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Fixpoints are an important ingredient in semantics, abstract interpretation and program logics. Their
addition to a logic can add considerable expressive power. One general issue is how to define proof
systems for such logics. Here we examine proof systems for modal logic with fixpoints [4]. We
present a tableau proof system for checking validity of formulas which uses names to keep track of
unfoldings of fixpoint variables as devised in [7].

1 Introduction

Fixpoints are an important ingredient in semantics, abstract interpretation and program logics. Their
addition to a logic can add considerable expressive power. One general issue is how to define proof
systems for such logics. In this paper we consider modal mu-calculus, modal logic with fipoints, see [1]
for a survey. Dave Schmidt has used this logic to understand data flow analyis [9]. Here our interest is
more with developingproof systemsfor the logic.

In this paper we describe a tableau proof system which checkswhen a modal mu-calculus formula
is valid. The system uses names to keep track of unfoldings offixpoint variables. This idea originated
in [10] in the context of model checking. For satisfiability checking it was used in [6] for LTL and CTL
and then for modal mu-calculus in [7].

In Section 2 we describe the syntax and semantics of modal mu-calculus and in Section 3 we briefly
examine approaches to devising proof systems for this logic. The tableau proof system based on names
for checking valid formulas is then presented in Section 4 and shown to be both sound and complete.

2 Modal Mu-calculus

Let Var be an (infinite) set ofvariable names, typically indicated byZ,Y, . . .; let Prop be a set ofatomic
propositions, typically indicated byP,Q, . . .; and let Act be a set ofactions, typically indicated bya,b, . . ..
The set of modal mu-calculus formulasµM (with respect to Var,Prop,Act) is as follows.

φ ::= Z | P | ¬φ | φ1∧φ2 | [a]φ | νZ.φ

In νZ.φ every free occurrence ofZ in φ occurs positively, that is within the scope of an even number
of negations. If a formula is written asφ(Z), it is to be understood that the subsequent writing ofφ(ψ)
meansφ with ψ substituted for all free occurrences ofZ.

The positivity requirement on the fixpoint operator is a syntactic means of ensuring thatφ(Z) denotes
a functional monotonic inZ, and so has unique minimal and maximal fixed points. It is usually more
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convenient to introduce derived dual operators, and work inpositive form:φ1∨φ2 means¬(¬φ1∧¬φ2),
〈a〉φ means¬[a]¬φ andµZ.φ(Z) means¬νZ.¬φ(¬Z). A formula is inpositive formif it is written with
the derived operators so that¬ only occurs applied to atomic propositions. It is inpositive normal form
if in addition all bound variables are distinct. Any closed formula can be put into positive normal form.
It is also useful to have derived propositional constantstt (for P∨¬P) andff (for P∧¬P).

A modal mu-calculusstructureT (over Prop,Act) is a labelled transition system, namely a setS

of states and a family of transition relations
a

−→⊆ S× S for a ∈ Act, together with an interpretation
VProp:Prop→ 2S for the atomic propositions. As usual we writes

a
−→ t for (s, t) ∈

a
−→.

Given a structureT and an interpretationV:Var→2S of the variables, the set‖φ‖T
V

of states satisfying
a formulaφ is defined as follows:

‖P‖TV = VProp(P)

‖Z‖TV = V(Z)

‖¬φ‖TV = S−‖φ‖TV
‖φ1∧φ2‖

T
V = ‖φ1‖

T
V ∩‖φ2‖

T
V

‖[a]φ‖TV = {s|∀t.if s
a

−→ t thent ∈ ‖φ‖TV}

‖νZ.φ‖TV =
⋃

{

S⊆ S |S⊆ ‖φ‖T
V[Z:=S]

}

whereV[Z := S] is the valuation which mapsZ to Sand otherwise agrees withV. If we are working in
positive normal form, we may add definitions for the derived operators by duality (and for the proposi-
tional constants).

‖φ1∨φ2‖
T
V = ‖φ1‖

T
V∪‖φ2‖

T
V

‖〈a〉φ‖TV = {s|∃t.s
a

−→ t ∧ t ∈ ‖φ‖TV}

‖µZ.φ‖TV =
⋂

{

S⊆ S |S⊇ ‖φ‖T
V[Z:=S]

}

‖tt‖TV = S

‖ff‖TV = /0

If we take the usual lattice structure on 2S, given by set inclusion, and iff is a monotonic function
then by the Knaster-Tarski theoremf has fixed points, and indeed has a unique maximal and a unique
minimal fixed point. The maximal fixed point is the union ofpost-fixed points,

⋃

{S⊆ S |S⊆ f (S)}, and
the minimal fixed point is the intersection ofpre-fixed points,

⋂

{S⊆ S | f (S) ⊆ S}. These determine the
meanings ofν andµ in µM.

Moreover, the standard theory of fixpoints tells that iff is a monotone function on a lattice, we can
construct its minimal fixed point by applyingf repeatedly on the least element of the lattice to form an
increasing chain, whose limit is the least fixed point. Similarly, the maximal fixed point is constructed by
applying f repeatedly on the largest element to form a decreasing chain, whose limit is the maximal fixed
point. The stages of these iterations can be introduced syntactically asµαZ.φ andναZ.φ for ordinalsα
whose meanings are as follows whenλ is a limit ordinal.

‖µ0Z.φ‖TV = /0

‖ν0Z.φ‖TV = S
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‖µβ+1Z.φ‖TV = ‖φ(µβ Z.φ)‖TV
‖νβ+1Z.φ‖TV = ‖φ(νβ Z.φ)‖TV
‖µλ Z.φ‖TV =

⋃

β<λ
‖µβ Z.φ‖TV

‖νλ Z.φ‖TV =
⋂

β<λ
‖νβ Z.φ‖TV

Definition 1. The formulaφ of µM is valid if for all structuresT and interpretationsV, ‖φ‖T
V
= S. The

formulaφ is satisfiableif there is a structureT and an interpretationV such that‖φ‖T
V
6= /0.

As is standard|= φ indicates thatφ is valid ands∈ ‖φ‖T
V

is written ass |=(T,V) φ , dropping the index
(T,V) wherever possible.

The relationship between stages of iteration and the fixpoints is formally described.

Fact 1. 1. s|= νZ.φ iff s |= ναZ.φ for all ordinals α .

2. s|= µZ.φ iff s |= µαZ.φ for some ordinalα .

So for a minimal fixpoint formulaµZ.φ , if s satisfies the fixpoint, it satisfies some iterate, say the
β +1th so thats |= µβ+1Z.φ . Now if we unfold this formula once, we gets |= φ(µβ Z.φ). Therefore,
the fact thatssatisfies the fixpoint depends, viaφ , on the fact that other states inS satisfy the fixpointat
smaller iterates than s does. So if one follows a chain of dependencies, the chain terminates. Therefore,
µ means ‘finite looping’. On the other hand, for a maximal fixpoint νX.φ , there is no such decreasing
chain:s |= νZ.φ iff s |= νβ Z.φ for every iterateβ iff s |= φ(νβ Z.φ) for every iterateβ iff s |= φ(νZ.φ),
and so we may loop for ever.

We impose a further syntactic constraint on formulas. In thefollowing we writeσZ.φ for µZ.φ or
νZ.φ when we are indifferent to which fixpoint.

Definition 2. The formulaγ of µM is guardedif for any subformulaσZ.φ of γ , every occurrence of Z in
φ is within the scope of a modal operator.

The following is standard; see [4, 8, 14].

Fact 2. Every formula ofµM is equivalent to a guarded formula.

3 Proof Systems

There has been a variety of proof systems forµM. Kozen presented an equational deductive system
which is equivalent to the Henkin axiom system of Figure 1 that extends the standard modal logicK
[4]: here φ → ψ means¬φ ∨ψ . There is an extra axiom for a least fixed point that its “unfolding”
implies it; and Park’s fixed point induction rule which says thatµ is indeed the least pre-fixed point. The
duals of this axiom and rule for greatest fixed points are;νX.φ(X) → φ(µX.φ(X)) and if ψ → φ(ψ)
thenψ → νX.φ(X). Despite the naturalness of this axiomatisation, Kozen wasunable to show that it
was complete in [4]. Instead, he proved it complete for a subset of µM, the aconjunctive fragment.
Subsequently, he provided a complete infinitary deductive system for the whole ofµM by adding the
following infinitary rule [5].

µnX.φ(X)→ ψ for all n< ω
µX.φ(X)→ ψ
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axioms and rules for minimal multi-modal logic K

φ(µX.φ(X))→ µX.φ(X)

φ(ψ)→ ψ
µX.φ(X)→ ψ

Figure 1: Kozen’s axiomatisation ofµM

Γ,P,¬P Γ,tt

Γ,φ ∨ψ
Γ,φ ,ψ

Γ,φ ∧ψ
Γ,φ Γ,ψ

Γ,〈a〉Σ, [a]ψ
Σ,ψ

Γ,νZ.φ(Z)
Γ,φ(νZ.φ(Z))

Γ,µZ.φ(Z)
Γ,φ(µZ.φ(Z))

Figure 2: Goal directed proof rules

Soundness of this rule depends on thefinite model propertywhich is that a formula is satisfiable if,
and only if, it is satisfiable in a finite model. It is possible to devise an infinite structure (with infinite
branching) with statessuch that, for instance,s |= µX.[a]X ands 6|= µnX.[a]X for all n< ω .

Later Walukiewicz established that indeed Kozen’s axiomatisation in Figure 1 is complete for the
whole language. The proof appeals to a normal form,disjunctive normal form, inspired by automata
and semantic tableaux and also uses (a slightly weakened version of) aconjunctivity [14]. First, it is
shown that every formula isprovably equivalent to a guarded formula (thereby strengthening Fact 2).
For any unsatisfiable weakly aconjunctive or disjunctive normal form formulaφ there is a proof of
¬φ . Then the central argument proceeds by induction on formulas showing that every guarded formula
provably implies a semantically equivalent disjunctive normal form formula. This unusual proof method
for showing completeness can be contrasted with the more standard technique of building a model out of
consistent sets of formulas (which has remained elusive forµM).

Given a valid formula such asνZ.µX.[a]Z∨ 〈a〉X it is not so easy to provide a proof of it within
Kozen’s axiom system. This suggests that one may also seek natural deduction, sequent or tableau style
proof systems. Agoal directedproof system is presented in Figure 2. A sequent of this proofsystem
is a set of formulas understood disjunctively; we assumeΓ,Σ, . . . indicate asetof formulas andΓ,φ ,ψ
is the setΓ∪{φ ,ψ}; clearly, Γ,P,¬P andΓ,tt are then valid. The rules remove∨ between formulas
and branch at an∧. Some notation in the modal rule:〈a〉Σ is the set of formulas{〈a〉φ |φ ∈ Σ}. In
its application the setΣ can be empty. Fixpoint formulas are unfolded. The idea is to build a proof for
a starting guarded formulaγ in positive normal form. Such systems have been presented before. For
instance, in [8] there is a dual system for showing that a formula is unsatisfiable. There are also systems,
such as in [2, 3, 12], where the rules are inverted.
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νZ.µX.[a]Z∨〈a〉X

µX.[a](νZ.µX.[a]Z∨〈a〉X)∨〈a〉X

[a](νZ.µX.[a]Z∨〈a〉X)∨〈a〉(µX.[a](νZ.µX.[a]Z∨〈a〉X)∨〈a〉X)

[a](νZ.µX.[a]Z∨〈a〉X),〈a〉(µX.[a](νZ.µX.[a]Z∨〈a〉X)∨〈a〉X)

νZ.µX.[a]Z∨〈a〉X,µX.[a](νZ.µX.[a]Z∨〈a〉X)∨〈a〉X

µX.[a](νZ.µX.[a]Z∨〈a〉X)∨〈a〉X
...
...

Figure 3: A never ending proof tree

Zi = ν iZ.µX.[a]Z∨〈a〉X for i > 0

νZ.µX.[a]Z∨〈a〉X

Z1

µX.[a]tt∨〈a〉X

[a]tt∨〈a〉(µX.[a]tt∨〈a〉X)

[a]tt,〈a〉(µX.[a]tt∨〈a〉X)

tt

Z2

µX.[a]Z1∨〈a〉X

[a]Z1∨〈a〉(µX.[a]Z1∨〈a〉X)

[a]Z1,〈a〉(µX.[a]tt∨〈a〉X)

Z1

...

Zi+1

...

Zi

...

Figure 4: An infinitely wide proof tree

The main problem with the rules in Figure 2 is that they lead toinfinite depth proof trees as in
Figure 3. It is unclear when such a tree is in fact a proof; for instance, there are such trees for invalid
formulas such asµX.[a]X∨〈a〉X. One solution is to replace infinite depth proofs with proofsof infinite
width by adopting a variant of Kozen’s infinitary rule. In [3,12] the authors add an infinitary rule as
follows (again whose soundness depends on the finite model property).

Γ,νZ.φ(Z)
Γ,ν1Z.φ(Z) . . . Γ,νnZ.φ(Z) . . .

Γ,ν1Z.φ(Z)
Γ,φ(tt)

Γ,νn+1Z.φ(Z)
Γ,φ(νnZ.φ(Z))

Every branch in a successful proof tree thereby is finite and finishes at a sequentΓ,tt or Γ,P,¬P. For
instance, Figure 4 illustrates part of the proof tree forνZ.µX.[a]Z∨〈a〉X.

Alternatively, one can accept infinite depth proofs but find afinite way of generating or recognising
them. Extra criteria for deciding when an infinite tree labelled with sets of formulas is indeed a proof are
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necessary. In particular, we need to guarantee (see comments after Fact 1) that in any infinite branch a
greatest fixpoint formula is unfolded infinitely often. In [8] the authors add the extra mechanism of an
infinite game that plays over an infinite tree. In [2] for linear time mu-calculus the extra mechanism is a
nondeterministic parity automaton that runs over the tree.

What we shall do is to show that indeed there is a means for obtaining a finite proof using names.
This mechanism was introduced in [7] as a tableau decision procedure for showing satisfiability ofµM
formulas. Here we reformulate it as a proof system for showing when a formula is valid.

4 Proof System with Names

Our aim is now to build a proof system such that a formula has a finite proof tree if, and only if, it is valid.
The proof system includes some auxiliary naming notation. Assume a starting guarded closed formulaγ
in positive normal form.

Definition 3. If in γ the subformulaσ1Z.ψ is a proper subformula ofσ2Y.φ then Y ismore outermost
than Z (inγ). Variable X is avariablein γ if σX.ψ is a subformula ofγ and it is aν-variableif σ is ν .

We assume a fixed linear orderingX1, . . . ,Xm on all the distinct variables inγ such that ifXi is more
outermost thanXj then i < j. For instance, in a linear ordering for variables in(νZ.µX.[a]Z∨ 〈a〉X)∧
µY.[a]Y theν-variableZ must occur beforeX whereasY can occur before or after it. For eachν-variable
Z in γ we assume a finite set{z1,z2, . . . ,zl} of namesfor Z wherel is the length ofγ .

The proof system has sequents of the formw ⊢ Γ wherew is a sequence of distinct names forν-
variables and each element ofΓ has the formφu whereφ is a formula (belonging to the closure ofγ) and
u is a subsequence ofw. The initial sequent is⊢ γ with the empty sequence of names. Ifv= n1 . . .nk is a
sequence of names thenv(i), 1≤ i ≤ k, is the elementni .

Definition 4. Assume X1, . . . ,Xm is the fixed linear ordering of variables inγ and u,v,w are sequences
of names of these variables where u,v are subsequences of w.

1. We write u<w v if for some j, (1) u( j) and v( j) are names of the same variable and u( j) occurs
before v( j) in w, and (2) u(i) = v(i) for all i < j.

2. The sequence u↾ Xi is the subsequence of u that omits all names of the variables Xi+1, . . . ,Xn.

3. We write u⊏w v if u<w v or there is aν-variable Xi such that v↾ Xi is a proper prefix of u↾ Xi.

The proof rules in Figure 5 are an elaboration of those in Figure 2. Again, sets of formulas are
to be understood disjunctively; now formulas also carry sequences of names reflecting the history of
unfoldings of greatest fixpoints. The∨ and∧ rules are similar to before; the names index is passed
to the components. In the modal rule we assume that〈a〉Σ is the set of formulas{〈a〉φu |φu ∈ Σ}; in
an applicationΣ can be empty. Some further notation:w′ in the conclusion of the modal rule (and in
other rules) is the subsequence of names inw that still occur inΣ andu; names that occurred only in
formulas in the premisesΓ are removed fromw. Fixpoint formulas are unfolded; names inu that belong
to variables that are more innermost thanZ are removed fromu (and fromw if they do not occur inΓ). In
the case of a greatest fixpoint a new name forz is also added to the name sequence (both inw′ andu ↾ Z).
Importantly, there are also two key structural rules in Figure 6. Ifφu andφv both occur in a sequentw⊢ Σ
then eitheru⊏w v or v⊏w u. In the case of the rule Resetz the namesz,z1, . . . ,zk are names for the same
variableZ andzi could be the same aszj . When applying the proof rules of Figures 5 and 6 we assume
that the structural rules have priority over the logical rules.
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w⊢ Γ,Pu
,¬Pv w⊢ Γ,ttu

w⊢ Γ,φ ∨ψu

w⊢ Γ,φu,ψu

w⊢ Γ,φ ∧ψu

w⊢ Γ,φu w⊢ Γ,ψu

w⊢ Γ,〈a〉Σ, [a]ψu

w′ ⊢ Σ,ψu

w⊢ Γ,µZ.φ(Z)u

w′ ⊢ Γ,φ(µZ.φ(Z))u↾Z

w⊢ Γ,νZ.φ(Z)u

w′zi ⊢ Γ,φ(νZ.φ(Z))(u↾Z)zi
zi is the first name forZ not occurring inw

Figure 5: Goal directed proof rules with names

Thin
w⊢ Γ,φu,φv

w′ ⊢ Γ,φu
u⊏w v

Resetz
w⊢ Γ,φuzz1u1

1 , . . . ,φuzzkuk
k

w′ ⊢ Γ,φuz
1 , . . . ,φuz

k

zdoes not occur inΓ

Figure 6: Structural proof rules

Definition 5. A node n of a tree labelled with the sequent w⊢ Γ is a leaf if there is a node m above it, its
companion, labelled with the same sequent w⊢ Γ; this leaf issuccessfulif between nodes n and m there
is an application of the rule Resetz for some z such that for any node n′ labelled with w′ ⊢ Σ between and
including n and m the name z occurs in w′.

Definition 6. A proof treefor γ is a tree where

1. the root is labelled⊢ γ ,

2. any other node is labelled with a sequent that is the resultof an application of a rule in Figure 5
or 6 to the sequent at its parent node,

3. each leaf is labelled with a sequent that is an instance of an axiom in Figure 5 or is successful
according to the repeat condition.

A tree is not a proof if it has a leaf labelled with a sequent of the form

w⊢ Pu1
1 , . . . ,Puk

k ,¬Qv1
1 , . . . ,¬Qvl

l ,〈a1〉Σ1, . . . ,〈am〉Σm

whereQ j 6= Pi for all i, j or has a leafn that is a repeat because of its companionm and for every
application of a rule Resetz betweenmandn there is a noden′ between (and including)n andm labelled
w ⊢ Σ such thatz does not occur inw. Given a formulaγ there are at most 2|γ | different subsets of
subformulas ofγ where|γ | is the size ofγ . The number of greatest fixpoints inγ is also bounded by|γ |.
The number of different possible sequents derivable from⊢ γ is bounded by 2O(|γ |2|log(γ)|), see [7], which
is therefore also a bound on the depth of a tree. Moreover, thewidth of a tree is bounded by 2. The only
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Z = νZ.µX.[a]Z∨〈a〉X X = µX.[a]Z∨〈a〉X

⊢ Z

z1 ⊢ Xz1

z1 ⊢ ([a]Z∨〈a〉X)z1

z1 ⊢ [a]Zz1,〈a〉Xz1

z1 ⊢ Zz1,Xz1

z1z2 ⊢ Xz1z2,Xz1

Thin
z1z2 ⊢ Xz1z2

Resetz1
z1 ⊢ Xz1

Figure 7: A proof tree

rule that allows choice is the modal rule; the number of choices is again bounded by|γ |. Therefore, the
number of possible trees with root⊢ γ is bounded in terms of|γ |.

Fact 3. For any closed guardedγ there are only boundedly many trees forγ and each such tree has
boundedly many nodes (where the bounds are functions of|γ |).

In Figure 7 there is a proof tree for the valid formulaνZ.µX.[a]Z∨ 〈a〉X where we employ the
abbreviations thatZ is this formula andX is it’s subformulaµX.[a]z∨〈a〉X. It is a proof tree because of
the repeat sequentz1 ⊢ Xz1 with an application of Repeatz1 inbetween wherez1 is a name that occurs in
each sequent throughout. The proof tree for a more complex valid formulaX∨Z is illustrated in Figure 8.
We encourage the reader to check that indeed it is a proof tree.

At the cost of increasing the size of trees, we can add furtherconditions on when a node counts as a
leaf in Definition 5: for instance, an extra requirement is that its sequent is the result of an application of
the modal rule.

Theorem 4. For any closed guardedγ , |= γ iff there is a proof tree forγ .

Proof. Assume|= γ but there is not a proof tree forγ . We show that we can build a countermodel toγ ;
a structureT and a states of T such thats 6|= γ . Given a sequentw⊢ Γ it is valid if |=

∨

{φ |∃u.φu ∈ Γ}.
The initial sequent⊢ γ is valid. We now build a tree using the proof rules where each node is labelled
with a valid sequent (or, as we shall see, a countermodel) andexcept for the root node is the result of
an application of a proof rule. Assume we have built part of the tree and consider a current leaf labelled
with a valid sequent; if it is not an axiom or a repeat then the tree can be extended with further valid
sequents. This is clear if we can apply a structural rule of Figure 6 which has priority and it is also clear
for ∧, ∨ and the fixpoint rules of Figure 5; in all these cases if the premise sequent is valid then so are
the conclusion sequents. We next come to the modal rule. We assume it is only applied if no other rule
applies. Then a leaf of the current tree is labelled with a valid sequent of the form

(∗) w⊢ Pu1
1 , . . . ,Puk

k ,¬Qv1
1 , . . . ,¬Qvl

l ,〈a1〉Σ1, . . . ,〈am〉Σm, [b1]ψw1
1 , . . . , [bp]ψ

wp
p
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X = νX.〈a〉X∧Y Z= νZ.[a]Z∨W
Y = µY.〈a〉Y∨P W= µW.[a]W∨¬P

⊢ X,Z

x1 ⊢ (〈a〉X∧Y)x1,Z

x1z1 ⊢ (〈a〉X∧Y)x1,([a]Z∨W)z1

x1z1 ⊢ (〈a〉X∧Y)x1, [a]Zz1,Wz1

T1 x1z1 ⊢Yx1, [a]Zz1,Wz1

x1z1 ⊢ (〈a〉Y∨P)x1, [a]Zz1,Wz1

x1z1 ⊢ 〈a〉Yx1,Px1, [a]Zz1,Wz1

x1z1 ⊢ 〈a〉Yx1,Px1, [a]Zz1,([a]W∧¬P)z1

x1z1 ⊢ 〈a〉Yx1,Px1, [a]Zz1, [a]Wz1

x1z1 ⊢Yx1,Zz1

x1z1z2 ⊢Yx1,([a]Z∨W)z1z2

x1z1z2 ⊢Yx1, [a]Zz1z2,Wz1z2

Resetz1
x1z1 ⊢Yx1, [a]Zz1,Wz1

x1z1 ⊢ 〈a〉Yx1,Px1, [a]Zz1,¬Pz1

T1

x1z1 ⊢ 〈a〉Xx1, [a]Zz1,Wz1

x1z1 ⊢ 〈a〉Xx1, [a]Zz1,([a]W∧¬P)z1

x1z1 ⊢ 〈a〉Xx1, [a]Zz1, [a]Wz1

x1z1 ⊢ Xx1,Zz1

x1z1x2 ⊢ (〈a〉X∧Y)x1x2,Zz1

Resetx1
x1z1 ⊢ (〈a〉X∧Y)x1,Zz1

x1z1z2 ⊢ (〈a〉X∧Y)x1,([a]Z∨W)z1z2

Resetz1
x1z1 ⊢ (〈a〉X∧Y)x1,([a]Z∨W)z1

x1z1 ⊢ 〈a〉Xx1, [a]Zz1,¬Pz1

x1z1 ⊢ Xx1,Zz1

x1z1x2 ⊢ (〈a〉X∧Y)x1x2,Zz1

Resetx1
x1z1 ⊢ (〈a〉X∧Y)x1,Zz1

x1z1z2 ⊢ (〈a〉X∧Y)x1,([a]Z∨W)z1z2

Resetz1
x1z1 ⊢ (〈a〉X∧Y)x1,([a]Z∨W)z1

Figure 8: A proof tree
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where eachΣi is nonempty,ai 6= a j when i 6= j and we assume it is not an axiom, soPi 6= Q j for all
i, j. A possible conclusion of an application of the modal rule has the formw′ ⊢ Σi,ψ

wj
j whenai = b j or

w′ ⊢ ψwj
j whenb j is different from eachai . With our tree we allowall such possible applications. For

each such application if the sequent is not valid we let the node be a leaf and we associate a countermodel
to it: that is, a structureTi j and a statesi j such thatsi j 6|=

∨

{φ |∃u.φu ∈ Σi}∨ψ j or a structureT j and
a statesj such thatsj 6|= ψ j . If all possible applications of the rule are invalid, including the case when
p= 0 in (∗), then we obtain a contradiction by constructing a countermodel to the valid premise(∗) as
follows. ForT we take the disjoint union of eachTi j and of eachT j together with a new states. For

eachai such that¬∃b j .ai = b j assume there is not a transition of the forms
ai−→ s′. Otherwise, we let

s
ai−→ si j of Ti j ands

bj
−→ sj of T j . Finally, we assumes 6∈ VProp(Pi) ands∈ VProp(Q j) for eachi, j.

Clearly, by construction,s fails to satisfy each formula in(∗). Any node of the tree labelled with a
sequent of the form(∗) is called amodalnode. Therefore, there is at least one child node labelled with
a valid sequent of a modal node. For each such child we continue to extend the tree. The tree building
eventually stops when nodes are leaves either because they are children of a modal node labelled with
an invalid sequent or nodes labelled with an axiom or a repeatnode. In the last case we assume that we
restrict repeat nodes to be children of modal nodes. All nodes of the tree except for some successors
of modal nodes are labelled with valid sequents. However, byassumption there is not a proof tree for
γ . We now prune the tree. Starting top down, at any node where∧ is applied we choose one of the
successor nodes which fails to produce a proof tree; we discard the subtree of the other successor. The
result is a finite tree where the only branching is at modal nodes. All leaves are either unsuccessful
repeats or children of modal nodes labelled with invalid sequents (and with associated countermodels).
From this tree we build a countermodel toγ . We identify as states any region of the tree starting at the
root or at a child of a modal node labelled with a valid sequentdown to, and including, the next modal
node. In the case of a leaf that is a repeat we assume that thereis a backward edge to its companion
node above. If a states finishes at the modal node labelled with the sequent(∗) then for eachai such
that¬∃b j .ai = b j assume there is not a transition of the forms

ai−→ s′. Otherwise, for each child that is

labelled with an invalid sequent we lets
ai−→ si j of the countermodelTi j or s

bj
−→ sj of the countermodel

T j . For any child labelled with valid sequentw′ ⊢ Σi,ψ
wj
j whenai = b j whose associated state iss′ we

assume a transitions
ai−→ s′ or any childw′ ⊢ ψwj

j whose associated state iss′ we assume a transition

s
bj
−→ s′: the associated state of a repeating leaf is that of its companion (the target of the backedge).

Finally, we assumes 6∈ VProp(Pi) ands∈ VProp(Q j) for eachi, j. We say thatφ ∈ s if ∃u.φu belongs
to some sequent in the region associated withs. The proof is completed by showing that ifφ ∈ s then
in the countermodels 6|= φ . Assume to the contrary that for somes andφ , φ ∈ s ands |= φ . Clearly,
then φ is not a literal, an atomic formula or the negation of an atomic formula. For a formulaφ ∈ s
we can follow it through the tree, passing between states andjumping from a leaf to its companion. If
φ1 ∧ φ2 ∈ s then by constructionφ1 ∈ s or φ2 ∈ s. If φ1 ∨ φ2 ∈ s then we can choose betweenφ1 ∈ s
andφ2 ∈ s. If 〈a〉φ ∈ s then we look at the modal node associated withs: if there is not at such tht
s

a
−→ t or only countermodels undera-transitions toφ thens 6|= 〈a〉φ . Otherwise, we can choose at

such thats
a

−→ t andφ ∈ t. Similarly, for [b]ψ ∈ s. If σZ.φ ∈ s thenφ(σZ.φ) ∈ s. Therefore, if we
follow φ ∈ s for s |= φ we obtain a finite or infinite sequenceφ1 ∈ s1,φ2 ∈ s2, . . . ,φn ∈ sn whereφ1 = φ ,
s1 = s, there is a state transition whenφ is a modal formula and for alli, si |= φi . Clearly, the sequence
cannot be finite ending at a literal or a modal formula. So, thesequence must be infinite. We show that
the outermost fixpoint unfolded infinitely often is a least fixpoint which is a contradiction by Fact 1. For
suppose it is a greatest fixpointνZ.ψ : then the sequence of formulas must have a subsequence of the
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form . . . ,νZ.ψu,ψ(νZ.ψ)u′z, . . . ,νZ.ψu′zu1,ψ(νZ.ψ)u′zzi , . . . ,νZ.ψu′zu2 where Resetz is applied andz is
defined throughout: that is, the sequence must pass through asuccessful repeat.

For soundness, assume that there is a proof tree forγ but 6|= γ . Therefore, there is a proof tree with
root labelled⊢ γ all of whose leaves are either labelled with axioms or are successful repeats. A sequent
w ⊢ Γ is not valid if 6|=

∨

{φ |∃u.φu ∈ Γ}. First, if the premise of an application of a rule is not valid
then so is a conclusion. This is clear for the structural rules, for the∨ rule and the fixpoint rules. In the
case of∧, if the premise sequent is not valid then one of the successorsequents is not valid. In the case
of the modal rule, if|=

∨

Σ∨Ψ then by standard modal reasoning|= φ ∨〈a〉Σ∨ [a]ψ ; so, if the premise
sequent is not valid then neither is the conclusion in an application of the modal rule. Next we refine
the argument by adding ordinal information. If6|= νZ.φ then using Fact 1 there is a least ordinalα , a
countermodelT and a states of T such thats 6|= ναZ.φ . To do this, we slightly change the rules (as in
fact used in Figures 7 and 8) by letting variables abbreviatethe fixpoint subformulas ofγ .

w⊢ Γ,σZ.φ(Z)u

w⊢ Γ,Zu

w⊢ Γ,Zu

w′ ⊢ Γ,φ(Z)u↾Z
Z is µZ.φ(Z)

w⊢ Γ,Zu

w′zi ⊢ Γ,φ(Z)(u↾Z)zi
z is νZ.φ(Z) andzi is the first name forZ not occurring inw

So, formulas can contain variables. We associate ordinals with sequents by adding ordinals to names.
Assume an invalid sequentw⊢ Γ wherew= n1, . . . ,nk. We extendw to pairs(n1,α1), . . . ,(nk,αk) where
eachαi is an ordinal: ifφu ∈ Γ andu contains a name forZ then the meaning ofZ in φu is ναi Z.ψ when
Z is νZ.ψ and wherezi is the last name forz in u. We assume that the invalid sequentw |= Γ remains
invalid when greatest fixpoint subformulas are so interpreted. We maintain the following invariant in an
ordinal sequence: ifw= (n1,α1), . . . ,(nk,αk), i < j andni ,n j name the same variableZ such that there is
a formulaφu such thatni ,n j both occur inu thenαi > α j . Moreover, we assume lexicographic ordering
on ordinal sequences: ifw= (n1,α1), . . . ,(nk,αk) andw′ = (n1,β1), . . . ,(nk,βk) thenw< w′ if for some
j, α j < β j and for all i < j, αi = βi . We are interested in a least ordinal interpretation which makes
w⊢ Γ invalid. Moreover, if a proof rule is applied to such a sequent then a conclusion is invalid under the
ordinal interpretation; we minimise the ordinal sequence which makes the conclusion invalid with respect
to the lexicographical ordering. This is clear for the∨, Thin, ∧, modal,σZ and least fixpoint variable
Z (where we lose ordinals for any innerX such thatZ > X) rules. In the case of the maximal fixpoint
variable rule with premisew ⊢ Γ,Zu if there is no name forZ in u then we know that there is a leastα
such thatw′(zi ,α) ⊢ Γ,φ(Z)(u↾Z)zi is invalid wherezi is a new name forZ. Otherwise, there is a name for
Z in u; suppose the last one iszj with ordinal α j . Since the fixpoint is unfolded we know that we can
decrease the meaning ofZu by at least one; so for the invalid conclusionw′(zi ,α) ⊢ Γ,φ(Z)(u↾Z)zi α < α j .
Finally, we turn to the Resetz rule with premisew⊢ Γ,φuzz1u1

1 , . . . ,φuzzkuk
k wherezdoes not occur inΓ and

z,z1, . . . ,zk name the same variable. Inw we have(z,α) and later(z1,α1), . . . ,(zk,αk) (in any order). By
the invariant property it follows thatα > αi for eachi and thatZ of φ j has meaningνβ j Z.φ for β j ≤α j (as
u j may contain further names forZ). Let β = min{α1, . . . ,αk}. Clearly, we can replace(z,α) in w with
(z,β ), remove all the namesziui such thatw′ ⊢ Γ,φuz

1 , . . . ,φuz
k is invalid. Given a proof tree forγ we now

follow a branch of invalid sequents down the tree minimisingtheir ordinal interpretations of variables.
Clearly, we cannot reach a leafw ⊢ Γ,Pu,¬Pv or w ⊢ Γ,ttu as these sequents are valid. Moreover, we
cannot reach a successful repeatw⊢ Γ with an application of Resetz in between whenz is in each sequent
throughout. Consider the companion node with ordinal interpretationw= (n1,α1), . . . ,(nk,αk) and the
leaf node with interpretationw′ = (n1,β1), . . . ,(nk,βk): it follows thatw′ < w as at least the entry forz
was reduced by the Resetz rule which is a contradiction.
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5 Conclusion

We have presented a sound and complete proof system for checking validity of modal mu-calculus formu-
las. However, it relies on auxiliary notation for names thatkeep track of unfoldings of greatest fixpoints.

We tried, but failed, to see if this method is able to underpina different proof of completeness of
Kozen’s axiomatisation than Walukiewicz’s proof by induction.

An alternative framework for deciding satisfiability and validity for µM is automata-theoretic [11].
Using two way automata there is also a decision procedure forsatisfiability and validity of formulas
when past modal operators are included [13]. Neither a soundand complete axiom system nor a sound
and complete tableau proof system have been developed for this extended fixpoint logic (which fails the
finite model property).
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[3] G. Jäger, M. Kretz and T. Studer, Canonical completeness of infinitaryµ . The Journal of Logic and Algebraic
Programming76270–292 (2008). doi:10.1016/j.jlap.2008.02.0005

[4] D. Kozen, Results on the propositionalµ-calculus. Theor. Comput. Sci.27 333–354 (1983).
doi:10.1016/0304-3975(82)90125-6

[5] D. Kozen, A finite model theorem for the propositionalµ-calculus.Studia Logica47 233–241 (1986).
doi:10.1007/BF00370554

[6] M. Lange and C. Stirling, Focus games for satisfiability and completeness of temporal logic. In Procs LICS
2001, 357–365 (2001). doi:10.1109/LICS.2001.932511

[7] N. Jungteerapanich, A tableau system for the modalµ-calculus. In Procs TABLEAUX 2009, LNAI5607
220–234 (2009). doi:10.1007/978-3-642-02716-117

[8] D. Niwinski and I. Walukiewicz, Games for theµ-calculus.Theor. Comput. Sci.163 99–116 (1996).
doi:10.1016/0304-3975(95)00136-0

[9] D. Schmidt, Data flow analysis is model checking of abstract interpretations. In Procs. POPL 1998 38–48
(1998). doi:10.1145/268946.268950

[10] C. Stirling and D. Walker, Local model checking in the modal mu-calculus.Theor. Comput. Sci.89161–177
(1991). doi:10.1016/0304-3975(90)90110-4

[11] R. Streett and E. Emerson, An automata theoretic decision procedure for the propositional mu-calculus.
Information and Computation81249–264 (1989). doi:10.1016/0890-5401(89)90031-X

[12] T. Studer, On the proof theory of the modal mu-calculus.Studia Logica 89 343–363 (2008).
doi:10.1007/s11225-008-9133-6

[13] M. Vardi, Reasoning about the past with two-way automata. In Procs ICALP 98, LNCS1443628–641 (1998).
doi:10.1007/BFb0055090

[14] I. Walukiewicz, Completeness of Kozen’s axiomatisation of the propositionalµ-calculus.Information and
Computation157142–182 (2000). doi:10.1006/inco.1999.2836

http://dx.doi.org/10.1016/S1570-2464(07)80015-2
http://dx.doi.org/10.1007/11944836_26
http://dx.doi.org/10.1016/j.jlap.2008.02.0005
http://dx.doi.org/10.1016/0304-3975(82)90125-6
http://dx.doi.org/10.1007/BF00370554
http://dx.doi.org/10.1109/LICS.2001.932511
http://dx.doi.org/10.1007/978-3-642-02716-1_17
http://dx.doi.org/10.1016/0304-3975(95)00136-0
http://dx.doi.org/10.1145/268946.268950
http://dx.doi.org/10.1016/0304-3975(90)90110-4
http://dx.doi.org/10.1016/0890-5401(89)90031-X
http://dx.doi.org/10.1007/s11225-008-9133-6
http://dx.doi.org/10.1007/BFb0055090
http://dx.doi.org/10.1006/inco.1999.2836

	1 Introduction
	2 Modal Mu-calculus
	3 Proof Systems
	4 Proof System with Names
	5 Conclusion

