
J. Pang, Y. Liu, and S. Mauw (Eds.): 4th International Workshop
on Engineering Safety and Security Systems 2015 (ESSS’15)
EPTCS 184, 2015, pp. 65–79, doi:10.4204/EPTCS.184.5

c© Linna Pang et al.
This work is licensed under the Creative Commons
Attribution-Noncommercial-No Derivative Works License.

Formal Verification of Real-Time Function Blocks Using PVS

Linna Pang, Chen-Wei Wang, Mark Lawford, Alan Wassyng
McMaster Centre for Software Certification, McMaster University, Canada L8S 4K1

{pangl,wangcw,lawford,wassyng}@mcmaster.ca

Josh Newell, Vera Chow, and David Tremaine
Systemware Innovation Corporation, Toronto, Canada M4P 1E4

{jnewell,vchow,tremaine}@swi.com

A critical step towards certifying safety-critical systems is to check their conformance to hard real-
time requirements. A promising way to achieve this is by building the systems from pre-verified
components and verifying their correctness in a compositional manner. We previously reported a
formal approach to verifying function blocks (FBs) using tabular expressions and the PVS proof as-
sistant. By applying our approach to the IEC 61131-3 standard of Programmable Logic Controllers
(PLCs), we constructed a repository of precise specification and reusable (proven) theorems of fea-
sibility and correctness for FBs. However, we previously did not apply our approach to verify FBs
against timing requirements, since IEC 61131-3 does not define composite FBs built from timers.
In this paper, based on our experience in the nuclear domain, we conduct two realistic case studies,
consisting of the software requirements and the proposed FB implementations for two subsystems
of an industrial control system. The implementations are built from IEC 61131-3 FBs, including the
on-delay timer. We find issues during the verification process and suggest solutions.

1 Introduction

Many industrial safety-critical software control systems are based upon Programmable Logic Controllers
(PLCs). Function blocks (FBs) are reusable components for implementing the behaviour of PLCs in a
hierarchical way. In one of its supplements, the aviation standard DO-178C [1] advocates the use of
formal methods to construct, develop, and reason about mathematical models of system behaviours.
Applying the principles of DO-178C to PLC-based systems, we may obtain high-quality PLCs by: 1)
pre-verifying standard FBs using formal methods; 2) building systems from pre-verified components;
and 3) verifying their correctness in a compositional manner.

We recently reported a formal methodology [10] for specifying requirements for FBs, and for verify-
ing the correctness of their implementations expressed in, e.g., function block diagrams (FBDs). In our
approach, we use tabular expressions (a.k.a. function tables) [12] for specification and the PVS proof
assistant [9] for formal verification. Tabular expressions are a way to document system requirements
as black-box, input-output relations that has proven to be practical and effective in industry [14]. PVS
provides an integrated environment with mechanized support for writing specifications using tabular ex-
pressions and (higher-order) predicates, and for (interactively) proving that implementations satisfy the
tabular requirements using sequent-style deductions. We successfully applied our approach to the FB
library of IEC 61131-3 [6, Annex F], an industrial standard for PLCs, resulting in a repository of: 1) pre-
cise specifications of input-output requirements; and 2) reusable theorems of feasibility and correctness
for the FB library.

A critical step towards certifying safety-critical systems is to check their conformance to hard real-
time requirements. An implementable timing requirement must specify tolerances to account for various

http://dx.doi.org/10.4204/EPTCS.184.5
http://creativecommons.org
http://creativecommons.org/licenses/by-nc-nd/3.0/

66 Formal Verification of Real-Time Function Blocks Using PVS

factors — e.g., sampling rates, computation time, and latency — that will delay the software controller’s
response to its operating environment. A common type of functional timing requirements specifies that
a monitored condition C must sustain over a time duration, say timeout, with tolerances −δL and +δR,
before being detected by the controller. Such sustained timing requirements may be formalized using an
infix Held For operator [15]. For example, we write

((signal≥ setpoint) Held For (300, −50, +50))⇒ (c var = trip) (1)

to specify that a sensor signal going out of its safety range should cause a “trip” if it sustains for longer
than 350 ms, and should not if it lasts for less than 250 ms (to filter out the effect of a noisy signal).

The requirement specified in Eq. 1 is non-deterministic since it allows any implementation that trips
when signal ≥ setpoint sustains between [250ms, 350ms]. As we will see in our two case studies, such
a simple requirement can be used as part of specifying more complex real-time behaviour. To resolve
such non-determinism, at the requirements level we adopt a deterministic operator Held For I [4, p. 86],
which becomes true at the first sampling point after the monitored condition has been enabled for d−δL
time units. For example, by substituting the expression ((signal≥ setpoint) Held For I (300−50)) into
Eq. 1, we specify that the triggering condition sustaining for longer than 250 ms should cause a “trip”.
Similarly, at the implementation level we adopt the Timer I operator [4, p. 98] for counting the elapsed
time of some monitored condition. The relationship between these two operators, at levels of require-
ments and implementation, is proved as a theorem TimerGeneral I [4, p. 99]: (C Held For I (timeout−
δL)) is equivalent to (Timer I (C)≥ timeout−δL). See also Sec. 2.

We previously did not apply our approach [10] to verify FBs against this type of more complex timing
requirements because IEC 61131-3 only includes simple timer blocks (i.e, on-delay, off-delay, and pulse
timers), but not any more complex FBs built from those timers. Furthermore, our requirements model
for IEC 61131-3 timers [10] describes idealized behaviour: as the monitored condition becomes enabled,
the timer instantaneously responds (i.e., starts counting the duration of enablement), not considering
sampling, computational delays, and timing tolerances.

Based on our experience on the Darlington Nuclear Shutdown Systems Trip Computer Software Re-
design Project [14], and motivated by anticipated FB based projects, we address the above issues by
conducting realistic case studies. Each case study consists of the software requirements and FBD imple-
mentation for a subsystem of an industrial control system. Implementations are built from IEC 61131-3
FBs, including the on-delay timer to implement more complex real-time behaviour.

Fig. 1 summarizes our verification process and contributions. To incorporate the notion of tolerances,
we reuse the timing operators Held For I (to formalize requirements) and Timer I (to formalize imple-
mentations) from [4]. The verification goal is that the proposed FBD implementations, included in the
Software Design Description (SDD), are: (a) consistent, or feasible, meaning that an output can always
be produced on valid inputs; and (b) correct with respect to the timing requirements specified using
Held For I, included in the Software Requirements Specification (SRS). This work builds on our previ-
ous results of verifying IEC 61131-3 FBs [10] that provide a sound semantic foundation for formalizing
and verifying PLC programs expressed using FBDs.

There are four contributions of this paper. First, to incorporate tolerances, we use the Timer I oper-
ator to re-formalize all three IEC 61131-3 timer (Sec. 3). Second, for the representative subsystems we
study (one with a feedback loop presented in Sec. 4 and the other in Sec. 5), we use the re-formalized
IEC 61131 timers for their proposed FBD implementations, and prove that they are feasible and sat-
isfy the intended timing requirements in SRS. Third, we find issues of initialization failure (Sec. 4) and
missing implementation assumptions (Sec. 5), and suggest possible solutions. Fourth, we identify pat-

Linna Pang et al. 67

Pre-developed
Held_For Theory

Held_For_I

TimerGeneral_I
Theorem

Timer_I ≥ timeout - δL IEC 61131-3
Timers

IEC 61131-3 Timers
Described Using
Timing Diagram

IEC 61131-3 Standard

PVS Verification Environment

Pre-Verified
IEC 61131-3

Function Blocks

IEC 61131-3 Function
Blocks Implemented
Using ST and FBD

 Formalization of
Function Block
Implementation

Tabular ExpressionsRequirements of
Real-Time Subsystems

Function Block
Diagrams

Consistency
Check

Correctness
Check

SRS (Software
Requirement Specification

SDD (Software
Design Description)

LEGEND

A Imports B

Functional Equivalence

PVS Verification

Manual Translation

AB

Figure 1: Framework for verification of FB based systems timing requirements

terns of proof commands (Sec. 6) that are amenable to strategies (or proof scripts) that will facilitate the
automated verification of the feasibility and correctness of other subsystems.

Resources. Sources of the case studies (verified using PVS 6.0) are available at http://www.cas.
mcmaster.ca/˜lawford/papers/ESSS2015. Background theories (e.g., Held For I, Timer I, etc.)
and complete details of case studies covered in this paper are included in an extended report [11].

2 Preliminaries

We review the use of tabular expressions, the relevant PVS theories of timing operators at levels of
requirements and implementation, and the formal verification approach [10] that is adapted in our two
case studies (Sec. 4 and Sec. 5).

2.1 Tabular Expressions Tabular expressions (a.k.a. function tables) [12] are an effective approach
for describing conditionals and relations, thus ideal for documenting many system requirements. They
are arguably easier to comprehend and to maintain than conventional mathematical expressions. Tabular
expressions have well-defined formal semantics (e. g., [7]). For our purpose of capturing the input-output
requirements of timing function blocks, the tabular structure in Fig. 2 below suffices: rows in the first
column denote input conditions, and rows in the second column denote the corresponding output results.
The input column may be sub-divided to specify sub-conditions. When the output column denotes a state
variable, we may write NC to abbreviate the case of “no change” on its value.

In documenting input-output behaviours using horizontal condition tables (HCTs), we need to reason
about their completeness and disjointness. Suppose there is no sub-condition, completeness ensures that

http://www.cas.mcmaster.ca/~lawford/papers/ESSS2015
http://www.cas.mcmaster.ca/~lawford/papers/ESSS2015

68 Formal Verification of Real-Time Function Blocks Using PVS

Result
Condition f

C1

C1.1 res1
C1.2 res2
.

C1.m resm
.
Cn resn

IF C1
IF C1.1 THEN f = res1
ELSEIF C1.2 THEN f = res2
...

ELSEIF C1.m THEN f = resm
ELSEIF ...

ELSEIF Cn THEN f = resn

Figure 2: Semantics of Horizontal Condition Table (HCT)

at least one row is applicable to every input, i. e., (C1 ∨C2 ∨ ·· · ∨Cn ≡True). Disjointness ensures that
rows do not overlap, e. g., (i 6= j⇒¬(Ci∧C j)). Similar constraints apply to the sub-conditions, if any.

Choice of Theorem Prover. We chose the PVS theorem prover to formalize the input-output require-
ments of function blocks primarily because it supports the syntax and semantics of tables. In particular,
for each table that is syntactically valid, PVS automatically generates its associated healthiness condi-
tions of completeness and disjointness as type correctness conditions (TCCs). Furthermore, we have
expertise built from past experience in applying PVS to check requirements and designs in the nuclear
domain [8] that gave us confidence in using the toolset. For modelling real-time behaviour, we reused
parts of the PVS theories from [5, 4] (see Sec. 2.3 to 2.5).

For presentation, we show PVS listings using ASCII characters in frame boxes, whereas in the main
text, we typeset names of predicates, types, theorems, etc., in the math form.

2.2 Modelling Time in the Physical Domain As PLCs are widely used in real-time systems, the
modelling of time is critical. For our purpose of verification, we approximate the continuous time in
the physical domain as a type tick, defined as a discrete series of equally-distributed clock ticks, with
an arbitrarily small positive time interval δ between two consecutive clock ticks: tick = {tn : R≥0 | δ ∈
R>0 ∧ (∃n : N • tn = n× δ)}. We also define not init, a subtype of tick that excludes t0. We define
operators to manipulate values at the tick level: init(t : tick) = (t = 0), pre(t : not init) = (t−δ), next(t :
tick) = (t + δ), and rank(t : tick) = t

δ
. We often apply induction to prove properties that should hold

over time1:

time_induction: THEOREM
FORALL (P: pred[tick]):
(FORALL (t: tick): init(t) => P(t))

& (FORALL (t: not_init): P(pre(t)) => P(t)) => (FORALL (t: tick): P(t))

where pred[tick] is a PVS shorthand for “predicates on tick” (i.e., functions mapping tick to Boolean).

2.3 Modelling Samples in the Software Domain We use a variable Sample : N→R≥0 to denote
the series of samples over time, such that the time of each sample (i.e., Sample(n), n ∈ N) maps to a
valid clock tick. As shown in Fig. 3, realistically, the clock tick frequency 1

δ
in the physical domain

should be significantly larger than the sampling frequency in the software domain. We bound sample
intervals between Tmin and Tmax, determined by considering the shortest time after which events must
be detected.

As rates of clock ticks and sampling are distinct, a monitored signal Pf that rapidly changes between
two consecutive samples (called a “spike”) can cause inconsistent results produced in the two domains.

1pred[tick] is synonymous to the function type [tick -> bool]

Linna Pang et al. 69

SOFTWARE DOMAIN

PHYSICAL DOMAIN

t

t

įt

Sample(1) Sample(2) Sample(3) Sample(4)
Tmax

Tmin

SOFTWARE DOMAIN

PHYSICAL DOMAIN

t

t

įt

Sample(1) Sample(2) Sample(3) Sample(4)
Tmax

Tmin

Figure 3: Clock Ticks in Physical Domain vs. Samples in Software Domain [4, p81]

To rule out such scenarios, we define a predicate subtype FilteredTickPred2 that only allows monitored
conditions which remain unchanged between consecutive samples:

FilteredTickPred?(P: pred[tick]): bool =
(FORALL t0: P(t0) /= P(next(t0)) =>

(FORALL (t: tick):
t0 < t AND t <= t0 + Tmax => P(next(t0)) = P(t)))

AND (FORALL (t: tick):
t <= Tmax => P(t) = P(0))

FilteredTickPred: TYPE+ = (FilteredTickPred?)
Pf: VAR FilteredTickPred

2.4 Operators for Specifying Timing Requirements As discussed in Sec. 1, we define the infix
operator:

Held For : (tick→ B)× (tick→ R>0)× (tick→ R≥0)× (tick→ R≥0)→ (tick→ bool)

to specify a common functional timing requirement, e.g., P Held For (d,δL,δR), that a monitored
boolean condition P should sustain over a positive time duration d, with non-negative left tolerance δL
and right tolerance δR. More precisely,

P Held For (d,δL,δR)(tnow)≡ (∃t j : tnow− t j ≥ d • (∀ti : t j ≤ ti ≤ tnow •P(ti)))

where d ∈ [d(tnow)− δL(tnow),d(tnow)+ δL(tnow)]. In our model of time, inputs and outputs are repre-
sented as functions mapping ticks to values. For example, the left tolerance may change from δL(t1) to
δL(t2). However, as discussed in Sec. 1, the behaviour of Held For is nondeterministic when P has held
TRUE for a period that is bounded by [d−δL,d +δR].

To resolve the non-determinism in Held For, we define two refinement operators: Held For S and
Held For I. Both operators are deterministic by fixing the duration d in the above definition of Held For
as d(tnow)− δL(tnow). We will only see Held For I in the case studies, but it is defined in terms of
Held For S. Held For S is a partial function on tick that produces values only at points of sampling (i.e.,
it is undefined on ticks in-between samples).

Held_For_S(P, duration , Sample)(ne): bool =
EXISTS (n0 : nat):

Sample(ne) - Sample(n0) >= duration

AND FORALL (n: nat): n0 <= n AND n <= ne => P(Sample(n))

2An example of using the subtype FilteredTickPred to constrain input signals can be found in the verification story of the
Pushbutton subsystem (Sec. 5).

70 Formal Verification of Real-Time Function Blocks Using PVS

On the other hand, Held For I is a totalized version of Held For S: its value at time t, where Sample(n)≤
t< Sample(n + 1), is equivalent to that produced at time Sample(n) (i.e., the closest left sample calculated
by Left Sample).

Held_For_I(P, duration , Sample)(t): bool =
Held_For_S(P, duration , Sample)(Left_Sample(Sample, t))

2.5 Implementing the Held For I Timing Operator We use Timer I (defined in terms of Timer S)
to implement the Held For I timing operator. Timer I agrees on outputs from Timer S at sample points
and keep the same value at any clock tick until the next sample point (this is analogous to how Held For I
is related to Held For S).

Timer_I(P, Sample, TimeOut)(t): tick =

Timer_S(P, Sample, TimeOut)(Left_Sample(Sample, t))

where Timer S[4, p. 97] counts, starting from the closest left sample to the clock tick in question, for
how long the monitored condition P has been enabled, and stops counting when TimeOut is reached.
The output type of Timer S is tick, calculated from how many samples P has been held across. As
mentioned in Sec. 1, the theorem TimerGeneral I is proved [4, p. 99] to ensure that Timer I is a proper
implementation for Held For I.
2.6 A Formal Approach to Specifying and Verifying Function Blocks Our reported ap-
proach [10] fits into the timing model as described above. For each FB, its input-output requirements
and FBD implementation are formalized in PVS as two (higher-order) predicates, parameterized by input
and output lists. Each input or output is represented as a timed sequence (or trajectory) mapping clock
ticks to values (e.g., [tick→ real]). Without loss of generality we write i and o to denote, respectively,
the lists of input and output trajectories.

Consider a composite function block FB (e.g., see Fig. 9 in Sec. 4). The requirements predicate of
FB (denoted as FB REQ, e.g., Trip sealedin REQ) returns true if its outputs are related to inputs in the
expected way (specified using tabular expressions) across all time ticks. The implementation predicate
of FB (denoted as FB IMPL, e.g., Trip sealedin IMPL) is constructed by composing, using logical con-
junction, the requirements predicates of its component FBs (e.g., TON, CONJU, etc.) as configured in its
FBD implementation. All inter-connectives (e.g., w1, w2, etc.) in the FBD implementation are hidden
using an existential quantification.
Proof of Consistency To ensure that the implementation is consistent or feasible, we prove that for each
list of input trajectories, there exists at least one list of output trajectories such that FB IMPL is defined:

` ∀i • ∃o • FB IMPL(i, o) (2)

Proof of Correctness To ensure that the implementation is correct with respect to the intended require-
ment, we prove that the observable inputs and outputs conform to those of the requirements:

` ∀i • ∀o •FB IMPL(i, o)⇒ FB REQ(i, o) (3)

3 Formalizing IEC 61131-3 Timers with Tolerances

We present the first contribution of this paper: incorporating the notion of timing tolerances [15] (i.e., the
controller’s reaction to the environment is associated with a delay) into the formalization of the black-
box, input-output requirements of IEC 61131-3 timers. Such formalization improves the accuracy of our
previous work [10] by making the resulting requirements models implementable.

Linna Pang et al. 71

In IEC 61131-3 there are three timer FBs: TON (On-delay), TOF (Off-delay), and TP (Pulse) timers.
As case studies presented in this paper (Sec. 4 and Sec.5) only make use of the TON block, in this section
we present its re-formalization only and report details of the other two timer blocks in [11].

+------+

| TON |

| |

BOOL --|IN Q|-- BOOL

| |

TIME --|PT ET|-- TIME

| |

+------+

+--------+ +---+ +--------+

IN | | | | | |

--+ +-----+ +-------+ +---

t0 t1 t2 t3 t4 t5

+----+ +----+

Q | | | |

------+ +---------------------+ +-------

t0+PT t1 t4+PT t5

PT +---+ +---+

: / | + / |

ET : / | /| / |

: / | / | / |

: / | / | / |

0-+ +-----+ +-------+ +---

t0 t1 t2 t3 t4 t5

Figure 4: TON timer declaration and definition in timing diagram [6]

The TON block is commonly used as a component of safety-critical systems. For example, it can be
used to determine if a sensor signal has gone out of its safety range for too long, as we will see in Sec. 4
and Sec. 5. Fig. 4 shows, extracted from IEC 61131-3, the input-output declaration (on the LHS) and
a timing diagram3 (on the RHS) illustrating the expected behaviour of the TON block. The TON block
is declared with two inputs (a boolean condition IN and a time period of length PT) and two outputs (a
boolean value Q and a length ET of time period). Timer TON monitors the input condition IN and sets
the output Q as true whenever IN remains enabled for longer than a time period of some input length PT.
If the monitored input IN has been enabled for some time t < PT , then the timer sets the output ET (i.e.,
elapsed time) with value t; otherwise, it sets ET with value PT.

The use of a timing diagram by IEC 61131-3 to describe the expected behaviour of the TON block
(and the other two timers) is limited to an incomplete set of use cases. As a result, we attempted in [10]
to use function tables to formalize the black-box, input-output requirements of the three timer blocks
(on-delay, off-delay, and pulse timers) listed in IEC 61131-3. Fig. 5 shows our previous attempt of the
requirements specification of the TON block, where t denotes the current clock tick, and a time stamp
last enabled is used to record the exact time (with no delay) that the input condition IN just becomes
enabled. However, the requirements model in Fig. 5 is not implementable because it describes idealized
behaviour: the timer (or the controller) reacts instantaneously to changes in the environment.

As part of the contribution of this paper, we revise the function tables of all three timers in IEC 61131-
3 by incorporating the notion of timing tolerances [15]. To achieve this, we use the pre-verified operator
Timer I (Sec. 2) to redefine requirements of the three timers (e.g., Fig. 6 for the TON timer).

The essence of our first contribution presented in this section is that we incorporate the notion of
timing tolerances, via the use of the pre-verified operator Timer I, into the requirements of IEC 61131
timers so that they are implementable. This allows us to conduct case studies such as the one in Sec. 4
on implementing and verifying subsystems using the IEC 61131-3 timers.

3The horizontal axis is labelled with time instants ti, i ∈ 0..5

72 Formal Verification of Real-Time Function Blocks Using PVS

Result
Condition last enabled
¬IN−1 ∧ IN t
IN−1 ∨ ¬IN NC

Result
Condition Q

IN ∧ (d ≥ PT) TRUE
IN ∧ (d < PT) FALSE

¬IN FALSE

Result
Condition ET

IN ∧ (d ≥ PT) PT
IN ∧ (d < PT) d

¬IN 0
where d stands for duration, d = t - last enabled

Figure 5: Tabular Requirements of Timer TON: Idealized Behaviour

Result
Condition Q
d ≥ PT TRUE
d < PT FALSE

Result
Condition ET
d ≥ PT PT
d < PT d
¬IN 0

where d stands for duration, d = (IN) Timer I (PT, δL, δR)

Figure 6: Tabular Requirements of Timer TON: Timing Tolerances Incorporated

4 Case Study 1: the Trip Sealed-In Subsystem

In this section we apply our approach (Sec. 2.6) to verify a candidate FBD implementation for the
Trip Sealed-In subsystem. We identify an initialization error and suggest a fix.

4.1 Input-Output Declaration and Informal Description The figure below declares the inputs
and outputs of the Trip Sealed-In subsystem:

+----------------------------------+

| Trip Sealed-In |

| |

BOOL --|Any_parm_trip |

{e_Trip, e_NotTrip} --|Trip Trip_SealedIn|-- BOOL

REAL --|k_Sealindelay |

BOOL --|Man_reset_req |

+----------------------------------+

Trip Sealed-In is a generic subsystem which monitors: 1) a set of sensor values; and 2) an alarm value
produced by some other subsystem. It signals an alarm (denoted by the output Trip SealedIn), which
may be manipulated by other subsystems, when two conditions are met. First, any of the monitored
sensor values goes out of its safety range (called a parameter trip and denoted by an input condition
Any parm trip). Second, the monitored input alarm is signalled continuously for longer than some
preset constant k Sealindelay4 amount of time (denoted by an input value Trip of enumerated type
{e Trip,e NotTrip}). Once the alarm Trip SealedIn is activated, it is not deactivated until all monitored
sensor values fall back within their safety ranges, and then a manual reset is requested (denoted as an
input Man reset req).

4.2 Tabular Requirements Specification with Timing Tolerances We use a function table
(Fig. 7) to perform a complete and disjoint analysis on the input domains. To incorporate timing toler-
ances into the requirements of Trip Sealed-In, we use the non-deterministic Held For operator (Sec. 2)
to specify a sustained window of duration [k Sealindelay−δL,k Sealindelay+δR].

4The k name prefix is reserved for system-wide constants.

Linna Pang et al. 73

Result
Condition Trip SealedIn

Any parm trip
(Trip=e Trip) Held For (k Sealindelay, δL, δR) TRUE
¬[(Trip=e Trip) Held For (k Sealindelay, δL, δR)] NC

¬Any parm trip
Man reset req FALSE
¬Man reset req NC

Figure 7: Trip Sealed-In: (non-deterministic) Requirements of with Tolerances

However, for the purpose of verification in PVS, we reformulate the non-deterministic behaviour of
Fig. 7 in a recursive function5 using the deterministic Held For I operator to impose the constraint that
only a single value (i.e., k Sealindelay− delta L where both are declared constants) is chosen from the
duration and is used consistently for detecting sustained events.

Below we define a recursive function Trip SealedIn f over all clock ticks:

Trip_SealedIn_f(Any_parm_trip: pred[tick],
Trip : [tick->{e_Trip, e_NotTrip}],

Man_reset_req: pred[tick])(t: tick)
: RECURSIVE bool =
IF init(t) THEN TRUE ELSE
LET
TRIPPED = LAMBDA (t: tick): Trip(t) = e_Trip,
HELD = Held_For_I(TRIPPED,k_Sealindelay -delta_L,Sample)(t),

PREV = Trip_SealedIn_f(

Any_parm_trip ,Trip,Man_reset_req)(pre(t))

IN TABLE
%--%

| Any_parm_trip(t) & HELD | TRUE ||
%--%

| Any_parm_trip(t) & NOT HELD | PREV ||
%--%

| NOT Any_parm_trip(t) & Man_reset_req(t) | FALSE ||
%--%

| NOT Any_parm_trip(t) & NOT Man_reset_req(t) | PREV ||
%--%

ENDTABLE ENDIF MEASURE rank(t)

Using Trip SealedIn f, we have deterministic requirements (Fig. 8) for the Trip Sealed-In subsystem:
Remark. Compared with Fig. 7, the use of the operator Held For I in Fig. 8 resolves the non-

determinism by fixing the level of tolerance (i.e., as the alarm input Trip has been activated for or longer
than k Sealindelay−δL, the Trip Sealed-In subsystem is guaranteed to detect it and act accordingly).

4.3 Formalizing the FBD Implementation We propose a FBD implementation (Fig. 9) which
should satisfy the requirements (Fig. 8).

We use the IEC 61131 TON timer (see Sec. 3 for its formalization incorporated with tolerances)
to implement the use of the Held For I operator (subject to a correctness proof which we will discuss
below). As the recursive function used to define the requirements depends on the value of itself (at the
previous time tick), we specify a feedback loop (dashed line) in the implementation.

5For proving termination, its progress is measured using discrete time instants rank(t).

74 Formal Verification of Real-Time Function Blocks Using PVS

Trip_SealedIn_REQ(Any_parm_trip: pred[tick],
Trip : [tick->{e_Trip, e_NotTrip}],

Man_reset_req: pred[tick],
TripSealedIn : pred[tick]): bool

= FORALL (t: tick):
TripSealedIn(t) =

Trip_SealedIn_f(Any_parm_trip , Trip, Man_reset_req)(t)

Figure 8: Trip Sealed-In: (deterministic) Requirements of with Tolerances in PVS

NOT

TON_Sealln
TON

IN Q

PT ET

AND

NOT

OR

AND

w1

RS_Sealln
RS

S Q1

R1

w5
w4

w3w2 Trip_Sealedin

Man_reset_req

k_Sealindelay

Trip
(TRUE: Trip = e_NotTrip,

False: Trip = e_Trip)

Any_parm_trip
(TRUE: Tripped,

FALSE: Not Tripped)

w6

et_sealin

Figure 9: Trip Sealed-In implementation in FBD

The use of the left-most NOT (negation) block in Fig. 9 has to do with the mismatch between types at
the requirements level (i.e., {e Trip,e NotTrip}) and that at the FB implementation level (i.e., boolean):
somehow the engineers interpret value e Trip as FALSE and e NotTrip as TRUE, so a conversion is
necessary to make sure the Trip Sealed-In has a consistent interpretation. The requirements that the
alarm output Trip Sealedin is deactivated (or reset) when there is no parameter trips, and when a manual
reset is requested, is implemented using a standard block RS (reset dominant flip flop).

To prove that the proposed FBD implementation of Trip Sealed-In (Fig. 9) is both feasible and con-
forms to its requirements (Fig. 8), we follow our approach (Sec. 2.6) to formalize it by composing, using
conjunction, the formalizing predicates6 of all component blocks (all inter-connectors are hidden using
an existential quantification.):

Trip sealedin IMPL(Any parm trip,Trip,Man reset req,Trip SealedIn)
≡ ∃ w1,w2,w3,w4,w5,w6,et sealin •

NOT(Trip,w6)
∧ TON(w6,k Sealindelay−δL,w1,et sealin)
∧ CONJ(Any parm trip,w1,w2)
∧ DISJ(w2,Trip SealedIn,w3)
∧ NOT(Any parm trip,w5)
∧ CONJ(w5,Man reset req,w4)
∧ RS(w4,w3,Trip SealedIn)



6Predicates NOT (logical negation), CONJ (logical conjunction), DISJ (logical disjunction), TON (on-delay timer), and RS
(reset dominant latch).

Linna Pang et al. 75

4.4 Proofs of Consistency and Correctness First, we prove that the FBD implementation (Fig. 9)
is feasible by instantiating formula (2) in Sec. 2.6:

` ∀ Any parm trip,Trip,Man reset req •
∃ Trip SealedIn •Trip sealedin IMPL(

Any parm trip, AbstParmTrip timed(Trip), Man reset req, Trip SealedIn)

The abstraction function AbstParmTrip timed handles the mismatched types of input Trip at levels of
requirements and implementation (e.g., e NotTrip mapped to TRUE). We discharge the consistency
proof using proper instantiations.

Second, we prove that the FBD implementation is correct with respect to Fig. 8, considering timing
tolerances, by instantiating formula (3) in Sec. 2.6:

` ∀ Any parm trip, Trip, Man reset req, Trip SealedIn •
Trip sealedin IMPL(Any parm trip, AbstParmTrip timed(Trip), Man reset req, Trip SealedIn)
⇒ Trip sealedin REQ(Any parm trip,Trip, Man reset req, Trip SealedIn)

As there is a feedback loop in the FBD implementation (Fig. 9), our strategy of discharging the cor-
rectness theorem is by mathematical induction (using the time induction proposition in Sec. 2) over tick
values. Since the Timer I operator (Sec. 2) is used to formalize the requirements of the TON timer that
contributes to the FBD implementation, its definition is expanded in both the base and inductive cases.

However, when proving the base case (when t = 0), we found that the initial value of output Q1 of
the RS Sealin block and the initial value of the subsystem output Trip SealedIn — these two values are
directly connected in the initial FBD implementation (Fig. 9) — are inconsistent. According to the SRS
(Software Requirements Specification), the value of Trip SealedIn is initialized to TRUE, whereas that
of Q1 is FALSE. We resolve this issue of inconsistency by suggesting a revised FBD implementation
(Fig. 10) and prove that it is correct with respect to Fig. 8. In this revised implementation, we add an
IEC 61131-3 selection block SEL Sealin, acting as a multiplexer to discriminate the value of Q1 (at the
initial tick and at the non-initial tick) that is output as Trip SealedIn.

Remark. We just illustrated that, by adopting our approach, we are able to justify the appropriateness
of a candidate FBD implementation, and to fix it accordingly if necessary.

Trip_Sealedin

TRUE

t = 0

w7NOT

TON_Sealln
TON

IN Q

PT ET

AND

NOT

OR

AND

w1

RS_Sealln
RS

S Q1

R1

w5
w4

w3w2

Man_reset_req

k_Sealindelay

Trip
(TRUE: Trip = e_NotTrip,

False: Trip = e_Trip)

Any_parm_trip
(TRUE: Tripped,

FALSE: Not Tripped)

w6

SEL_Sealln
SEL

G
IN0
IN1

Q1

et_sealin

Figure 10: Revised Trip Sealed-In implementation in FBD

5 Case Study 2: the Pushbutton Subsystem

In this section we apply our approach (Sec. 2.6) to verify a candidate FBD implementation for the
Pushbutton subsystem. We identify a missing assumption of implementation and suggest a solution.

76 Formal Verification of Real-Time Function Blocks Using PVS

5.1 Input-Output Declaration and Informal Description The figure below declares the inputs
and outputs of the Pushbutton subsystem.

+------------------------------------+

| Pushbutton |

| |

y_pb --|m |

REAL --|k_Debounce f_Pushbutton|-- y_pbdesign

REAL --|k_Stuck |

+------------------------------------+

Pushbutton is a generic subsystem which monitors the status of a pushbutton (denoted by an input m ∈
{e Pressed,e NotPressed}), which may be pressed to manually, e.g., enable or disable a sensor trip7.
Its behaviour is denoted by an output f Pushbutton ∈ {e pbNotDebounced,e pbDebounced,e pbStuck}.
Pushbutton determines if either: (a) the button is not pressed, or pressed but not for a sufficient period
of time (denoted by some pre-set value k Debounce8) to register as a press; (b) the button is pressed
long enough to quality as a press; or (c) the button is pressed for longer than some pre-set period of time
(denoted by k Stuck) without bouncing back and thus is considered stuck.
5.2 Tabular Requirements Specification with Timing Tolerances For the purpose of verifica-
tion in PVS, we use the function table below9 to perform a complete and disjoint analysis on the domain
of the button status. To incorporate timing tolerances, similar to the requirements specification for the
Trip Sealed-In subsystem (Fig. 8, p.74), we use the deterministic Held For I operator (Sec. 2), where
values k Debounce− δL and k Stuck− δL are chosen and used consistently for detecting the sustained
events.

Result
Condition f Pushbutton

m = e NotPressed e pbNotDebounced
(m = e Pressed) ∧ ¬debounced e pbNotDebounced

debounced ∧ ¬stuck e pbDebounced
stuck e pbStuck

where debounced = (m = e Pressed) Held For I (k Debounce−δL)
stuck = (m = e Pressed) Held For I (k Stuck−δL)

5.3 Formalizing the FBD Implementation We propose a FBD implementation which should
satisfy the requirements:

w1

w3

w2

Debounce
TON

IN Q

PT ET

Stuck
TON

IN Q

PT ET

AND

NOT

NOT

m
(TRUE: e_Pressed,

FALSE: e_NotPressed)

k_Debounce

k_Stuck

pbNotDebounced
(When TRUE, PB state is

e_pbNotDebounced)

pbDebounced
(When TRUE, PB state is

e_pbDebounced)

pbStuck
(When TRUE, PB state is

e_pbStuck)

et_debounce

et_stuck

7A sensor trip occurs if the sensor signal in question goes above its set point.
8The k name prefix is reserved for system-wide constants.
9The PVS encoding of this table is not shown in this paper.

Linna Pang et al. 77

We use two IEC 61131 TON timers (see Sec. 3 for its formalization) to implement the predicates
debounced and stuck in the above requirements table that involve the use of the Held For I operator.
Since only the button status is monitored, there is no need to specify a feedback loop in the implemen-
tation. To prove that this FBD implementation is consistent and correct, similar to what we do for that
for the Trip Sealed-In subsystem (see Fig. 9, p.74), we formalize it by composing the formalizing pred-
icates of all its component blocks using conjunction, and by hiding inter-connectors using an existential
quantification.

5.4 Proof Obligations: Consistency and Correctness The consistency and correctness theo-
rems for the Pushbutton subsystem are stated in a similar manner as those for the Trip Sealed-In sub-
system by properly instantiating, respectively, formulas 2 and 3 in Sec. 2.6. However, we had diffi-
culties when first attempting to prove that the above requirements table for f Pushbutton possesses the
disjointness property. To resolve this, we tried to simplify the requirements table by collapsing the
first two rows into a single one with the input condition ¬pressed ∧¬stuck. This is done based on
the observations that both row 1 and row 2 map to the same output value e pbNotDebounced, and that
m = e Pressed∨m = e NotPressed≡ true.

When proving that the revised requirements table is equivalent to the original one, we found a prob-
lematic scenario where the value of output f Pushbutton is produced inconsistently at the requirements
and implementation levels: when the input condition m varies rapidly and generates a “spike”, whose
duration is shorter than the timing resolution. To rule out the “spike” scenarios for input m, we added an
assumption, at the FBD implementation level, using the predicate subtype FilteredTickPred (Sec. 2).

Finally, the revised requirements table can be proved for its completeness, disjointness, consistency,
and correctness by following a similar pattern of proofs as for the Trip Sealed-In subsystem. For prov-
ing the correctness theorem, as there is not a feedback loop in the above FBD implementation, we do
not need to discharge the correctness theorem using mathematical induction. Furthermore, as the TON
components in the FBD implementation are formalized using the Timer I operator (Sec. 3), we need to
reuse the theorem TimerGeneral I with proper instantiations to show their equivalence to the Held For I
expressions in the revised requirements table.

6 Proof Structure

In the industrial software control system that we consider for this paper, the Trip Sealed-In subsystem
implemented using a feedback loop (Sec. 4) and the Pushbutton subsystem (Sec. 5) are representative10

of functionality in which FBD implementations make use of IEC 61131 timer blocks. Structures of their
consistency and correctness proofs shall guide the proofs for many other subsystems of a similar nature.

For illustration, we consider the correctness proof structure for the Trip Sealed-In subsystem. In
principle, there are eight key steps to discharge the correctness theorem for a real-time subsystem imple-
mented with a feedback loop (e.g., Trip Sealed-In). Except for the fourth step, where the time induction
theorem is used to handle the feedback loop, others are standard commands.

1) Apply skosimp to eliminate the universal quantification over input and output variables, and then
apply flatten to simplify theorem structure impl⇒ req by moving impl to the antecedent and req to the
consequent. 2) Apply multiple expand commands to unfold definitions of the requirements and imple-
mentation predicates. 3) In the antecedent, apply skolem! to eliminate the existential quantification over
inter-connectors. 4) To handle the recursive feedback loop, use the theorem time induction on t ∈ tick.

10This judgement is based on the use of a generic timing function, the Held For operator, in the tabular expressions that
describe the required behaviour.

78 Formal Verification of Real-Time Function Blocks Using PVS

5) Apply a series of basic commands to complete the proof for the base case. 6) To prove the inductive
case, first apply skolem! and then expand to unfold the recursive function that is used to define the
requirements predicate (e.g., see Fig. 8, p.74). 7) Apply split and lift-if to generate sub-goals. 8)
Repeatedly apply: expand commands to unfold definitions of the predicates for internal components,
theorem TimerGeneral I with proper instantiations to link between Held For I in the requirements and
Timer I in the implementation, and basic commands to complete the proof for the inductive step.

7 Related Work

The focus of this paper is the practical verification of real-time behaviour against timing requirements
with tolerances. Our approach to specifying and verifying FBs [10], compared with others on verifying
PLC programs in contexts of model checking and theorem proving, is novel in three aspects: (1) extent
of the case study; (2) practical application in the safety-critical industry; and (3) mature tool support of
theorem proving.

In our formal setting, proving that an FBD implementation is correct (with respect to its intended
input-output timing requirements) is essentially proving that it is a valid refinement. However, our pur-
pose of verification is on the observable input-output behaviour, as opposed other properties such as
boundedness, liveness, and robustness (e.g., [3, 16, 13, 2]). Of more relevance is the use of timed au-
tomata to model timing tolerances with ASAP (as soon as possible) semantics to verify the correctness
of implementation [17], but with no suggestion for either tool support or its adoption in practice.

8 Conclusion

In this paper we report our application of a formal approach on using FBs (including timers) from
IEC 61131-3 to verify two subsystems of an industrial software control system from the nuclear domain.
We re-formalize all three IEC 61131-3 timers to incorporate the notion of tolerances. Specifically, we
use the re-formalized IEC 61131 on-delay timer for the proposed FBD implementations, and prove that
they are feasible and correct (i.e., satisfies the intended timing requirements). While attempting to verify
the two subsystems, we find an issue of initialization failure, and an issue of missing implementation as-
sumption. In both cases, we suggest possible solutions. We identify patterns of proof commands that are
amenable to strategies that will facilitate the automated verification of the feasibility and correctness of
other subsystems. As ongoing and future work, we first aim to verify subsystems with more sophisticated
timing requirements, e.g., nested Held For expressions. Second, we aim to prove safety properties from
the composition of real-time subsystems. Third, we aim to automate the process of proofs that share a
common structure.

References

[1] (2011): DO-178C: Software Considerations in Airborne Systems and Equipment Certification. Special Com-
mittee 205 of RTCA.

[2] Ed Brinksma, Angelika Mader & Ansgar Fehnker (2002): Verification and optimization of a PLC control
schedule. International Journal on Software Tools for Technology Transfer (STTT) 4(1), pp. 21–33. Available
at http://dx.doi.org/10.1007/s10009-002-0079-0.

http://dx.doi.org/10.1007/s10009-002-0079-0

Linna Pang et al. 79

[3] Zhijun Ding, Changjun Jiang & Mengchu Zhou (2013): Design, Analysis and Verification of Real-Time
Systems Based on Time Petri Net Refinement. ACM Trans. Embed. Comput. Syst. 12(1), pp. 4:1–4:18.
Available at http://dx.doi.org/10.1145/2406336.2406340.

[4] Xiayong Hu (2008): Proving implementability of timing properties with tolerance. Ph.D. thesis, McMaster
University, Department of Computing and Software.

[5] Xiayong Hu, Mark Lawford & Alan Wassyng (2009): Formal Verification of the Implementability of Timing
Requirements. In: FMICS, LNCS 5596, Springer, pp. 119–134. Available at http://dx.doi.org/10.
1007/978-3-642-03240-0_12.

[6] IEC (2003): 61131-3 Ed. 2.0 en:2003: Programmable Controllers — Part 3: Programming Languages.
International Electrotechnical Commission.

[7] Ying Jin & David Lorge Parnas (2010): Defining The Meaning of Tabular Mathematical Expressions. Science
of Computer Programming 75(11), pp. 980 – 1000. Available at http://dx.doi.org/10.1016/j.scico.
2009.12.009.

[8] Mark Lawford, Jeff McDougall, Peter Froebel & Greg Moum (2000): Practical application of functional
and relational methods for the specification and verification of safety critical software. In: Proc. of AMAST
2000, LNCS 1816, Springer, pp. 73–88. Available at http://dx.doi.org/10.1007/3-540-45499-3_8.

[9] Sam Owre, John M. Rushby & Natarajan Shankar (1992): PVS: A Prototype Verification System. In: CADE,
LNCS 607, pp. 748–752. Available at http://dx.doi.org/10.1007/3-540-55602-8_217.

[10] Linna Pang, Chen-Wei Wang, Mark Lawford & Alan Wassyng (2013): Formalizing and Verifying Function
Blocks using Tabular Expressions and PVS. In: FTSCS, Communications in Computer and Information
Science 419, Spring, pp. 163–178. Available at http://dx.doi.org/10.1007/978-3-319-05416-2_9.

[11] Linna Pang, Chen-Wei Wang, Mark Lawford, Alan Wassyng, Josh Newell, Vera Chow & David
Tremaine (2014): Formal Verification of Real-Time Function Blocks using PVS. Technical Re-
port 16, McSCert. https://www.mcscert.ca/index.php/documents/mcscert-reports?view=

publication&task=show&id=16.
[12] David Lorge Parnas, Jan Madey & Michal Iglewski (1994): Precise Documentation of Well-Structured Pro-

grams. IEEE Transactions on Software Engineering 20, pp. 948–976. Available at http://dx.doi.org/
10.1109/32.368133.

[13] Ocan Sankur (2013): Shrinktech: A Tool for the Robustness Analysis of Timed Automata. In: Computer
Aided Verification, LNCS 8044, Springer, pp. 1006–1012. Available at http://dx.doi.org/10.1007/
978-3-642-39799-8_72.

[14] Alan Wassyng & Mark Lawford (2003): Lessons Learned from a Successful Implementation of Formal
Methods in an Industrial Project. In: FME 2003, LNCS 2805, Springer, pp. 133–153. Available at
http://dx.doi.org/10.1007/978-3-540-45236-2_9.

[15] Alan Wassyng, Mark Lawford & Xiaoyong Hu (2005): Timing Tolerances in Safety-Critical Software. In: FM
2005, LNCS 3582, Springer, pp. 157 – 172. Available at http://dx.doi.org/10.1007/11526841_12.

[16] Anton Wijs & Luc Engelen (2013): Efficient Property Preservation Checking of Model Refinements.
In: TACAS, LNCS 7795, Springer, pp. 565–579. Available at http://dx.doi.org/10.1007/
978-3-642-36742-7_41.

[17] Martin De Wulf, Laurent Doyen & Jean-Franois Raskin (2005): Almost ASAP semantics: from timed mod-
els to timed implementations. FAC 17(3), pp. 319–341. Available at http://dx.doi.org/10.1007/
978-3-540-24743-2_20.

http://dx.doi.org/10.1145/2406336.2406340
http://dx.doi.org/10.1007/978-3-642-03240-0_12
http://dx.doi.org/10.1007/978-3-642-03240-0_12
http://dx.doi.org/10.1016/j.scico.2009.12.009
http://dx.doi.org/10.1016/j.scico.2009.12.009
http://dx.doi.org/10.1007/3-540-45499-3_8
http://dx.doi.org/10.1007/3-540-55602-8_217
http://dx.doi.org/10.1007/978-3-319-05416-2_9
https://www.mcscert.ca/index.php/documents/mcscert-reports?view=publication&task=show&id=16
https://www.mcscert.ca/index.php/documents/mcscert-reports?view=publication&task=show&id=16
http://dx.doi.org/10.1109/32.368133
http://dx.doi.org/10.1109/32.368133
http://dx.doi.org/10.1007/978-3-642-39799-8_72
http://dx.doi.org/10.1007/978-3-642-39799-8_72
http://dx.doi.org/10.1007/978-3-540-45236-2_9
http://dx.doi.org/10.1007/11526841_12
http://dx.doi.org/10.1007/978-3-642-36742-7_41
http://dx.doi.org/10.1007/978-3-642-36742-7_41
http://dx.doi.org/10.1007/978-3-540-24743-2_20
http://dx.doi.org/10.1007/978-3-540-24743-2_20

	1 Introduction
	2 Preliminaries
	2.1 Tabular Expressions
	2.2 Modelling Time in the Physical Domain
	2.3 Modelling Samples in the Software Domain
	2.4 Operators for Specifying Timing Requirements
	2.5 Implementing the Held_For_I Timing Operator
	2.6 A Formal Approach to Specifying and Verifying Function Blocks

	3 Formalizing IEC 61131-3 Timers with Tolerances
	4 Case Study 1: the Trip Sealed-In Subsystem
	4.1 Input-Output Declaration and Informal Description
	4.2 Tabular Requirements Specification with Timing Tolerances
	4.3 Formalizing the FBD Implementation
	4.4 Proofs of Consistency and Correctness

	5 Case Study 2: the Pushbutton Subsystem
	5.1 Input-Output Declaration and Informal Description
	5.2 Tabular Requirements Specification with Timing Tolerances
	5.3 Formalizing the FBD Implementation
	5.4 Proof Obligations: Consistency and Correctness

	6 Proof Structure
	7 Related Work
	8 Conclusion

