q2))[a→ α ]

by L4, and then we are done by induction. The case of anα-read-prefix is similar.
The case of choice is particularly tricky whenever one of thetwo alternatives is a parallel composi-

tion. Hence, we now concentrate on the following problem:let Q,R≡ R1‖AR2 be terms in RNF; is there
an S in RNF such that S∼ Q+R?

First, observe that we can rewriteQ into Q′ by replacing all actions (also in relabellings) by fresh
copies, such thatQ′ andR have disjoint sorts. Then, we can try to bringQ′+R into RNF and finally
apply a relabelling that ‘undoes’ the rewrite (cf. the last example above). This would give us a bisimilar
term in RNF forQ+R. From now on we assume thatQ andRhave disjoint sorts.

If Q is deterministic(i.e. it never performsτ and never performs an action in two different ways), we
have the lawQ+(R1 ‖A R2)∼ (Q+R1) ‖A∪L (Q) (Q+R2). Thus, to findSwe now simply normalise the
two components inductively. In general, this law fails: forQ≡ a.b+a.c, Q+Revolves witha into either
b or c. But (Q+R1) ‖A∪{a,b,c} (Q+R2) can performa and evolve into the deadlockedb ‖A∪{a,b,c} c.
A new idea that will work in many cases is to replace the secondcopy of Q by its ‘top-part’ that can
perform the same time steps and the same initial actions asQ, but deadlocks after an ordinary action;
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additionally, not all ofL (Q) but only the initial actions are added to the synchronisation set: in our
example,((a.b+a.c)+R1) ‖A∪{a} (a+R2) is bisimilar toQ+R and could, in principle, be normalised
inductively. This idea must be adapted in case of read prefixes. ConsiderQ≡ a⊲b.c; here, the top-part
is a⊲ b, i.e. Q+R is bisimilar to (a⊲ b.c+R1) ‖A∪{a,b} (a⊲ b+R2) (in particular, both terms remain
unchanged when performinga). Another problem is that initial actions may also be performed later,
e.g. inQ ≡ a⊲ b.a; again, rewriting plus later relabelling helps. In the example, Q+R is bisimilar to
((e⊲b.c+R1) ‖A∪{e,b} (e⊲b+R2))[e→ a], and the termse⊲b.c+R1 ande⊲b+R2 are again smaller
thanQ+R.

But what is the top-part forQ≡ a ‖ /0 b? Actiona can be performed initially, but also afterb. If we
could transformQ into a.b+b.a, the top-part would bea+b, and using rewriting plus later relabelling
solves the problem. But unfortunatelyQ∼ a.b+b.a is wrong: when performing 1a, these terms end up
in nil ‖ /0 b andb resp., which are not timed bisimilar due to partial time step{b}.

Finding the top-part of parallel compositions seems to be related to finding a suitable expansion law.
But even for standard PAFAS, such a law is not known. Thus, ourgeneral proof idea does not work so
far, due to problems with choice terms. Also the treatment ofrecursion is not clear yet; an expansion law
would certainly help. At least, we have identified a fragmentof PAFASr which does not have additional
expressivity.

Theorem 5.4 If all choice and recursive subterms of a PAFASr process are in RNF then there is a bisim-
ilar PAFASs process.

6 Conclusions and Future Work

We have studied two different ways to enhance PAFAS with non-blocking reading actions. We have first
added reading in the form of a read-action prefix operator andproved that this adds expressivity w.r.t. fair
behaviour. This operator is very flexible, but has a slightlycomplex semantics. To reduce complexity,
we have introduced a read-set prefix operator with a simpler semantics, but with syntactic restrictions.
For the second operator, it is not immediately clear whetherits operational semantics models reading
behaviour adequately. We could prove this by translating proper PAFASs terms into PAFASr terms with
the same timed behaviour. We also show that PAFASs is strong enough to model Petri nets with read-arcs.

It is still not clear whether PAFASr is more expressive than the restricted PAFASs. We presented
some ideas how a respective translation could work; these are based on some algebraic laws that are also
interesting in their own right. In the future we will try to complete this translation. This is related to
finding an expansion law for generic PAFASr (and PAFAS) terms. Such an expansion law should also
provide us with an axiomatisation for the full PAFAS language. Some results can be found in [21] where
a fragment of the language that just consists of prefix and choice has been axiomatised.

We plan to use read prefixes for modelling systems and comparing their efficiency or proving them
correct under the progress assumption. A first correctness proof (for Dekker’s MUTEX algorithm) with
the aid of the automated verification tool FASE has been presented in [9].
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