Read Operators and their Expressiveness in Process Algelsa

Flavio Corradini Maria Rita Di Berardini

School of Science and Technology, Computer Science Divjsio
University of Camerino

flavio.corradini@unicam.it, mariarita.diberardini@unicam.it

Walter Vogler

Institut fur Informatik,
Universitat Augsburg, Germany

vogler@informatik.uni-augsburg.de

We study two different ways to enhance PAFAS, a process eddebmodelling asynchronous timed
concurrent systems, with non-blocking reading actions.fivseadd reading in the form of a read-
action prefix operator. This operator is very flexible, batsbmewhat complex semantics requires
two types of transition relations. We also present a reagrsedix operator with a simpler semantics,
but with syntactic restrictions. We discuss the expressge of read prefixes; in particular, we
compare them to read-arcs in Petri nets and justify the girspiantics of the second variant by
showing that its processes can be translated into procestesfirst with timed-bisimilar behaviour.

It is still an open problem whether the first algebra is morpressive than the second; we give a
number of laws that are interesting in their own right, andl lcelp to find a backward translation.

1 Introduction

Non-blocking reading is an important feature e.g. for pngvihe liveness of MUTEX solutions under
the progress assumption (aka weak fairness). We study theifacess algebra with non-blocking read
actions, where ‘read’ refers to accessing a variable, eogefted as a separate proc¥ss. Observe that
read is an activity o¥ar, and in a setting with explicit modelling of data, it wouldhar be an output
than an input action ofar.

Non-blocking reading is known from Petri nets, where it hasrbadded in the form of read arcs;
these allow multiple concurrent reading of the same respuaquite frequent situation in many dis-
tributed systems. Read arcs repregaogitive context conditions.e. elements which are needed for an
event to occur, but are not affected by it. As argued_in [1¥g,importance of such elements is twofold.
Firstly, they allow a faithful representation of systemsengnthe notion of “reading without consuming”
is commonly used, like database systems [20] or any compntithmework based on shared memory.
Secondly, they allow to specify directly and naturally aelesf concurrency greater than in classical nets:
two transitions reading the same place may also occur ssamediusly; in classical nets, the transitions
would be connected to the place by loops (namely, i.e. rgadimodelled through a “rewrite” operation)
which does not allow the simultaneous execution of two tdlkks read the same resource. Read arcs
have been used to model a variety of applications such asaitian serialisability in databases [20],
concurrent constraint programmirig [18], asynchronoutesys [22], and cryptographic protocols [14].
Reading is also related to the notionpErsistencee.g. in several calculi for describing and analysing
security protocols; in particular, persistent messadest ((an be read but not consumed) are used to
model that every message can be remembered by the spy [(seel[¢ie references therein).

*This work was supported by the PRIN Project ‘Paco: Perfoilityg#ware Computing: Logics, Models, and Languages

B. Luttik and F. D. Valencia (Eds.): 18th International Wshlkop on © F. Corradini, M.R. Di Berardini & W. Vogler
Expressiveness in Concurrency (EXPRESS 2011) This work is licensed under the
EPTCS 64, 2011, pp. 3143, doi:10.4204/EPTCS|64.3 Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.64.3
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

32 Read Operators and their Expressiveness in Process Afgebra

Semantics and expressivity of read arcs have been studjeith ¢he following: [5] discusses a step
semantics;[[2] shows that timed Petri nets with read arch/uimed Petri nets and timed automata.
Finally, [22] shows that read arcs add relevant expregsitite MUTEX problem can be solved with
nets having read arcs but not with ordinary nets having no aees.

In this paper, we present two different ways to enhance PAHEAF a process algebra for modelling
asynchronous timed concurrent systems, with non-blockéagling actions. PAFAS was introduced for
evaluating the worst-case efficiency of asynchronous systdt was also used in|[7] 8] for studying
(weak) fairness of actions and components in system cortiguugsasimilarly to results of [22] for a Petri
net setting. This fairness requires that an action has tcebenmed (a component has to perform an
action, resp.), whenever it is enabled continuously in a feairness can be defined in an intuitive but
complicated way in the spirit of [13, 12], and we proved thatle everlasting (or non-Zeno maximal)
timed run is fair and vice versal[7]. We used these charaetioins in[[8] to prove that Dekker's MUTEX
algorithm satisfies the respective liveness property utideassumption dhirness of componenta/hile
this fails undeffairness of actionsTo improve this, one needs suitable assumptions aboutifusvare,
cf. [19], namely that reading a value from a storage cell is-hlocking; to model this we introduce
specific reading prefixes for PAFAS.

We first add reading in the form of a read-action prefix Q (the new process language is called
PAFAS), which behaves a® but, like a variable or a more complex data structure, can ladsread
with the actiona. Since being read should not change the statean be repeated until the execution of
some ordinary action d. Thus, e.garb.nil can perform any number @fs until it terminates via an
ordinaryb. The operational semantics fan-Q needs two types of transition relations to properly deal
e.g. with sequences of read actions.

Under some syntactic restrictions, the semantics can belifegd. To be still able to express se-
quences of read actions directly, we introduced a readysetator{a;,---,a,} > Q in the language
PAFAS.. In [9], we already used PAFASo show the correctness of Dekker’s algorithm: regarding
some actions as reading, this algorithm satisfies MUTEXkas already under the assumptioriadf-
ness of actionslt had long been an open problem how to achieve such a resalppiocess algebra [23].
The simpler semantics of PAFA% helpful for building tools. Indeed, we have already paeeme
MUTEX algorithms correct or incorrect with the aid of the amated verification tooFASE [3]. We
plan to continue this work by also considering the efficieaEMUTEX algorithms and other systems.

In this paper, we study PAFA&Nd PAFAS further with special attention to expressiveness. The first
issue is that PAFASmodels non-blocking reading in an intuitive way, while trecassary restrictions
in case of PAFASare not so obvious. In fact, the investigations for this pdymve disclosed that the
restrictions in[[9] still allowed processes with a contniuitive semantics. To rectify this subtle mistake,
we give an improved definition qifroper PAFAS; process& and we show how to translate each proper
procesQ into a PAFAS process whose timed behaviour is bisimilar and even isomotp that ofQ.
This shows at the same time that a proper process really hatu#tive behaviour and that PAFA$ at
least as expressive as the proper fragment of PAFAS

In this paper, we additionally show that safe Petri nets vattd-arcs as in[22] can be modelled with
proper PAFAG processes. It is still an open problem whether PAF&3nore expressive than PAF&S
we present a number of laws that are interesting in their dght end give a backward translation for
a fragment of PAFAS Constructing a general backward translation seems tolaedeto finding an
expansion law for PAFASprocesses, a law that is not even known for standard PAFA&pses.

We have also extended the correspondence between fair ardsting runs; thus, also in PAFAS

L uckily, the model of Dekker’s algorithm i [9] is also prapes defined here.

F. Corradini, M.R. Di Berardini & W. Vogler 33

and in PAFAS, we capture fairness with timed behaviour. To demonstraeektended expressiveness
of reading with a concrete example, we prove that no finégegirocess in standard PAFAS has the same
fair language aar b.nil (Theoreni 2.b).

The rest of the paper is organised as follows. Sectidns Z himtt@&luce PAFA$ and PAFAS
with their respective timed operational semantics and rmegult regarding>b. Section 4 provides
a mapping from PAFASto PAFAS and presents the result for Petri nets. The backward ttéorsles
discussed in Sectidd 5. Finally, Sectidn 6 presents someuwding remarks. Some proofs can be found
in the appendices.

2 A process algebra for describing read behaviours

In this section, we introduce PAFA&Nd give a first expressiveness result. PAFAS is a CCS-likegss
description language [16] (with ACSRIlike parallel composition[[1]), where actions are atomia a
instantaneous but have associated an upper time bouner(8itbr 1, for simplicity) interpreted as a
maximal time delay for their execution. As explained!in/[lthiese upper time bounds can be used for
evaluating the performance of asynchronous systems, bobdmfluencefunctionality (which actions
are performed); so compared to CCS, also PAFAS treats thiifdgtionality of asynchronous systems.
W.r.t. the original language, here we introduce the nead prefix> to represent non-blocking behaviour
of processes. Intuitively, the teron>P models a process like a variable or a more complex data steuct
that behaves aB but can additionally be read with: since being read does not change the state,
can be performed repeatedly until the execution of somenardiaction ofP, and it does not block a
synchronisation partner (a reading process) as descrided/b

We use the following notationA is an infinite set olisible actions An additional actiorr is used
to represent internal activity, which is unobservable fthreo components. We define, = AU {1}.
Elements ofA are denoted bg,b,c,... and those of\; by a,3,.... Actions inA; can let time 1 pass
before their execution, i.e. 1 is their maximal delay. Aftemt time, they becomergentactions written
aor T; these cannot be delayed. The set of urgent actions is debgté, = {alac A}U {1} and is
ranged over by, 3,.... Elements ofA; UA, are ranged over by. 2" (ranged over by,y,z ...) is the
set of process variables, used for recursive definitishs. A; — A; is ageneral relabelling function
if the set{a € A; |0 # @ (a) # {a}} is finite and®(1) = 1. Such a function can also be used to
definehiding: P/A, where the actions iA are made internal, is the sameRi®,|, where the relabelling
function @, is defined byba(a) =1if a € Aand®Pa(a) =a if o ¢ A

We assume that time elapses in a discretdgwi\hus, an action prefixed procea® can either do
actiona and become proces$3 (as usual in CCS) or can let one time step pass and beedmMmea is
calledurgent g anda.P cannot delaya, but as a stand-alone processn only doa to becomeP. In
the following, initial processes are just processes of mdstal process algebra extended witliseneral
processes include all processes reachable from the ioites according to the operational semantics to
be defined below.

The setd; of initial (timed) process terms endP of (general)timed) process terms {3 generated
by the following grammar:

2PAFAS is not time domain dependent, meaning that the chdidesorete or continuous time makes no difference for the
testing-based semantics of asynchronous systems, sefle{Mgre details.

34 Read Operators and their Expressiveness in Process Afgebra

P u= nil|x|a.P|acP|P+P|P|aP|P[®]|recxP
Q = P|aP|urQ|Q+Q|Q[aQ|Q[®]|recx.Q

wherenil is a constantxe 27, o € A, y € A;UA,, ®is a general relabelling function adC A
possibly infinite. We say that a variabtes 2" is guardedin Q if it only appears in the scope of some
u € Ay UA;. We assume that recursionggarded i.e. forrec x.Q variablex is guarded irQ. A process
term isclosedif every variablex is bound by the correspondingc x-operator; the set of closed timed
process terms itP and Py, simply calledprocessesndinitial processegesp., is denoted by andP;
resp.

We briefly describe the operators. Thiéprocess cannot perform any action, but may let time pass
without limit. A trailing nil will often be omitted, so e.ga.b + ¢ abbreviatesa.b.nil 4+ c.nil. u.Q is
(action-)prefixing known from CCS. Read-prefixed teransQ and a > Q behave likeQ except for the
(lazy and urgent, resp.) non-blocking actian In both casesr is always enabled until compone@t
evolves via some ordinary action; moreovarstays urgent even if it is performed; + Q> models
the choice between process@sandQ.. Q1 ||aQ:z is the parallel composition of two process@sand
Q> that run in parallel and have to synchronise on all actioomfA; this synchronisation discipline is
inspired fromTCSP Q[®] behaves a® but with the actions changed accordingdtorecx.Q models a
recursive definition. We often use equations to define re@imocesses, e.§.«< a.P+b; in contrast,
= stands for syntactically equal. Below we use the (syntpetict of a process that contains all visible
actions the process can ever perform.

Definition 2.1 (sor) For a general relabelling functioh letib(®) = {ac A|0 # ®~1(a) # {a}} (the
image base ofb); by definition of a general relabelling functioib(®) is finite. Thesortof Q € P is the
setZ(Q) = {a€ Afaoccurs inQ} Uy, occurs ing 10(P)-

The transitional semantics describing the functional bisha of PAFAS terms indicates which
actions they can perform. We need two different transitielations+ and~> to describe, resp., the
ordinary and the reading behaviour of PARABocesses. The functional behaviour is the union of these
two kinds of behaviour.

Definition 2.2 (functional operational semantjdset Q € P anda € A;. We say thaQ = Q' if O+ @/
or Q% Q, where the SOS-rules defining the transition relatighs (P x P) (the ordinary action
transitiong and-%C (IF’ X]?’) (theread action transitionsfor a € A, are given in Tables| 1 and 2, r&p.
As usual, we writeQ = Q' if (Q,Q) e andQ % if Q % Q' for someQ € IP; and analogously for
other types of transition relations.

Rule RREF, in Table[1 describes the behaviour of an action-prefixedgg®as usual in CCS. Note
that timing can be disregarded: when an action is perforraed,cannot see whether it was urgent or
not, and thusr.P % P; furthermore,a.P has to actvithin time 1, i.e. it can also act immediately, giving
a.P% P. Rule READ, says thatu > Q performs the same ordinary actions@gemoving the read-
prefix at the same time. Note that in rulem®,, an ordinary action transition can synchronise with both
an ordinary and aead actiontransition. The other rules are as expected. Symmetric théwe been
omitted.

SWe do here without functiondean andunmark, used e.g. in[7] to get a closer relationship between stdtestimed fair
runs and timed non-Zeno runs. They do not change the behgiipuo an injective bisimulation) and would complicate the
setting.

F. Corradini, M.R. Di Berardini & W. Vogler 35

pe{a,a} Q4 Q Q> Q
PREFoia READoia SUMO—G
UP=P u>Q= Q Q+Q—q
PARol a ¢ A7 Sl = Qj_ PAROA ac Aa Ql ’_>an1 Q2 — Q2
Q1/aQ2 = Q1[|aQ2 Q1[aQ2 = Q;]|aQ%
o=} Q{recx.Q/x} % Q'
RELg o) REC, .
Qo] =’ QD] recx.Q— Q

Table 1: Ordinary behaviour of PAFAProcesses

a ~y a
c{a,a > ~
READrl# READera—Q SuM, @ - it
H>Q~ ueQ u>Q -~ u>Q Qi+Q~ QI +Q
ad¢A Q% Q) acA Q% Q, Qb
PAR,1 ¢ Sl Q1 PAR, Ql an QZ Qz
Q1/aQ2 ~ Q}[|aQ2 Q1[aQ2 ~~ Q}[|aQ,
QL Q Q{recx.Q/x} + Q
REL, () REC o
Q@] ~ Q[P recx.Q~ Q

Table 2: Reading Behaviour of PAFABrocesses

Most of the rules in Tablel2 say that the execution of readitgpas does not change the state of a
term Q. Rule READ,; is crucial to manage arbitrarily nested reading actionsitregt it with READ,.
Due to technical reasons, ruleeB: allows unfolding of recursive terms; thus e.gc x. arb.x 2 apv
b.(recx.a>h.x). Notice that this leads to a timed bisimilar process, cftiSad.

To give SOS-rules for the time steps of process terms, weadEm@artial)time-stepdike Q ir Q
where the seX C A (called arefusal seXconsists of non-urgent actions. Her@@és justified in delaying,
i.e. refusing them@) can take part in a real time step only if it has to synchronisé&surgent actions,
and these are delayed by the environmenX # A thenQ is fully justified in performing this full unit-

time step; i.e.Q can perform it independently of the environmelefﬁr Q, we writeQ 1 Q'; we say
thatQ performs al-step

Definition 2.3 (refusal transitional semantjcShe inference rules in Tablé 3 defide, C P x P where
X C A. A refusal trace of a tern® € P records from aun of Q which visible actions are performed

(Q 24 Q,ac A) and which action® refuses to perform when time elapsé}@r Q,XCA)ie. a
refusal trace of) is the sequence of actions frafnand refusal set§ A occurring in a finite transition
sequence fronQ (abstracting front-transitions).

Rule RRER, says thatr.P can let time pass and refuse to perform any action while reler says
thata.P can let time pass in an appropriate context, but cannotedahesactionor. Procesg.P cannot
let time pass at all since, in any contextP has to perfornt before time can pass further. Rulem®R
defines which actions a parallel composition can refusenduitime-stepQ; || aQ2 can refuse the action
a if either o ¢ Aanda can be refused by boQ; andQ, or a € A and at least one d; andQ can

36 Read Operators and their Expressiveness in Process Afgebra

a¢Xu{t}
NILf ———— PRER; —— ——— PRERp —
nil =y nil a.P>,a.P a.P=, a.P
Q% Q% @, agXu{r)
READ{1 X READ;2 X
avQ=rarQ arQ=rarQ
-1
Q %+ Qjfori=1,2 Q T IME, o
SuM¢ x RELt "
Q1+ Q2 = Q/1+ Q/z Q[(D] —rr Q/[(D]
R Qfrecx.Q/x} Lr Q b Qi ﬁn Qi’ fori=12XC (AN(XUX2))U((X1NX2)\A)
EG ARt
recx.Q X5 @ QullaQ2 X5 Q1llaQ,

Table 3: Refusal transitional semantics of PAFABcesses

delay it, forcing the othe®; to wait. Thus, an action is urgent (cannot be further delagety when all
synchronising ‘local’ actions are urgent. The other rulesas expected.

Example 2.4 As an example for the definitions given so far, consideamay with two Boolean values

t and f and define its behaviour & = R ||aQr WhereR, < ry > (ri >wh.Pr) +res > (ridswh.Pr), Qf <=

ree > (r7oW2.Qp) +ree> (r2ow2.Q) andA = {rjj |i,j € {t,f}}. Actionsrj, wherei, j € {t, f}, allow
reading both entries at the same time, wmheandw‘j(represent, resp., the reading and the writing of

1
the valuej € {t, f} for the entryk € {1,2}. By rules READ;; and READ;2, Byt) Bt and B+ NN Bi s
describing non-blocking readin& offers a choice betwean; andry, where synchronisation disallows
the latter. Performingv} after a 1-step does not change the second componelr?t,isetill urgent; this

shows thalw} does not block%. With just one type of action transitiof would lose the prefix;>
when performingr. Only the execution of an ordinary action can change the sththe array, e.g.

Wl
Bif — Bt = Py [|aQs by Rule READ,,.

In [11], it is shown that inclusion of refusal traces chagaises an efficiency preorder which is intuitively
justified by a testing scenario. In this sense, &g arb is faster than the functionally equivalent
Q= recx. (ax+Db), since only the latter has the refusal tracagla)*: after 1a, Q returns to itself, since
recursion unfolding creates freglandb; intuitively, b is disabled during the occurrence afsoa and
alsob can be delayed again. In contrast, after a time step and anpenofas, P turns intoarb and no
further 1-step is possible. Since read actions do not blodelay other activities, they make processes
faster and, hence, have an impact on timed behaviour ofragstéf a models the reading of a value
stored byP or Q and two parallel processes want to read it, this should takeoat time 1 in a setting
with non-blocking reads. And indeed, where@#;,, (alpa) has the refusal traceala, this behaviour
is not possible foP ||, (a[oa). Thus,P offers afasterservice.

Another application of refusal traces is the modellingvaiak fairness of actiondVeak fairness re-
quires that an action must be performed whenever contimypeuagabled in a run. Thus, a run frofwith
infinitely manya’s is not fair; the read action does not bldekr change the state, so the samis always
enabled but never performed. In contrasQiperformsa, a freshb is created; in conformance to [12],
a run with infinitely manya’s is fair. In [10], generalising 7], fair traces for PAFAand PAFAS) are
first defined in an intuitive, but very complex fashion in tiperi$ of [12] and then characterised: they are

F. Corradini, M.R. Di Berardini & W. Vogler 37

the sequences of visible actions occurring in transitiaqueaces with infinitely many l-st@)sDue to
lack of space, we cannot properly formulate this as a thepbeirtake it as a (time-basedgfinition of
fair tracesinstead;FairL(R) is the set of fair traces d®. With this, infinitely manya’s are a fair trace of
Q since it can repeatalindefinitely, but the fair traces of finite-stakReare those that end with. This
shows an added expressivity of read prefixes:

Theorem 25 IfR € P is a finite-state process without read-prefixes and with $6(R) = {a, b}, then
FairL(R) # {@'b|i > 0} = FairL(arb).

We can view fairness as imposing a kind of priority fmin P since, in contrast t@, it must be
executed in a fair trace. This is of course very differentrfrihie usual treatment of priorities| [6], since
a can be prefered tb for a number of times. The following example shows that rezitbas can model
more than two levels of priority.

Example 2.6 In P = a> ((rec x.b.x) [{n b>c), there are three levels of priority: in a fair trace we can
perform arbitrarily many’s while bothb andc remain enabled and have priority — so far, we can have
at most one 1-step. b occurs, the actioa disappears but we can perform arbitrarily mdrg/while ¢
remains enabled and has priority — with, still, at most orstep. Formally, with a 1-steP evolves into

P =av (b.(recx.bX) |[;py b>c). P can perform am to itself, ac (and becomé. (rec x.b.x) ||y nil), or
repeated’s to ((recx.b.x) [|;py b>c; no further 1-steps are possible due to the urgeab in a fair trace,
finally cis performed td(recx.b.x) (b nil) — where infinitely many 1-steps are possible.

3 Aread operator with a simpler semantics

The special reading transitions of PAFA&e needed to properly derive eRj= arbr>Q LAPYS b Q.
To get a simpler semantics, the idea is to collect all enatdading actions of a ‘sequential component’
in a set and write e.d? as{a,b}>c. Thus, we define a new kind of read operafps, ..., U} >Q
with a slightly different syntax. In this way we try to avoidrins with nested reading actions and, as a
consequence, we can describe the behaviour of the new RAFFA&sses by means of a simpler timed
operational semantics with just one type of action trams#ti A price to pay is that not all PAFA$ro-
cesses have a reasonable semantics; but the subset witoaabke semantics is practically expressive
enough (e.g. for expressing MUTEX solutions adequately) tdithesetof reading actions, cfl_[9].

The sets; of initial (timed) process terms BndS of (general)(timed) process terms {9 generated
by the following grammar:

P nil | x| a.P|{a1,...,an}>P | P+P|P|aP | P[®] | recx.P
Q = P[a.P|[{m, ..i}>Q[Q+Q[Q[aQ|Q[®] | recxQ

wherenil is a constantx € 27, a € A, {01,...,an} C A; finite, {1,...,Un} is a finite subset of
Ar UA, that cannot contain two copies (one lazy and the other onentir@f the same actioa, i.e.
[{a,a} N {p,...,un}| <1 for anya € A;. Again, @ is a general relabelling function amdiC A
possibly infinite. Also in this section, recursion is guatd@he sets of closed timed process termS in
andS;, simply calledprocessesindinitial processesesp., arés andS; resp.

40Observe thaf[9] just contains the application presentd@idh PAFAS is not treated there at all.

38 Read Operators and their Expressiveness in Process Afgebra

Definition 3.1 (functional operational semantjcghe SOS-rules defining the transition relatiofsC
(S x S) (theaction transition} are those in Tablefwhere we replace the ruleER D, with:

pi € {a,a} Q5 Q
READg READg

{“17---aﬂn}>Qi> {Hla---vlln}DQ {u17---aﬂn}>Qi> Ql

Definition 3.2 (refusal transitional semantjc§he inference rules defining the transition relatféng
S x S whereX C A are those in Tablel 3 where we replace the rulead®; and READy, with:

QX @, ([, N(XU{TY) =0

READ; ~
{Hla---vUn}DQ_*r {Hla---vUn}DQ/

where % ({1, ..., Un}) = {a | = a for somei € [1,n]} and {u,...,Un} is the set obtained from
{H1,...,Un} by replacing eaclr by a.

AtermQeSis read-guardedf every subterm of) of the form{ s, ..., un} > Q' is in the scope of some
action prefixu.(). Q € S is read-properif each subtern®; + Q, is read-guarded and, for each subterm
{Ha,...,U}>Q1, Q1 is read-guarded. We say th@tis x-properif any freex is guarded in any subterm
Q1+ Q2 {1, -, Un}>Q1 andrecy.Qs. Q is rec-properif for any subternrecx.Q;, Qs is either read-
guarded ox-proper. A termQ is properif it is read- and rec-proper. Below, we will prove that prope
terms have a reasonable semantics by relating them to PAB#&Sesses with the same behaviour. An
important feature of properness is that processes witleaa-prefixes are proper.

According to the definitions given so far, neither= {a} > {b}>Q nor P = {a}> Q' + {b} >Q
are read-proper because {4} > Q. An essential idea of reading is that it does not change tite st
of a process and therefore does not block other actions. Wihwe should hav® £> P, but really

we haveP 2 {b}>Q. Similarly, we haveP’ LN {b}>Q instead ofP’ 5 P’ Hence, we exclude such
processes. There is also a problem with the tBrm recx.{a} >b.(c+x). Indeed,P can perform &
and evolve tac+ rec x.{a} >b.(c+ x) which is not read-proper. Since the body of this recursiomois
read-guardedx has to be treated as a read-prefix term, i.e. the body hasx@imper. A subtle detail is
the consideration of recursive subterms in the definitior-pfoper. Without this detailQ = recx.{a} >

b.recy.(c.(c+Y) [0 X) would be proper. BuQ > recy.(c.(c+Y) [l Q) = (c+recy.(c.(c+Y) [[0Q)) [0 Q.
Notice thatrecy.(c.(C+Y) |0 Q), and hence&+ recy.(c.(c+Y) [0 Q), is not read-proper.

In contrast to the restriction to proper terms, we can fresly read-prefixes in PAFASsee e.g. the
process in Example_2.4; this would have theng semanticin PAFAS;, i.e. if we changesj > and
r'j‘p (fori,j e {t, f} andk € {1,2}) into {rj; }» and{r'j‘}p. The restriction only makes sense because of
Prop[3.8, which requires a careful, detailed proof.

Proposition 3.3 Let Q< S be proper. Q% Q or Q L Q' implies Q proper.

Actually, the result in[[10] is not correct since we used aufficient restriction there. But, luckily the
PAFAS; process we used to model Dekker's MUTEX algorithm is propdmis can been easily seen
since proper processes are closed w.r.t. parallel conmosihd relabelling.

5To be formally precise: we have to replace all arrewsn Table[d by—.

F. Corradini, M.R. Di Berardini & W. Vogler 39

4 Expressivity of PAFAS

In this section we compare the expressivity of PAEAh that of PAFAS and Petri nets. A first result
shows that for each prop€) € S there is a term irl? whose behaviour is (timed) bisimilar and even
isomorphic to that of).

Definition 4.1 (timed bisimulatioi A binary relation. C IP x IP over processes istamed bisimulation
if (Q,R) €. implies, for alla € A; and allX C A:

- wheneverQ % @ (Q% @, Q 5, Q) then, for someR, RS R (R R, RS, R, resp.) and
(Q.R) e~

- wheneveR % R (RS R, R %, R) then, for some, Q% Q@ Q% @, Q 2, Q, resp.) and
(Q,R)es

Two processef,R e P are timed bisimilar §isimilar for short, writtenQ ~ R) if (Q,R) € . for some
timed bisimulation’. This definition is extended to open terms as usual; two openg are bisimilar
if they are so for all closed substitutions. It can be proved standard fashion that timed bisimilarity
is acongruencew.r.t. all PAFAS operators. The same definition, but omitting the readingsit®ns,
applies to PAFAS

We start by providing a translation functidin]), that maps terms i into corresponding terms iB; to
regard[_||; as a function in the read-case, we have to assume that aatietstally ordered, and that the
actions of a read-set are listed according to this order.

Definition 4.2 (a translation functionFor Q € S proper,[Q]; is defined by induction o (subterms of
Q are also proper) as follows :

Nil, Var, Pref: [nil]}, = nil, X]r = %, [u-P]y = u.[P]
Read: [{H1,.. . b} > Qllr = pa>...> e [Q]

Sum: [Q1+Qzfy = [Qu]r + [[Qz]]

Par: [Qu[la Q2] = [Qu]lr [|a [Q2]lr

Rel: [Q[®]]r = [Q][®]

Rec: [recx.Qf; = recx.[[Q]]r

This translation is pretty obvious, but its correctnessds observe that Theorem 4.3 does not hold
for all PAFAS; processes; cf. the procesdes: {a} > {b}>Q andP’ = {a}>Q + {b}>Q at the end

of Section 8. Functior[]|, is injective on proper terms; except for the read-case,ishéasy sincd]]|,
preserves all other operators. In the read-c@ses,read-guarded, i.e. the top-operator@and[QJ; is
not>; the read-set can be read off froffius, ..., un} > QJlr as the maximal sequence wirefixes the
term starts with. With this observation, the following ritstogether with Profd.313, shows thgf is an
isomorphism between labelled transition systems, if weiotshem, on the one hand, to proper terms
and their transitions and, on the other, to the images ofgrrt|yms and the transitions of these images.

Theorem 4.3 For all properQ € S:
1. Q% Q Q5 Q) implies[Qr % [QTr (IQLr = [QT. resp.);
2. if [Q) & Q" ([Qlr Q) thenQ % @ (Q 5 Q) with [Q]; = Q"

40 Read Operators and their Expressiveness in Process Afgebra

The above theorem shows that the expressivity of proper BApcesses is at most that of PARAS
On the other hand, it is enough to model safe Petri nets wéitt-eecs. To illustrate the proof idea, which
is based on a well-known view of a net as a parallel compasittonsider an empty place of a net with
preset{t;,t;} and postse{ts,ts}, and being read bis andts. This is translated into proce$s with
Po<t1.PL+t.P and Py < {ts,t6} > (t3.Po + t4.F); PL models the marked place. All the analogous
translations of places are composed in parallel, synchirmnieach time over all common actions (e.g.
net transitions). Finally, a relabelling correspondinghe labelling of the net is applied.

Theorem 4.4 For each safe Petri nets with read-arcs in [22] there is a tvidar proper PAFASprocess.

5 The backward translation from PAFAS, to PAFASs

In this section we study the problem whether PAFAsSmore expressive than PAFASr whether each
PAFAS term can be translated into a bisimilar proper PAE£Sm. We first exhibit a subset $fthat is
essentially the image df]], and so has an easy translation; we say these terms ssadmormal form
(RNF) (see Def[511). We then discuss how PAFA&mMSs can be brought into RNF and illustrate, by
means of examples, the problems of such a normalisation.

Definition 5.1 (read normal formFor PAFAS terms, we define read-guarded, andand rec-proper
as above except for considering read-action prefixes idstéacad-set prefixes. We call such a term
ra-properif each subtern@; + Q; is read-guarded, and for each subtgrmQ’ eitherQ is read-guarded
orQ =vr>Q". Aterm isRNFIif it is rec- and ra-proper. The sets of terms and process&ir are
denoted by?,, andPy,, resp.

Below we provide the function that translates e@rh Py into a proper term ir$. We will need an
additional function to deal with read prefixes. A term sucliasQ is in RNF if eitherQ is read-guarded
or, by iterative applications of Ddf. 85.@Q has the formuy - - - > pp > Qn whereQ, € Py is read-guarded.
In the latter case, the actions,-- - , U, must be collected in a read set. Since read sets cannot contai
multiple copies (lazy and urgent) of the same actigrwe use the following notation: ifiy,--- , U, are
generic actions il\; UA., [H1,---,Hn] denotes the set of actioqs1,---,vm} such that:3i € [1,m]
with v = a iff 3j € [1,n] with y; = a; (2) Ji € [1,m] with v; = a iff 3] € [1,n] such thafy; = a and,
for eachk € [1,n], i # Q.

Definition 5.2 (a translation function frori?,, to S) For Q € Py, we define the process teff@]s € S
by induction onQ as in Definitio{ 4.2 except for:

Read:[[p1>Qlls = [[H1, -+, Un] > [Qnlls
if Q= u>---> Uy > Qn andQy is read-guarded

With the laws L1 and L2 below, we can rearrange successivdaeton prefixes in a process in RNF
such that the result is in the image|df, which essentially proves the second item of following hesu

Theorem 5.3 For allQ € Pyp;
1. Q% QorQ%, Qimply @ € Pry;
2. Qand[Q]s are timed bisimilar (in the sense of PAFAS

F. Corradini, M.R. Di Berardini & W. Vogler 41

Translating terms into read normal form

For translating a term that it in read normal form, one idea i§ to use laws to rewrite the faetma
bisimilar one in RNF. E.g. althougfarb) + ¢ does not belong t&r,, it has the same timed behaviour
asar (b+c) € Py, cf. L3.

o} denotes the relabelling function that renarade a, and all other actions ab. For the discussion,
we also write[a — a] as a shorthand fob, {a — a} where®, is the identity relabelling function. The

1] a5 (voQ) ~ Vo (15 Q)
L2 | o> (upQ) ~ urQ, ar(u>Q) ~ arQ provided thafu € {a,a}
L3 | (u>Q)+R~pu>(Q+R)

L4 | a>(Q1 [la Q2) ~ ((a>Q1) [aufay (@>Q2)),

ar(Qu[la Q2) ~ (@~ Q1) [[au(a) (@>Q2)) provided that ¢ .£(Q)
L5 | (a>Q)[®] ~ ®(a)>(Q[®]), (a>Q)[®] ~ ®(a)r(Q[®])

L6 | (Q[@])[W] ~Q[Wo]

L7 | recx.Q ~ Q{recx.Q/x}

Figure 1: A set of laws

idea of the translation into RNF is to perform rewriting bgirction on the term size; since action-prefix,
parallel composition and relabelling preserve RNF, thgggators are no problem. Read-prefixasQ

can be dealt with distributingt amongQ's components. But choice and recursion pose still unsolved
problems.

Regarding read prefixes, we have to show the stronger clainfidheachQ in RNF we can normalise
u>Q in such a way that, for any variablg y guarded inQ implies y guarded in the RNF, and if
additionally Q is y-proper this is also preserved. The proof is by inductiorQprsome cases are easy
becauseu > Q is in RNF itself (by the definition of RNF or by induction). Wermsider one of the
three remaining cases, namely the Par-case. The Rel-cassi&, while the Rec-case is much more
complicated. Their proofs can be found in the appendix. Fogsh actiora we have:

a>(QuflaQz) ~ (a> (QullaQ2))[a— a] ~ ((a>Qu) [|auta; (2> Q2))[a — a]

by L4, and then we are done by induction. The case af asad-prefix is similar.

The case of choice is particularly tricky whenever one oftthe alternatives is a parallel composi-
tion. Hence, we now concentrate on the following probléehQ, R= R; | a Rz be terms in RNF; is there
an S in RNF such thatS Q+ R?

First, observe that we can rewri@into Q by replacing all actions (also in relabellings) by fresh
copies, such thaf) andR have disjoint sorts. Then, we can try to bri@j+ R into RNF and finally
apply a relabelling that ‘undoes’ the rewrite (cf. the lasimple above). This would give us a bisimilar
term in RNF forQ+ R. From now on we assume th@tandR have disjoint sorts.

If Q is deterministic(i.e. it never performs and never performs an action in two different ways), we
have the lawQ + (Ry [|a Rz) ~ (Q+Ry) |[au.#(q) (Q+ Re). Thus, to findSwe now simply normalise the
two components inductively. In general, this law fails: @ a.b+a.c, Q+ Revolves witha into either
borc. But(Q+Ry) [laufapc (Q+Re) can performa and evolve into the deadlockdm|ayap,c C-

A new idea that will work in many cases is to replace the seammy of Q by its ‘top-part’ that can
perform the same time steps and the same initial actiord, &sit deadlocks after an ordinary action;

42 Read Operators and their Expressiveness in Process Afgebra

additionally, not all of #(Q) but only the initial actions are added to the synchronisatiet: in our
example,((ab+a.c) +Ry) [[aufay (@+ Re) is bisimilar toQ+ Rand could, in principle, be normalised
inductively. This idea must be adapted in case of read prefig@nsideQ = arb.c; here, the top-part
is ac-b, i.e. Q+Ris bisimilar to (arb.c+Ry) [[aufapy (@>b+Rp) (in particular, both terms remain
unchanged when performirg). Another problem is that initial actions may also be pearfed later,
e.g. inQ = ar b.a; again, rewriting plus later relabelling helps. In the exdanQ + R is bisimilar to
((e>b.c+Ry) [[auten (€>b+Rz))[e — a], and the termer>b.c+ R, ande>b+ R, are again smaller
thanQ+ R.

But what is the top-part foQ = a ||p b? Actiona can be performed initially, but also aftbr If we
could transfornQ into a.b+ b.a, the top-part would ba+ b, and using rewriting plus later relabelling
solves the problem. But unfortunatey~ a.b+ b.a is wrong: when performingd, these terms end up
in nil ||p b andb resp., which are not timed bisimilar due to partial time sfbp.

Finding the top-part of parallel compositions seems to k&ead to finding a suitable expansion law.
But even for standard PAFAS, such a law is not known. Thusgeuaeral proof idea does not work so
far, due to problems with choice terms. Also the treatmemécdirsion is not clear yet; an expansion law
would certainly help. At least, we have identified a fragmaPAFAS which does not have additional
expressivity.

Theorem 5.4 If all choice and recursive subterms of a PAFA®cess are in RNF then there is a bisim-
ilar PAFAS; process.

6 Conclusions and Future Work

We have studied two different ways to enhance PAFAS with Inlocking reading actions. We have first
added reading in the form of a read-action prefix operatompameed that this adds expressivity w.r.t. fair
behaviour. This operator is very flexible, but has a sliglthynplex semantics. To reduce complexity,
we have introduced a read-set prefix operator with a simglerastics, but with syntactic restrictions.
For the second operator, it is not immediately clear wheitiseoperational semantics models reading
behaviour adequately. We could prove this by translatirmgp@r PAFAS terms into PAFA$terms with
the same timed behaviour. We also show that PAFSStrong enough to model Petri nets with read-arcs.
It is still not clear whether PAFASIs more expressive than the restricted PAEA®/e presented
some ideas how a respective translation could work; thesbased on some algebraic laws that are also
interesting in their own right. In the future we will try to mmplete this translation. This is related to
finding an expansion law for generic PAFA@GNd PAFAS) terms. Such an expansion law should also
provide us with an axiomatisation for the full PAFAS langaa@ome results can be foundlin[21] where
a fragment of the language that just consists of prefix antteltas been axiomatised.
We plan to use read prefixes for modelling systems and congp#reir efficiency or proving them
correct under the progress assumption. A first correctness (for Dekker's MUTEX algorithm) with
the aid of the automated verification tool FASE has been ptedéen [9].

References

[1] S. D. Brookes, C. A. R. Hoare, A. W. Roscoe. A Theory of Conmigating Sequential Processdsurnal of
the ACM31, pp. 560-599, 1984, daio.1145/828.833.

[2] P. Bouyer, S. Haddad, P.A. Reynier. Timed Petri Nets ainte@l Automata: On the Discriminating Power of
Zeno Sequencesnformation and ComputatioB06(1) 2008, doi10.1016/j.1ic.2007.10.004.

http://dx.doi.org/10.1145/828.833
http://dx.doi.org/10.1016/j.ic.2007.10.004

F. Corradini, M.R. Di Berardini & W. Vogler 43

[3] F. Buti, M. Callisto De Donato, F. Corradini, M.R. Di Bedini and W. Vogler. Automated Analysis of
MUTEX Algorithms with FASE. Proc. of GandALF 2011, ddi0.4204/EPTCS.54 .4,

[4] D. Cacciagrano, F. Corradini, J. Aranda and F.D. Valantinearity, Persistence and Testing Semantics in the
Asynchronous Pi-Calculus. Proc. of EXPRESS'07, ENTCS 294(p. 59-84, doi:0.1016/j.entcs.2007.
11.006.

[5] S. Christensen, N. D. Hansen. Coloured Petri nets extgmdth place capacities, test arcs, and inhibitor arcs.
In Applications of Theory of Petri Nets, LNCS 691, pp. 186520993, doi10.1.1.32.7925.

[6] R. Cleaveland, G. Littgen, V. Natarajan. Priority iropess algebra. In J.A. Bergstra, A. Ponse, and S.A.
Smolka, editors, Handbook of Process Algebra, pages 7BL-El€evier Science Publishers, 2001.

[7] F. Corradini, M.R. Di Berardini and W. Vogler. FairnedsAztions in System Computationécta Informatica
43, pp. 73 130, 2006, dai0 . 1007/s00236-006-0011-2.

[8] F. Corradini, M.R. Di Berardini, and W. Vogler. CheckirggMutex Algorithm in a Process Algebra with
Fairness. Proc. of CONCUR '06, pp. 142—-157, LNCS 4137, 2606610.1007/11817949_10.

[9] F. Corradini, M.R. Di Berardini and W. Vogler. Time andiffeess in a Process Algebra with Non-blocking
Reading. Proc. of SOFSEM’'09, LNCS 5404, pp. 193-204 1d0it007/978-3-540-95891-8_20.

[10] F. Corradini, M.R. Di Berardini and W. Vogler. Time andhifness in a Process Algebra with Non-
blocking Reading. TR available aiww.informatik.uni-augsburg.de/en/chairs/swt/ti/staff/
walter/publications

[11] F. Corradini, W. Vogler, and L. Jenner. Comparing ther§tCase Efficiency of Asynchronous Systems with
PAFAS. Acta Informatica38, pp. 735-792, 2002, ddi0.1007/s00236-002-0094-3.

[12] G. Costa, C. Stirling. Weak and Strong Fairness in CGformation and Computatioi3, pp. 207-244,
1987, d0i10.1016/0890-5401(87)90013-7.

[13] G. Costa, C. Stirling. A Fair Calculus of CommunicatigstemsActa Informatica2l, pp. 417-441, 1984,
doi:10.1007/BF00271640.

[14] F. Crazzolara, G. Winskel. Events in security protecoProc. of 8th ACM conference on Computer and
Communication Security, CCS’01, pp. 96-105, 2001,1dni1145/501983.501998.

[15] C.A.R. HoareCommunicating Sequential Procesderentice Hall, 1985.

[16] R. Milner. Communication and Concurrencynternational series in computer science, Prentice Hiadir}
national, 1989.

[17] U. Montanari, F. Rossi. Contextual net.Acta Informatica32, pp. 545-596, 1995, ddio.1007/
s002360050026.

[18] U. Montanari, F. Rossi. Contextual occurrence netsamdturrent constraints programming. Proc. of Graph
Transformation in Computer Science, LNCS 776, pp. 280—2994, doi10.1007/3-540-57787-4_18.

[19] M. Raynal.Algorithms for Mutual ExclusionNorth Oxford Academic, 1986.

[20] G. Ristori. Modelling Systems with Shared ResourcesRetri Nets. PhD thesis, Department of Computer
Science, University of Pisa, 1994.

[21] W. Vogler, L. Jenner. Axiomatizing a Fragment of PAFAEIlectronic Notes in Theoretical Computer
Science, 39(3) pp. 306-321, 2000, d0i:1016/S1571-0661 (05) 01225-9.

[22] W. Vogler. Efficiency of Asynchronous Systems, Readsfand the MUTEX-problenilheoretical Computer
Science75(1-2) pp. 589-631, 2002, ddi0 . 1016/50304-3975(01) 00300-0.

[23] D.J. Walker. Automated Analysis of Mutual Exclusiogatithms using CCSFormal Aspects of Computing
1, pp. 273-292, 1989, ddi0 . 1007/BF01887209.

http://dx.doi.org/10.4204/EPTCS.54.4
http://dx.doi.org/10.1016/j.entcs.2007.11.006
http://dx.doi.org/10.1016/j.entcs.2007.11.006
http://dx.doi.org/10.1.1.32.7925
http://dx.doi.org/10.1007/s00236-006-0011-2
http://dx.doi.org/10.1007/11817949_10
http://dx.doi.org/10.1007/978-3-540-95891-8_20
www.informatik.uni-augsburg.de/en/chairs/swt/ti/staff/walter/publications
www.informatik.uni-augsburg.de/en/chairs/swt/ti/staff/walter/publications
http://dx.doi.org/10.1007/s00236-002-0094-3
http://dx.doi.org/10.1016/0890-5401(87)90013-7
http://dx.doi.org/10.1007/BF00271640
http://dx.doi.org/10.1145/501983.501998
http://dx.doi.org/10.1007/s002360050026
http://dx.doi.org/10.1007/s002360050026
http://dx.doi.org/10.1007/3-540-57787-4_18
http://dx.doi.org/10.1016/S1571-0661(05)01225-9
http://dx.doi.org/10.1016/S0304-3975(01)00300-0
http://dx.doi.org/10.1007/BF01887209

	1 Introduction
	2 A process algebra for describing read behaviours
	3 A read operator with a simpler semantics
	4 Expressivity of PAFASs
	5 The backward translation from PAFASr to PAFASs
	6 Conclusions and Future Work

