
A. Banerjee, O. Danvy, K.-G. Doh, J. Hatcliff (Eds):
David A. Schmidt’s 60th Birthday Festschrift
EPTCS 129, 2013, pp. 136–160, doi:10.4204/EPTCS.129.10

c© P. Sestoft
This work is licensed under the
Creative Commons Attribution License.

Online partial evaluation of sheet-defined functions

Peter Sestoft
IT University of Copenhagen

sestoft@itu.dk

We present a spreadsheet implementation, extended with sheet-defined functions, that allows users
to define functions using only standard spreadsheet concepts such as cells, formulas and references,
requiring no new syntax. This implements an idea proposed by Peyton-Jones and others [13].

As the main contribution of this paper, we then show how to add an online partial evaluator for
such sheet-defined functions. The result is a higher-order functional language that is dynamically
typed, in keeping with spreadsheet traditions, and an interactive platform for function definition and
function specialization.

We describe an implementation of these ideas, present some performance data from microbench-
marks, and outline desirable improvements and extensions.

1 Introduction

Spreadsheet programs such as Microsoft Excel, OpenOffice Calc and Gnumeric provide a simple, pow-
erful and easily mastered end-user programming platform for mostly-numeric computation. Yet as ob-
served by several authors [12, 13], spreadsheets lack the most basic abstraction mechanism: The ability
to create a named function directly from spreadsheet formulas.

Although most spreadsheet programs allow function definitions in external languages such as VBA,
Java or Python, those languages have a completely different programming model that many competent
spreadsheet users find impossible to master. Moreover, the external language bindings are sometimes
surprisingly inefficient.

Here we present an implementation of sheet-defined functions in the style Nuñez [12] and Peyton-
Jones et al. [13] that (1) uses only standard spreadsheet concepts and notations, no external languages,
so it should be understandable to competent spreadsheet users, and (2) is very efficient, so that user-
defined functions can be as fast as built-in ones. The ability to define functions directly from spreadsheet
formulas should (3) encourage the development of shared function libraries, which in turn should (4)
improve reuse, reliability and upgradability of spreadsheet models.

Moreover, we believe that partial evaluation, or automatic program specialization, is a plausible tool
in the declarative and interactive context of spreadsheets. In particular, the specialization of a function
closure fv is achieved through a simple function call SPECIALIZE(fv), which creates a new specialized
function and returns a closure for it. The resulting specialized function can be invoked immediately and
is used exactly like the given unspecialized one; but (hopefully) executes faster. No external files are
created and no compilers need to be invoked. The design and implementation of this idea are the main
contributions of this paper, presented in sections 6 through 8.

Our motivation is pragmatic. A sizable minority of spreadsheet users, including biologists, physicists
and financial analysts, build very complex spreadsheet models. This is because it is convenient to exper-
iment with both models and data, and because the models are easy to share and distribute. We believe
that one can advance the state of the art by giving spreadsheet users better tools, rather than telling them
that they should have used Matlab, Java, Python or Haskell instead.

http://dx.doi.org/10.4204/EPTCS.129.10
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

P. Sestoft 137

Another paper, describing complementary aspects of this work, in particular details of evaluation
conditions as well as a case study on implementing financial functions, appears elsewhere [19]; section 2
of the present paper is reproduced from that paper. Many more technical details are given in a draft tech-
nical report [18]. Our prototype source code is available from http://www.itu.dk/people/sestoft/funcalc/.

2 Sheet-Defined Functions

We first give two motivating examples of sheet-defined functions.

Example 2.1 Consider the problem of calculating the area of each of a large number of triangles whose
side lengths a, b and c are given in columns E, F and G of a spreadsheet, as in Figure 1. The area can
be computed by the formula

√
s(s−a)(s−b)(s− c) where s = (a+b+c)/2 is half the perimeter. Now,

either one must allocate a column H to hold the value s and compute the area in column I, or one must
inline s four times in the area formula. The former pollutes the spreadsheet with intermediate results,
whereas the latter would create a long expression that is nearly impossible to enter without mistakes. It
is clear that many realistic problems would require even more space for intermediate results and even
more unwieldy formulas.

Here we propose instead to define a function, TRIAREA say, using standard spreadsheet cells and
formulas, but on a separate function sheet, and then call this function as needed from the sheet containing
the triangle data.

Figure 2 shows a function sheet containing a definition of function TRIAREA, with inputs a, b and c
in cells A3, B3 and C3, the intermediate result s in cell D3, and the output in cell E3.

Figure 3 shows an ordinary sheet with triangle side lengths in columns E, F and G, and function calls
=TRIAREA(E2,F2,G2) in column H to compute the triangles’ areas. There are no intermediate results;
these exist only on the function sheet. As usual in spreadsheets, it suffices to enter the function call once
in cell H2 and then copy it down column H with automatic adjustment of cell references. �

Figure 1: Triangle side lengths and computed areas, with intermediate results in column H.

Figure 2: Function sheet, where DEFINE in E4 creates function TRIAREA with input cells A3, B3 and C3,
output cell E3, and intermediate cell D3.

138 Partial evaluation of sheet-defined functions

Figure 3: Ordinary sheet calling TRIAREA, defined in Figure 2, from cells H2:H5.

Example 2.2 Microsoft Excel has a built-in function REPT(s,n) that computes sn, the string consisting
of n ≥ 0 concatenated copies of string s. This built-in function can be implemented efficiently as a
recursive sheet-defined function REPT4(s,n) as shown in figure 4. This implementation is optimal,
using O(logn) string concatenation operations, written (&), for a total running time of O(n · |s|), where
|s| is the length of s. �

Figure 4: Recursive function REPT4(s,n) computes sn, the concatenation of n copies of string s. Cells
B66 and B67 are input cells, B69 is the output cell, and B68 holds an intermediate result.

In contrast to Peyton-Jones et al., we allow sheet-defined functions to be recursively defined, because
that is necessary to reimplement many built-in functions, and higher-order, because that generalizes
many of Excel’s ad hoc functions (such as SUMIF, COUNTIF) and features (such as Goal Seek).

3 Dual implementation: Interpretation and compilation

Our spreadsheet implementation, called Funcalc, is written in C# and consists of an interpretive imple-
mentation of ordinary sheets, described in this section, and a compiled implementation of sheet-defined
functions, described in section 4. The rationale for having both is that ordinary sheets will be edited
frequently but each cell’s formula is evaluated only once every recalculation, whereas a sheet-defined
function will be edited rarely but may be called thousands of times in every recalculation. Hence compi-
lation would cause much overhead and provide little benefit in ordinary sheets, but causes little overhead
and provides much benefit in function sheets.

Funcalc uses the standard notions of workbook, worksheet, cell, formula and built-in function. A
cell may contain a constant or a formula (or nothing); a formula in a cell consists of an expression and a
cache for the expression’s value.

P. Sestoft 139

3.1 Interpretive implementation

The interpretive implementation is used to evaluate formulas on ordinary sheets. Spreadsheet formulas
are dynamically typed, so runtime values are tagged by runtime types such as Number, Text, Error, Array,
and Function, with common supertype Value. Such tagged runtime values will generally be allocated as
objects in the garbage-collected heap.

A formula expression e in a given cell on a given worksheet is evaluated interpretively by calling
e.Eval(sheet,col,row), which returns a Value object. A simple interpretive evaluator guided by
the expression abstract syntax tree will involve wrapping of result values upon return, followed by un-
wrapping when the value is used. This overhead is especially noticeable when a 64-bit floating-point
number (type double, which could be stack-allocated) gets wrapped as a heap-allocated Number object.
An important goal of the compiled implementation (section 4) is to avoid this overhead.

A technical report [18] gives more details about the interpretive implementation and its design trade-
offs.

4 Compiled implementation of sheet-defined functions

The compiled implementation is used to execute sheet-defined functions.

4.1 Defining functions and creating closures

We add just three new built-in functions to support the definition and use of sheet-defined functions,
including higher-order ones. There is a function to define a new sheet-defined function:

• DEFINE("name", out, in1..inN) creates a function with the given name, result cell out, and
input cells in1..inN, where N >= 0, as shown in figure 2 cell E4.

Two other functions are used to create a function value (closure) and to apply it, respectively:

• CLOSURE("name", e1..eM) evaluates argument expressions e1..eM to values a1..aM and re-
turns a closure for the sheet-defined function "name". An argument ai that is an ordinary value
gets stored in the closure, whereas an argument that is #NA, for “not available”, signifies that this
argument must be provided later when calling the closure.

• APPLY(fv, e1..eN) evaluates fv to a closure, evaluates argument expressions e1..eN to values
b1..bN, and applies the closure by using the bj values for those arguments in the closure that
were #NA at closure creation.

The #NA mechanism provides a very flexible way to create closures, or partially applied functions. For
instance, given a function MONTHLEN(y,m) to compute the number of days in month m of year y, we may
create the closure CLOSURE("MONTHLEN", 2013, #NA) which computes the number of days in any
month in 2013, or we may create the closure CLOSURE("MONTHLEN", #NA, 2) which computes the
number of days in February in any year. This notational flexibility is rather unusual from a programming
language perspective, but fits well with the standard spreadsheet usage of #NA to denote a value that is
not (yet) available.

The built-in functions DEFINE, CLOSURE and APPLY provide the general computation model for
higher-order functions in our implementation, and are the only means needed to define functions, create
closures, and call closures. See also figure 7. All the required syntax is already present in standard
spreadsheet implementations.

140 Partial evaluation of sheet-defined functions

Section 6 shows that these functions fit excellently with the single new function SPECIALIZE needed
to partially evaluate closures.

4.2 Overall compilation process

The compiled implementation of sheet-defined functions generates CLI (.NET) bytecode at runtime.
Runtime bytecode generation maintains the interactive style of spreadsheet development and some porta-
bility, while achieving good performance because the .NET just-in-time compiler turns the bytecode into
efficient machine code.

The compilation of a sheet-defined function proceeds in these steps:

1. Build a dependency graph of the cells transitively reachable, by cell references, from the output
cell.

2. Perform a topological sort of the dependency graph, so a cell is preceded by all cells that it refer-
ences. It is illegal for a sheet-defined function to have static cyclic dependencies.

3. If a cell in the graph is referred only once (statically), inline its formula at its unique occurrence.
This saves a local variable at no cost in code size or computation time.

4. Using the dependency graph, determine the evaluation condition [19] for each cell; build a new
dependency graph that takes evaluation conditions into account; and redo the topological sort. The
result is a list of ComputeCell objects, each containing a cell c and an associated variable v_c.

5. Generate CLI bytecode: traverse the list in forward topological order, and for each pair of a cell c
and associated variable v_c, generate code for the assignment v_c = <code for c’s formula>.

The evaluation conditions mentioned in step 4 are needed to correctly evaluate recursive functions such
as that in example 2.2; see [19] for more details.

The formula in a cell c contains an expression represented by abstract syntax of type CGExpr (for
code generating expression); see figure 5.

4.3 Context-dependent compilation

This section describes the compilation, basically step 5 in section 4.2, of a formula expression represented
by the abstract syntax shown in figure 5. Compilation to CLI bytecode is performed at runtime by a
straightforward recursive traversal of the abstract syntax tree [17]. The main embellishments of the
code generation serve (1) to avoid wrapping 64-bit floating-point numbers as heap-allocated Number
objects, (2) to represent and propagate error values efficiently, and (3) to implement proper tail recursion
for sheet-defined functions. Point (2) is required by spreadsheet semantics: a failed computation must
produce an error value, and such error values must propagate from operands to results in any context,
such as arithmetics, comparisons, conditions, and function calls.

Achieving (3) is near-trivial, using the CLI “tail.” instruction prefix (as in example 8.4); how to
achieve (1) and (2) is described in the remainder of this section.

4.3.1 No value wrapping

The simplest compilation scheme, implemented by the method Compile on expressions, generates code
to emulate interpretive evaluation. The call e.Compile() must generate code that, when executed,
leaves the value of e on the stack top as a Value object.

P. Sestoft 141

CGSdfCall

CGNumberConst

CGNeg

ArrayValue

CGArithmetic2

CGConst

CGError

CGOr

CGExtern

*

CGIfCGStrictOperation

CG<> SdfInfoCG=

CGCached

FullCellAddr
CGValueConst

CGFunctionCall

CG>

CGAnd

CGNormalCellArea

CGTextConst

CGChoose

CGNot

CGCellRef

CG<=

CGApplyCGComparison CGClosure

CG<

CGExpr

CGCompositeCGNormalCellRef

CGArithmetic1

CG>=

Figure 5: Class diagram for Funcalc’s expression abstract syntax. All expressions are side effect free ex-
cept possibly calls to external functions (CGExtern). The rather elaborate inheritance structure facilitates
ordinary code generation as well as partial evaluation. A CGClosure is a CLOSURE() call, CGApply is an
APPLY() call, CGFunctionCall is a call to any other built-in function, CGExtern is a call to an external
.NET function, and CGSdfCall is a call to a sheet-defined function. This is used in section 7.

142 Partial evaluation of sheet-defined functions

However, using Compile would wrap every intermediate result as an object of a subclass of Value,
which would be inefficient, in particular for numeric operations. In an expression such as A1*B1+C1,
the intermediate result A1*B1 would be wrapped as a Number object, only to be immediately unwrapped
before the addition. The creation of that Number object would dominate all other costs, because it
requires allocation in the heap and causes work for the garbage collector.

To avoid runtime wrapping of results that will definitely be used as numbers, we introduce another
compilation method. The call e.CompileToDoubleOrNan() must generate code that, when executed,
leaves the value of e on the stack as a 64-bit floating-point value. If the result is an error value, then the
number will be a NaN.

4.3.2 Error propagation

When computing with naked 64-bit floating-point values, we represent an error value as a NaN and use
the 51 bit “payload” of the NaN to distinguish error values, as per the IEEE754 standard [8, section 6.2].
Since arithmetic operations and mathematical functions preserve NaN operands, we get error propagation
for free. For instance, if d is a NaN, then Math.Sqrt(6.1*d+7.5) will be a NaN with the same payload,
thus representing the same error. As an alternative to error propagation via NaNs, one could use CLI
exceptions, but these turn out to be several orders of magnitude slower. This inefficiency matters little in
well-written C# software, which should not use exceptions for control flow, so a single exception would
terminate the software. By contrast, a spreadsheet workbook may have thousands of cells that have error
values during workbook editing, and these may be reevaluated whenever a single cell has been edited.

If both d1 and d2 are NaNs, then by the IEEE754 standard d1+d2 must be a NaN with the same
payload as one of d1 and d2. Hence at most one error can be propagated at a time, but that fits well with
spreadsheet development: The user fixes one error, only to see another error appear, then fixes that one,
and so on.

4.3.3 Compilation of comparisons

According to spreadsheet principles, comparisons such as B8>37 must propagate errors, so that if B8
evaluates to an error, then the comparison evaluates to the same error. When compiling a comparison we
cannot rely on NaN propagation; a comparison involving one or more NaNs is either true or false, not
undefined, in CLI [4, section III.3]. Hence we introduce yet another compilation method on expressions.

The call e.CompileToDoubleProper(ifProper,ifBad) must generate code that evaluates e; and
if the value is a non-NaN number, leaves it on the stack top as a 64-bit floating-point value and continues
with the code generated by ifProper; else, it leaves the value in a special variable and continues with
the code generated by ifBad.

Here ifProper and ifBad are themselves code generators, which generate the success continuation
and the failure continuation [20] of the evaluation of e.

The default implementation of e.CompileToDoubleProper uses e.CompileToDouble to generate
code to evaluate e to a (possibly NaN) floating-point value, then adds code to test at runtime that the result
is not NaN. In some cases, such as constants, this test can be performed at code generation time, thus
resulting in faster code.

4.3.4 Compilation of conditions

Like other expressions, a conditional IF(e0,e1,e2) must propagate errors from e0, so if e0 gives
an error value, then the entire conditional expression gives the same error value. For this purpose we

P. Sestoft 143

introduce a fourth and final compilation method on expressions.
The call e.CompileCondition(ifT,ifF,ifBad) must generate code that evaluates e; and if the

value is a non-NaN number different from zero, it continues with the code generated by ifT; if it is
non-NaN and equal to zero, continues with the code generated by ifF; else, leaves the value in a special
variable and continues with the code generated by ifBad.

For instance, to compile IF(e0,e1,e2), we compile e0 as a condition whose ifT and ifF contin-
uations generate code for e1 and e2.

4.3.5 On-the-fly optimizations

The four compilation methods provide some opportunities for making local optimizations on the fly. For
instance, in the comparison B8>37 we must test whether B8 is an error, whereas the constant 37 clearly
need not be tested at runtime. Indeed, method CompileToDoubleProper on a NumberConst object
performs the error test at code generation time instead.

As another optimization, to compile the unary logical operator NOT(e0) as a condition, we simply
compile e0 as a condition, swapping the ifT and ifF generators. This is useful because evaluation
conditions (see step 4 in section 4.2) are likely to contain such “silly” negations.

5 Performance

As a non-trivial micro-benchmark for the code generation scheme outlined in section 4, consider the
cumulative distribution function of the normal distribution N(0,1), known as NORMSDIST in Excel. It
can be implemented as a sheet-defined function using 20 formulas and 15 floating-point constants, and
in C, C# and VBA using roughly 30 lines of code.

Figure 6 compares the performance of several equally accurate implementations. It shows that a
sheet-defined function in our prototype implementation may be just 2.5 times slower than a function
written in a “real” programming language such as C or C#, and considerably faster than one written in
Excel’s macro language VBA, and faster than Excel’s own built-in function NORMSDIST.

Implementation Time (ns)
Sheet-defined function 118
C# 47
C (gcc 4.2.1 -O3) 51
Excel 2007 VBA function 1925
Excel 2007 built-in NORMSDIST 993

Figure 6: Running time (ns per call) for the cumulative distribution function for the normal distribution.
Experimental platform: Intel Core 2 Duo 2.66 GHz, Windows 7, .NET 4.5, MacOS X. Average of
200 000 to 1 000 000 calls; the observed variation between repeated experiments is less than 10%.

As a more substantial evaluation of the performance of sheet-defined functions, Sørensen reimple-
mented many of Excel’s built-in financial functions as sheet-defined functions [19, 21]. The implementa-
tion naturally uses recursive and higher-order functions. In almost all cases, the sheet-defined functions
are faster than Excel’s built-ins; the exceptions are functions that involve search for the zero of a function,
for which a rather naive algorithm was used in the reimplementation.

144 Partial evaluation of sheet-defined functions

6 Partial evaluation of sheet-defined functions

As described in section 4.1, the function call CLOSURE("name", a1, ..., aM) constructs a function
value fv, or closure, in the form of a partial application of function name. The closure fv is just a package
of the underlying named sheet-defined function and some early, non-#NA, arguments for it. Applying it
using APPLY(fv, b1, ..., bN) simply inserts the values of b1. . .bN instead of the #NA arguments
and then calls the underlying sheet-defined function; this is no faster than calling the original function.

However, if the closure fv is to be called more than once, it may be worthwhile to perform a special-
ization or partial evaluation of the underlying sheet-defined function with respect to the non-#NA values
among the arguments a1. . .aM. In Funcalc, this can be done by the built-in function SPECIALIZE:

• SPECIALIZE(fv) takes as argument a closure fv, generates code for a new function, and returns
a closure spfv for that function. The resulting closure can be used exactly as the given closure fv;
in particular, it can be called as APPLY(spfv, b1, ..., bN), and will produce the same result
as APPLY(fv, b1, ..., bN), but possibly faster.

More precisely, if the given closure fv contains N arguments with value #NA, and so has arity N,
then the newly created function clo#f will have arity N, and the closure spfv will have form
CLOSURE("clo#f", #NA...#NA) with N occurrences of #NA. The name clo#f of the new func-
tion is the concatenation of the print representation clo of the closure fv and an internal function
number #f.

It follows that SPECIALIZE(CLOSURE("name", a1, ..., aM))will partially evaluate function "name"
with respect to the non-#NA arguments among a1...aM, and then will return an APPLY-callable closure
for the specialized function.

Often, the specialized function is faster than the general one, and often the specialized function can
be generated once and then applied many times. For instance, this may be the case when finding a root or
computing the integral of a function, or when doing a Monte Carlo simulation, in which all parameters
except one are fixed.

The remainder of this section briefly introduces partial evaluation and features of particular interest
in a spreadsheet setting. Section 7 then explains how the SPECIALIZE function has been implemented,
and section 8 shows some examples of its use.

6.1 Background on partial evaluation

Automatic specialization, or partial evaluation, has been studied for a wide range of languages in many
contexts and for many purposes [6, 9]. Partial evaluation of a function requires that values for some of
the function’s arguments are available. These are called static or early arguments and correspond exactly
to the early (non-#NA) arguments of a Funcalc function closure; see section 4.1. The remaining dynamic
or late arguments will be available only when the specialized function is applied; these correspond to
those given as #NA when the closure was created.

The result of specializing a function closure with respect to the given static arguments is a new
residual function whose parameters are exactly the dynamic (#NA) ones from the closure.

During partial evaluation, an expression to be specialized may either be fully evaluated to obtain a
value, provided all required variables are static, or it may be residualized to obtain a residual expression,
if some required variables are dynamic, or if we decide to not fully reduce the expression for some other
reason.

P. Sestoft 145

APPLY(fv)

SPECIALIZE(fv)

SPECIALIZE(fv)

SPECIALIZE(fv)

fv with arity j

fv with arity 0

fv with arity k

CLOSURE("f",e1...en)

APPLY(fv,e1...ej)

function result running time

APPLY(fv,e1...ek)

function result

function result

further partial applications

Sheet−defined function "f"

with k arguments being #NA

CLOSURE(fv,e1...ek)

with j arguments being #NA

BENCHMARK(fv,count)

Figure 7: The relation between functions CLOSURE and APPLY for closure creation and closure evaluation
(section 4.1), function SPECIALIZE for closure specialization (section 6), and function BENCHMARK, for
0-arity closure benchmarking (section 9).

146 Partial evaluation of sheet-defined functions

Partial evaluation may be performed by offline methods, in which the specialization proper is pre-
ceded by a binding-time analysis that classifies expressions as static or dynamic, or by online methods,
where the classification into static and dynamic is performed during specialization [9, chapter 7]. On-
line partial evaluation offers more opportunities for exploiting available data than offline methods [16],
whereas offline methods support specializer self-application better, and may be faster than online meth-
ods because tests for a values’ staticness are performed in advance, not repeatedly during specialization.

In this work we use online methods, both because we are not concerned with self-application, and
because online methods seem well aligned with the highly dynamic nature of spreadsheets.

6.2 Partial evaluation in a spreadsheet context

Specialization in the context of sheet-defined functions appears to offer new opportunities, for several
reasons:

• The declarative computation model makes specialization fairly easy. All values are immutable and
all expressions are side effect free (except possibly external calls). The main sources of compli-
cation are (1) operations that are volatile or that update or rely on external state; and (2) recursive
function calls. In both respects one can draw on a large body of experience from specialization of
other dynamically typed languages, notably Scheme; see eg. Bondorf and Danvy [1, 2], and Ruf,
Weise and others [15, 16, 23].

• Actual bytecode generation for a specialized function can use the same machinery as for non-
specialized ones; in particular, specialized functions are not penalized by poorer code generation.

• Specialization of sheet-defined functions that involve volatile functions, such as RAND and NOW,
requires some care. A volatile function’s result should always be considered dynamic; the ran-
domness or external state inherent in a volatile function is similar to a side effect and hence should
be residualized as realized already by Bondorf and Danvy [2].

• The language of sheet-defined functions is a higher-order functional language, and a function can
be specialized with respect to a function.

• The spreadsheet environment is interactive and all evaluation and specialization takes place in the
same environment, containing data, the original program and the specialized program. Any value
produced during evaluation of a Funcalc spreadsheet can be represented by a CGValueConst ex-
pression (figure 5), which is an abstract syntax tree node that simply holds a reference to that
(immutable) value. Hence there is no need to marshall higher-order (function-type) values as data,
nor to subsequently restore them as function values. This avoids the problem of cross-stage per-
sistence [11], and the problem of finding which functions appear in dynamic context [15, section
3.3.5] when constructing a residual program in text form.

• The seemingly cumbersome split of specialization (SPECIALIZE) from closure creation (CLOSURE)
means that an already-specialized function may be further partially applied using CLOSURE and
then specialized using SPECIALIZE; see example 8.3 and figure 7. It also means that a higher-
order library function may specialize an unknown closure passed to it as an argument. Using the
timing function BENCHMARK (section 9) it may even measure whether the specialized function is
faster than the original one.

Automatic specialization of sheet-defined functions permit generality without performance penalties. For
instance, a company or a research community can develop general financial or statistical functions, and

P. Sestoft 147

rely on automatic specialization to create efficient specialized versions, removing the need to develop
and maintain hand-specialized ones.

7 The partial evaluation process

Specialization, or partial evaluation, of a sheet-defined function is performed through a single additional
built-in function SPECIALIZE(fv) that takes as argument a function closure fv. It then generates a
specialized version of fv’s underlying sheet-defined function, based on the early arguments included in
the closure fv.

Partial evaluation of a sheet-defined function works on its representation as a list of ComputeCell
objects, as produced by steps 1 through 4 in section 4.2. The result is a new ComputeCell list containing
specialized versions of the existing expressions. Section 7.1 describes the processing of most expres-
sions, except for function calls, the source of most complications, which are described in section 7.2.

The specialized ComputeCell list is subsequently used to generate bytecode for the specialized func-
tion, via the compilation functions described in section 4.3. Furthermore, the ComputeCell list is saved
to permit further specialization of the newly specialized sheet-defined function; this rather unusual func-
tionality comes for free.

We use classical polyvariant specialization [3], so the residual program consists of any number of
specialized variants of existing sheet-defined functions. Such specialized variants may call each other,
thus permitting loops and (mutual) recursion in the residual program.

Each specialized function is given a unique name. For instance, if the display value of the given
closure fv is ADD(42,#NA), then the result of SPECIALIZE(fv) may be named ADD(42,#NA)#117,
where #117 is a unique internal function number.

The specialized functions will be cached, so that two closures that are equal (based on underlying
function and argument values) will give rise a single shared specialized function. That avoids some
wasteful specialization and also is the obvious way to allow for loops (via recursive function calls) in
specialized functions.

The specialization of CGExpr expressions, described in section 7.1 below, takes place in a partial
evaluation environment pEnv that is initialized and updated as follows. Initially, pEnv maps the cell ad-
dress of each static (non-#NA) input cell to a constant representing that input cell’s value. Moreover, pEnv
maps each remaining (dynamic, or #NA) input cell address to a new CGCellRef expression representing
a residual function argument.

During partial evaluation of a pair (ca,e) in the ComputeCell list, consisting of a cell address and
a expression, the pEnv is extended as follows. If the result of partially evaluating the formula e in cell
ca is a CGConst, we extend pEnv so it maps ca to that constant; then the constant will be inlined at all
subsequent occurrences. Otherwise, create a fresh local variable as a copy of the existing cell variable
ca, and add a ComputeCell to the resulting list that will, at runtime, evaluate the residual expression and
store its value in the new local variable. Also, extend pEnv to map ca to the new local variable, so that
subsequent references to cell ca will refer to the new local variable and thereby at runtime will fetch the
value computed by the residual expression.

When the residual ComputeCell list is complete, the dependency graph is built, a topological sort
is performed, use-once cells are inlined, evaluation conditions are recomputed, and code is generated,
following steps 1 through 5 in section 4.2 as for a normal sheet-defined function.

148 Partial evaluation of sheet-defined functions

7.1 Partial evaluation of CGExpr terms

Partial evaluation of a given cell’s formula expression proceeds by rewriting a given CGExpr term (fig-
ure 5) to a residual CGExpr term, as follows.

• Partial evaluation of an expression of class CGConst or one of its subclasses produces that expres-
sion itself.

• Partial evaluation of a function-sheet cell reference CGCellRef(c) produces a CGConst static value
if cell c is a static input cell or another cell that has been reduced to a CGConst subclass; otherwise
it produces the given expression CGCellRef(c) itself. This avoids inlining (and hence duplication)
of residual computations, while still exposing static values to further partial evaluation.

• Partial evaluation of an ordinary-sheet cell reference CGNormalCellRef(c) produces that expres-
sion itself, not the value currently found in the referred ordinary-sheet cell c, because that value
might change before the residual sheet-defined function gets called. This allows cells on an ordi-
nary sheet to be used as “external parameters” of a specialized function.

• Partial evaluation of an ordinary-sheet area reference CGNormalCellArea(area) produces that
expression itself, not the values currently found in the referred cells, because those values might
change before the residual sheet-defined function gets called.

• Partial evaluation of expressions of class CGStrictOperation and most of its subclasses proceeds
uniformly as follows. Partially evaluate the argument expressions, and if they are all constants, then
evaluate the operation as usual; otherwise residualize the operation. In particular, this holds for
CGArithmetic1, CGArithmetic2, CGComparison and CGFunctionCall, except for volatile func-
tions. A volatile function such as NOW() and RAND() should always be residualized, not evaluated,
during partial evaluation. For instance, a sheet-defined function might perform a stochastic simula-
tion, using the condition RAND()<0.2 to choose between two scenarios, as in example 7.1. Early
evaluation of RAND()<0.2 would make all executions of the residual function choose the same
scenario, which would make the specialized closure behave differently than the original one.
The exceptions to the general partial evaluation of CGStrictOperation are CGApply and CGSdf-
Call (residualize to avoid infinite loops, see section 7.2), CGFunctionCall (residualize when the
called built-in function is volatile), and CGExtern (residualize to avoid specialization-time side
effects).

• Partial evaluation of a CGClosure expression follows the general CGStrictOperation scheme for
partial evaluation. First it reduces its argument expressions. If all are constant, then it calls the
interpretive applier corresponding to built-in function CLOSURE and produces a CGValueConst
that wraps a FunctionValue containing the given sheet-defined function and the given parameters;
otherwise it residualizes.

• Partial evaluation of a call to a sheet-defined function (CGSdfCall) is discussed separately in sec-
tion 7.2.

• Partial evaluation of a CGApply(e0, e1, . . . , en) expression should first reduce all operands, both
the function expression e0 and its arguments. If the function expression in e0 is static and is
a FunctionValue wrapped in a CGValueConst, then partial evaluation can produce a CGSdfCall
expression, otherwise it must residualize to a CGApply based on the residual operand expressions.
Even if both the function and all the arguments are static values, it is dangerous to actually call the
indicated sheet-defined function, as this could result in an infinite loop.

P. Sestoft 149

It is worth pondering whether a more aggressive evaluation is possible when the function expres-
sion e0 is static and hence is a known FunctionValue. Could we simply further process it as if
partially evaluating a CGSdfCall expression, using the exact same machinery?

• Partial evaluation of CGIf(e0, e1, e2) or CGChoose(e0, e1, . . . , en) should produce the result of
partially evaluating the relevant branch ei if the first expression e0 is a static value. Otherwise,
they must residualize to a CGIf or CGChoose constructed from the residual argument expressions.

• Partial evaluation of a CGAnd expression, short-cut style, can proceed as follows. Each argument
is partially evaluated in turn, from left to right. If the result is constant false (zero), then the
residual expression for the entire CGAnd is the constant false; if the result is constant true (non-
zero) then it is ignored; and if the result is non-constant, then it is kept for possible inclusion
in the residual expression. If no argument reduces to false, then the residual expression for the
entire CGAnd is the conjunction of the residual expressions of the non-true arguments. In case all
constant arguments were true, the result is the empty conjunction, that is, true.

• Partial evaluation of a CGOr expression is dual to CGAnd: just swap false and true, and zero and
non-zero, in the description above.

• A CGCachedExpr expression may be wrapped around the conditions of IF and CHOOSE, for use
in evaluation conditions. Since we ignore evaluation conditions during partial evaluation, partial
evaluation of a CGCachedExpr should simply partially evaluate the enclosed expression.

7.2 Partial evaluation of function calls

Partial evaluation of a function call, whether a direct call CGSdfCall of a named sheet-defined function
or a call CGApply of a function closure via APPLY, poses special challenges that may cause partial
evaluation to fail to terminate. There are two ways that partial evaluation may go on indefinitely:

• Infinite unfolding happens when a call to a function F is encountered during partial evaluation of
the same function F, indefinitely, just as in ordinary non-terminating recursion.

• Infinite specialization happens when partial evaluation attempts to create an infinite number of
specialized versions of some function, such as ADD(1,#NA), ADD(2,#NA), ADD(3,#NA), and so
on.

Moreover, we would like to avoid generating a finite but large number of specialized versions of a func-
tion, when these turn out to be nearly identical and offer no significant speed-up. This particular problem
is discussed in section 7.2.3.

Some of the problems we need to address are:

• When should we create further specializations of a sheet-defined function, while already in the
process of creating one specialization?

• More precisely, given a sheet-defined function and static values of some of its arguments, which of
these arguments should actually be used when specializing the function? Specializing with respect
to all-#NA arguments should be equivalent to not specializing the function at all, thus making
SPECIALIZE idempotent. This is convenient when both a higher-order library function and its
caller attempt to specialize an argument closure.

• When all arguments to a sheet-defined function, encountered during partial evaluation, are static,
should we then attempt to fully evaluate the function or should we specialize it?

150 Partial evaluation of sheet-defined functions

7.2.1 Principle 1: Residualize all function calls

When the result of a function would be non-static (because some arguments are non-static or because
the function body contains a call to a volatile or external function), then we would lose little information
by not unfolding the call but reducing it to a call to a residual function. This decision does not affect the
meaning or termination properties of the partial evaluation process.

However, when the result of partially evaluating the function body would be a concrete static value,
then unfolding would propagate the concrete value to the call context, thus enabling further computation,
whereas residualizing the call will lose the information held in that static value.

Nevertheless, we decide to always residualize and never unfold a function call:

• Principle 1: The result of partially evaluating a function call is a residual function call.

This ensures that the only source of non-termination during partial evaluation is infinite specialization.
We residualize although in Funcalc it would be trivial to invoke the standard evaluation machinery

and then wrap the resulting Value as an appropriate GCConst object (figure 5), whenever all arguments
to a function call are static. However, using the standard evaluation machinery during partial evaluation
would be wrong, because it will evaluate any volatile and external functions prematurely: even when
all needed arguments are static, the result may be a residual expression instead of a value. To see this,
consider the function in example 7.1.

Example 7.1 Function EXPSAMPLE permits sampling from the exponential distribution:

EXPSAMPLE(p,n) = IF(p<=0.0, ERR("P"),

IF(RAND()<p, n, EXPSAMPLE(p,n+1)))

Function EXPSAMPLE(p,n) either terminates immediately, with probability p, or otherwise performs one
more recursive call. Thus EXPSAMPLE(1,1) will return 1 immediately; and EXPSAMPLE(0.5,1) will
return 1 with probability 0.5, will return 2 with probability 0.25, will return 3 with probability 0.0125,
and so on, that is, on average will return 2; EXPSAMPLE(p,1) will on average return 1/p, the mean value
of the exponential distribution with parameter p, when 0 < p≤ 1. �

When both arguments to EXPSAMPLE(p,n) are static, the arguments of the recursive call will be static
too. But since the condition RAND()<p is volatile and will be residualized, the IF-expression will be
residualized too, and unfolding of the recursive function call would go on indefinitely, in an attempt to
construct an infinite tree of residual conditionals.

To avoid such construction of infinite residual terms, we decide never to unfold function calls.

7.2.2 Principle 2: Generalizing under dynamic control

In the EXPSAMPLE case, the decision never to unfold a function call will avoid infinite unfolding, but
might cause infinite specialization instead, in an attempt to create specialized versions for n being 1, 2,
3, and so on.

To avoid this, we need to generalize one or more static arguments, here n, by reclassifying them as
dynamic, that is, consider them to be #NA in further specialization. This works as follows.

We say that an expression is under dynamic control if some conditional (IF, CHOOSE) with dynamic
condition has been encountered before the expression during the specialization process. Whether an
expression appears under dynamic control can be determined by passing a context argument along with
the partial evaluation environment pEnv in the recursive calls to the partial evaluator.

P. Sestoft 151

If, in the process of specializing a sheet-defined function F with respect to values v1...vn, we
encounter a recursive call to F(...) under dynamic control and with arguments w1...wn, then we
specialize F in the recursive call only with respect to those static arguments wj that have the same constant
value wj=vj in both calls; the remaining static wj are made dynamic, that is, considered #NA when
specializing the called function.

Although this may seem draconically conservative, it will serve one large class of specialization cases
well, namely when some static “configuration” or “problem” parameters are passed to the function ini-
tially, and passed on unchanged in all recursive calls. Such static parameters will be inlined (and possibly
cause IF and CHOOSE expressions to be reduced) but the part of the control structure that depends also
on dynamic parameters will be preserved. The draconic policy could be loosened a little by permitting
specialization with respect to literal constants given in the function (since there are only finitely many of
those), but it is unclear whether this is worthwhile in general, and we currently do not do it.

To implement the above policy, we need a partial evaluation context (an evaluation stack) that says
which functions are currently being specialized with respect to which constant arguments, and the value
of those arguments (so we can deal with mutually recursive functions), and an indication whether the
current expression (especially call) is under dynamic control. A partial evaluation context must tell us
(1) whether the expression being partially evaluated is under dynamic control, so we can decide what
to do with calls CGApply or CGSdfCall; (2) which functions are currently being partially evaluated, so
we can recognize recursive calls; and (3) the arguments given to the functions currently being partially
evaluated.

Property (1) is a local property of a subexpression of a ComputeCell, determined by the cell’s evalu-
ation condition and the conditions enclosing that subexpression in the cell. This notion of context could
therefore be represented by an argument IsDynamicControl passed in as an argument of the partial eval-
uation process. For an evaluation condition it is initially false; for the expression in a ComputeCell it is
true iff its evaluation condition is dynamic. For CgIf and CGChoose it is determined as one might expect,
by the first argument. Note the difference from the partial evaluation environment pEnv, which grows
monotonically while processing the list of ComputeCells belonging to a given sheet-defined function.

Properties (2) and (3) are somewhat more global. They too could be represented by a parameter
to the partial evaluator, but would need much broader scope: not only the partial evaluation of a given
sheet-defined function, but a family of such functions.

To see the effect of the simple generalization technique, consider these examples.

Example 7.2 Ackermann’s function is sometimes used to illustrate partial evaluation of recursive func-
tions [9, section 17.3]. It may be defined like this:

ackA(m,n) = IF(m=0, n+1, IF(n=0, ackA(m-1,1), ackA(m-1, ackA(m, n-1))))

If we assume that m is static and equal to 2, and n is dynamic, then the outer IF is static but the inner one
is dynamic. Using the generalization strategy outlined above, we get the following specialized function:

ackA2(n) = IF(n=0, ackA(1,1), ackA(1, ackA2(n-1)))

which basically specializes only with respect to the first value of m, and only at the top-most call to
ackA and therefore misses significant optimization opportunities. But to make sure that the specializa-
tion of ackA with respect to static first argument m-1 will terminate, we really need to know that the
first argument is descending and bounded from below (as in several static termination analyses). This
requires a somewhat sophisticated static analysis, made even more complicated by the dynamically typed
spreadsheet formulas, so we prefer to avoid it. �

152 Partial evaluation of sheet-defined functions

The next example shows that by rewriting the Ackermann function in a slightly different style, we achieve
much better specialization under the same generalization scheme.

Example 7.3 Now define Ackermann’s function like this, pushing the inner conditional inside the recur-
sive call:

ackB(m,n) = IF(m=0, n+1, ackB(m-1, IF(n=0, 1, ackB(m, n-1))))

Then we get the following much better specialization for m=2 static and n dynamic:

ackB2(n) = ackB1(IF(n=0, 1, ackB2(n-1)))

ackB1(n) = ackB0(IF(n=0, 1, ackB1(n-1)))

ackB0(n) = n+1

This is just as we would like it, and similar to what one would get from an off-line partial evaluator and
a binding-time analysis, even on the original source program in example 7.2. �

7.2.3 Termination

The simple principles of (1) never unfold, and (2) generalize aggressively when under dynamic control,
achieve fairly good termination properties of the partial evaluator. The downside is that the partial eval-
uator is somewhat conservative, although it achieves reasonably good results on examples such as those
in section 8.

Termination is far from guaranteed, though, and the partial evaluator is far from fool-proof. For
instance, specialization can still fail to terminate due to infinite specialization. To see this, consider a
function definition such as the “counting-down factorial” function [23, page 172]:

FACD(N) = IF(N=0, 1, N * FACD(N-1))

and assume that we attempt to specialize FACD(-1). Since there is no dynamic control, the special-
izer will not generalize the static argument and will attempt to create an infinite number of specialized
functions corresponding to the calls FACD(-1), FACD(-2), FACD(-3), and so on. However, standard
evaluation of FACD(-1) would also fail to terminate.

If the call FACD(-1) were under dynamic control, the generalization mechanism would ensure that
the argument gets generalized, and only one specialized version will be generated.

Holst’s “poor man’s generalization” [7] [9, section 7.2.2] is a generalization technique that will gen-
eralize any static parameter that is not used to evaluate a conditional such as IF or CHOOSE. The reasoning
is that such a parameter will have little effect on the residual program’s size and that knowing its value
will not help termination of specialization, but might still give rise to an excessive number of residual
functions. Using poor man’s generalization will not help ensure termination, but could help keep the
number of specialized versions in check, avoiding fruitless and costly code generation that gives little
performance benefit. However, it is comparatively difficult to implement. We would need a backwards
data flow analysis to properly determine which parameters may (or must) eventually determine a condi-
tional. Moreover, this analysis must be interprocedural and the language is higher-order, so this is not
entirely straightforward, and we consider it too much complexity for a modest gain.

More advanced generalization schemes and termination analyses, such as homeomorphic embedding,
seem hard to use in the spreadsheet context because most data are numbers or arrays of numbers; although
tree-structured data are representable as nested arrays this is not natural to the spreadsheet context. Hence
we currently do not use flow analysis-based generalization, only the online generalization mechanism
described above.

P. Sestoft 153

A simple expedient would be to put an arbitrary limit on the number of specializations created for
any given function. Since the original function is available anyway, it can be used as a fallback when the
limit is reached. See also section 11.

7.3 Simplification of arithmetic expressions

During partial evaluation it is natural to use mathematical identities to simplify arithmetical expressions.
For instance, e+0 may be reduced to e. The full list of reductions, implemented in class CGArithmetics2,
is shown in figure 8.

Some “obvious” mathematical identities, such as reducing e ∗ 0 to 0, do not in general preserve
spreadsheet semantics because e∗0 will evaluate to an error if e does, whereas 0 will not. Nevertheless
we have implemented all the listed reductions. Also, it may seem wrong in general to replace e^0 and
1^e with 1, but the IEEE754 floating-point standard [8, section 9.2.1] does prescribe these identities for
all values of e, even NaN.

Original Simplified Note
0+ e −→ e
e+0 −→ e
e−0 −→ e
0− e −→ −e
e∗0 −→ 0 (*)
0∗ e −→ 0 (*)
1∗ e −→ e
e∗1 −→ e
e/1 −→ e
e^1 −→ e
e^0 −→ 1 (**)
1^e −→ 1 (**)

Figure 8: Arithmetic simplifications performed by partial evaluation. Those marked (*) or (**) may not
preserve spreadsheet semantics; those marked (**) do agree with the IEEE754 floating-point standard.

8 Partial evaluation examples

Example 8.1 Function MONTHLEN(y,m) computes the length of month m in year y, taking leap years
into account:

MONTHLEN(y,m) =

CHOOSE(m, 31,

28+OR(AND(NOT(MOD(y, 4)), MOD(y, 100)), NOT(MOD(y, 400))),

31, 30, 31, 30, 31, 31, 30, 31, 30, 31)

Specializing this function to a fixed month m will either leave only the leap year logic, eliminating the
switch (when m is 2), or eliminate both that logic and the switch (when m is not 2). Here is the residual
function for MONTHLEN(#NA,3):

154 Partial evaluation of sheet-defined functions

0000: ldc.r8 31

0009: call NumberValue.Make(Double)

000e: ret

On the other hand, specializing MONTHLEN to a given year, such as 2012, produces a function where
all the logic concerning leap years has been removed. This is the bytecode for the specialization of
MONTHLEN(2012,#NA); note in line 007f the result 29 of computing 28+1 at specialization time:

0000: ldarg V_0

0004: call Value.ToDoubleOrNan

0009: stloc.0

000a: ldloc.0

000b: call IsInfinity(Double)

0010: brtrue 0150

0015: ldloc.0

0016: call IsNaN(Double)

001b: brtrue 0150

0020: ldloc.0

0021: conv.i4

0022: ldc.i4 1

0027: sub

0028: switch (006c, 007f, 0092, 00a5, 00b8, 00cb, // CHOOSE

00de, 00f1, 0104, 0117, 012a, 013d)

005d: ldc.i4 5

0062: call ErrorValue.FromIndex(Int32)

0067: br 014b

006c: ldc.r8 31

0075: call NumberValue.Make(Double)

007a: br 014b

007f: ldc.r8 29 // reduced from 28+...

0088: call NumberValue.Make(Double)

008d: br 014b

0092: ldc.r8 31

00ae: call NumberValue.Make(Double)

... and so on for April through November ...

0138: br 014b

013d: ldc.r8 31

0146: call NumberValue.Make(Double)

014b: br 015a

0150: ldc.i4 2

0155: call ErrorValue.FromIndex(Int32)

015a: ret

�

Example 8.2 Function REPT4(s,n) from example 2.2, which computes string s concatenated with it-
self n times, can be specialized with respect to a given string s or with respect to a given number n.

Specialization with respect to a given string, as in REPT4("abc",#NA), achieves nothing useful. The
bytecode for the resulting specialized function is nearly identical to that for the original REPT4. Both are
123 bytecode instructions long (some of which implement evaluation conditions), and identical except
that the specialized function loads the string "ABC" from a table of string values, whereas the original
one takes it from the first function argument.

P. Sestoft 155

Specialization with respect to a given n, as in REPT4(#NA,7), is much more interesting. Since
the second parameter n is static and determines all conditionals, that parameter and all tests on it will
be eliminated. The result is not one but four specialized functions, corresponding to the values of n
encountered in the recursive calls, namely 7, 3, 1 and 0.

This is REPT4(#NA,7)#201 corresponding to n being 7:

0000: ldsfld SdfManager.sdfDelegates

0005: ldc.i4 202

000a: ldelem.ref

000b: castclass System.Func‘2[Value,Value]

0010: ldarg V_0 // load arg s

0014: call Invoke // call #202(s) giving r

0019: stloc.3

001a: ldarg V_0

001e: ldloc.3

001f: call Function.ExcelConcat // r & r

0024: ldloc.3

0025: call Function.ExcelConcat // (r & r) & s

002a: ret

Function #201 above computes s7 for any string s, by calling function #202 to compute s3 and then
concatenating the result r with itself and with s to obtain s7.

Function #202 corresponds to n being 3 and has exactly the same structure. It calls function #203 to
compute s1 and then concatenates the result with itself and with s to obtain s3.

Function #203 corresponds to n being 1 and has the same structure as the previous two. It calls
function #204 which computes s0, that is, the empty string:

0000: ldsfld TextValue.EMPTY

0005: ret // return ""

Whereas calling the original function REPT4("abc",7) takes 1200 ns/call, calling the specialized clo-
sure REPT4(#NA,7) on argument "abc" takes only 524 ns/call. Further speedup could be achieved by
inlining the calls to the auxiliary specialized functions. �

Example 8.3 To illustrate multistage specialization, consider the three-argument function ADD3(x,y,z):

ADD3(x,y,z) = x+y+z

The original bytecode for the unspecialized ADD3 is this:

0000: ldarg V_0

0004: call Value.ToDoubleOrNan // Unwrap arg x

0009: ldarg V_1

000d: call Value.ToDoubleOrNan // Unwrap arg y

0012: add

0013: ldarg V_2

0017: call Value.ToDoubleOrNan // Unwrap arg z

001c: add

001d: call NumberValue.Make(Double) // Wrap result

0022: ret

The function ADD3(11,#NA,#NA)#20, resulting from specializing ADD3 to its first argument having
value 11, is this two-argument function:

156 Partial evaluation of sheet-defined functions

0000: ldc.r8 11

0009: ldarg V_0

000d: call Value.ToDoubleOrNan // Unwrap arg y

0012: add

0013: ldarg V_1

0017: call Value.ToDoubleOrNan // Unwrap arg z

001c: add

001d: call NumberValue.Make(Double) // Wrap result

0022: ret

The function ADD3(11,#NA,#NA)#20(23,#NA)#21, resulting from further specializing that function to
its first remaining argument having value 23, is this one-argument function:

0000: ldc.r8 34

0009: ldarg V_0

000d: call Value.ToDoubleOrNan // Unwrap arg z

0012: add

0013: call NumberValue.Make(Double) // Wrap result

0018: ret

Finally, the function ADD3(11,#NA,#NA)#20(23,#NA)#21(32)#22, resulting from specializing the
above function to its last remaining argument having value 32, is this zero-argument function:

0000: ldc.r8 66

0009: call NumberValue.Make(Double) // Wrap 66 as result

000e: ret

The execution times of the above four functions are the following: 59, 45, 39, 35 ns/call. Much of
this cost, roughly 23 ns/call, arises not from parameter passing, parameter unwrapping, or the addition
operations, but from the final wrapping of a floating-point result as a NumberValue object. �

Example 8.4 Specializing EXPSAMPLE(0.15,1) from example 7.1 with respect to static values of both
its arguments does not produce a number, because the original function involves the volatile RAND()

function. Instead we get this argumentless residual function (#25):

0000: call ExcelRand()

0005: ldc.r8 0.15

000e: bge 001d // if RAND() < 0.15

0013: ldsfld NumberValue.ONE // return 1

0018: br 0043

001d: ldsfld SdfManager.sdfDelegates // else

0022: ldc.i4 26

0027: ldelem.ref

0028: castclass System.Func‘2[Value,Value]

002d: ldc.r8 2

0036: call NumberValue.Make(Double)

003b: tail. // tail call

003d: call Invoke(Value) // call #26 on 2

0042: ret

0043: ret

P. Sestoft 157

The original EXPSAMPLE function from example 7.1 calls itself recursively with arguments (0.15,2),
where the static argument 2 differs from the previous value 1. Since the recursive call is under dynamic
control (section 7.2) the second argument gets generalized to #NA, so the recursive call becomes a call
to the specialization of EXPSAMPLE(0.15,#NA). The call appears above as a call to function #26 which
has this bytecode:

0000: call ExcelRand()

0005: ldc.r8 0.15

000e: bge 001c // if RAND() < 0.15

0013: ldarg V_0 // return n

0017: br 004c

001c: ldsfld SdfManager.sdfDelegates // else

0021: ldc.i4 26

0026: ldelem.ref

0027: castclass System.Func‘2[Value,Value]

002c: ldarg V_0

0030: call Value.ToDoubleOrNan(Value)

0035: ldc.r8 1

003e: add

003f: call NumberValue.Make(Double)

0044: tail. // tail call

0046: call Invoke(Value) // call #26 on (n+1)

004b: ret

004c: ret

This residual function calls itself recursively, as function #26. This result makes perfect sense, because
different calls to the argumentless result of SPECIALIZE(CLOSURE("EXPSAMPLE", 0.15, 1)) will
produce different samples from the exponential distribution with parameter 0.15. �

9 Other features

A companion paper [19] describes evaluation conditions, a form of strictness analysis in logical form
needed when compiling sheet-defined functions that call themselves recursively. That paper also de-
scribes the experience of implementing most of Excel’s built-in financial functions as sheet-defined
functions.

To facilitate reusing external code, such as linear algebra libraries, we provide a foreign-function
interface through the built-in function EXTERN. The implementation uses reflection, caching and runtime
code generation to obtain high performance and avoid conversion of values on the interface between
spreadsheet formulas and the underlying CLI runtime system.

A built-in function BENCHMARK(fv,count) is provided to measure the time (in ns) to call to 0-arity
closure fv, measured as the average of count calls. See also figure 7.

10 Related work

Peyton-Jones, Blackwell and Burnett proposed [13] that user-defined functions should be definable as
so-called function sheets using ordinary spreadsheet formulas, but their ideas were not implemented.
Similar ideas are found in Nuñez’s spreadsheet system ViSSh [12, section 5.2.2]. Our concept of sheet-
defined function is strongly inspired by Peyton-Jones et al., but extends expressiveness by permitting

158 Partial evaluation of sheet-defined functions

recursive and higher-order functions. Resolver One [14] is a commercial Python-based spreadsheet
program with a feature called RUNWORKBOOK that allows a workbook to be invoked as a function, similar
to a sheet-defined function at a coarser granularity.

Unlike our work, those works do not emphasize the performance of user-defined functions. We
believe that good performance is crucial to the prospect of replacing built-in functions by libraries of
user-definable functions, and therefore built this prototype to see what performance can be achieved by
a simple and fast compiler generating bytecode.

Online partial evaluation was investigated in depth by Ruf, Weise and others in the context of the Fuse
specializer for Scheme, which is dynamically typed and higher-order, just like our spreadsheet function
language [15, 16, 23]. One of the first notable online partial evaluators for a dynamically typed language,
considerably predating Fuse, was Redfun by Haraldsson, Sandewall and others [5].

Generalization as a means to ensuring termination of specialization was central already to Turchin’s
early Refal work [22], and its importance was recognized also in later work on off-line [2, 10] and on-line
[23] partial evaluation. Our generalization principle from section 7.2.2 seems to be a simple instance of
Weise et al.’s type-based generalization, or “abstraction”. In our case, their notion of “type” or symbolic
specialization time value [23] is simply the expression representing it. This is consistent with our gen-
eralization of two equal values (represented by the same constant) to that constant, and generalization of
two distinct values to a completely unknown value, preserving no (partial) type information, unlike Fuse.

11 Desirable extensions and future work

It would be desirable to have a better generalization strategy, especially one whose termination properties
are well understood. Also, the generation of useless specializations should be prevented. As a less
desirable alternative, there could be mechanisms to interactively control and tame excess generation of
specialized functions. For instance, there might be a way to turn off specialization once a certain number
of specialized functions have been generated, or to manually interrupt it.

Likewise, one may ask whether the resulting specialized function is correct. This clearly depends
on the expected semantics of sheet-defined functions, which in turn depends on the expected semantics
of spreadsheet computations. Although formalized nowhere, to our knowledge, this semantics is mostly
obvious, with the exception of (1) error values and their propagation, and (2) the meaning of volatile
functions such as RAND() and NOW(). We believe our treatment of these, described in section 7.1, is
sensible, but would like to have a formal semantics with which to underpin this claim.

In general-purpose languages it is difficult to estimate the cost (specialization time, residual code
size) and benefit (speedup) of partial evaluation. In the context of spreadsheets, where “iteration” is
often implemented simply by making a sufficient number of copies of a computation, it may be easier
to estimate whether specialization is worth-while. For instance, it may be evident from a worksheet
that the function obtained by CLOSURE("name",a1,...,aM) will be called from, say, 500 cells due to
replicated formulas. A support graph [18, chapter 4] provides a estimate of this very cheaply; just count
the number of cells directly supported by the cell that evaluates the CLOSURE-expression. Such estimates
are far harder in general functional and procedural languages. Of course, the more sophisticated the
spreadsheet model is, the harder it may be to obtain good estimates. If users replace explicit formula
replication with recursive functions, then the advantages relative to traditional languages are diminished.

It seems that partial evaluation can be especially beneficial in connection with code generation for
general-purpose graphics processors (GPGPU). A graphics processor can efficiently run many instances
of the same straight-line numeric code in parallel, but it is poorly equipped for executing branching code,

P. Sestoft 159

such as that resulting from the translation of IF(...) and CHOOSE(...) in spreadsheet formulas. So
whereas partial evaluation, with inlining of constants and early evaluation of conditionals, offers modest
speed-ups on a general CPU, it may offer more impressive speedups when the code is to be executed on
graphics processors.

12 Conclusion

We have outlined an implementation of sheet-defined functions, user-defined functions wholly based on
standard spreadsheet concepts, as suggested by Peyton-Jones and others [13]. We have shown that very
good performance can be achieved using relatively simple compiler technology and runtime bytecode
generation, exploiting the just-in-time native code generation of the Microsoft .NET runtime system.

The particular contribution of this paper is to show that runtime partial evaluation, or automatic
specialization, of sheet-defined functions is feasible and can achieve further performance gains. We
believe that the interactive and side-effect free spreadsheet setting is a plausible context for practical use
of partial evaluation.

Acknowledgements Thanks to the participants at Meta 2010 in Pereslavl-Zalessky for comments, and
to the anonymous referees for their many constructive suggestions.

References

[1] Anders Bondorf (1991): Automatic Autoprojection of Higher Order Recursive Equations. Science of Com-
puter Programming 17, pp. 3–34, doi:10.1016/0167-6423(91)90035-V.

[2] Anders Bondorf & Olivier Danvy (1991): Automatic Autoprojection of Recursive Equations with Global
Variables and Abstract Data Types. Science of Computer Programming 16, pp. 151–195, doi:10.1016/0167-
6423(91)90002-F.

[3] Mikhail A. Bulyonkov (1984): Polyvariant Mixed Computation for Analyzer Programs. Acta Informatica
21, pp. 473–484, doi:10.1007/BF00271642.

[4] Ecma TC39 TG3 (2012): Common Language Infrastructure (CLI). Standard ECMA-335, 6th edition. Ecma
International.

[5] Anders Haraldsson (1977): A Program Manipulation System Based on Partial Evaluation. Ph.D. thesis,
Linköping University, Sweden. Linköping Studies in Science and Technology Dissertations 14.

[6] John Hatcliff, Torben Mogensen & Peter Thiemann, editors (1998): Partial Evaluation: Practice and Theory:
DIKU 1998 International Summer School. Lecture Notes in Computer Science 1706, Springer-Verlag.

[7] Carsten Kehler Holst (1988): Poor man’s generalization. Note. 2 pages.

[8] IEEE (2008): IEEE Standard for Floating-Point Arithmetics. IEEE Std 754-2008.

[9] N.D. Jones, C.K. Gomard & P. Sestoft (1993): Partial Evaluation and Automatic Program Generation. En-
glewood Cliffs, NJ: Prentice Hall. At http://www.itu.dk/people/sestoft/pebook/pebook.html.

[10] N.D. Jones, P. Sestoft & H. Søndergaard (1989): Mix: A Self-Applicable Partial Evaluator for Experiments
in Compiler Generation. Lisp and Symbolic Computation 2(1), pp. 9–50, doi:10.1007/BF01806312.

[11] Gregory Neverov & Paul Roe (2004): Cross-stage Persistence in Metaphor. In: First MetaOCaml Workshop,
Vancouver, Canada, pp. 168–185.

[12] Fabian Nuñez (2000): An Extended Spreadsheet Paradigm for Data Visualisation Systems, and Its Implemen-
tation. Master’s thesis, University of Cape Town.

http://dx.doi.org/10.1016/0167-6423(91)90035-V
http://dx.doi.org/10.1016/0167-6423(91)90002-F
http://dx.doi.org/10.1016/0167-6423(91)90002-F
http://dx.doi.org/10.1007/BF00271642
http://dx.doi.org/10.1007/BF01806312

160 Partial evaluation of sheet-defined functions

[13] Simon Peyton Jones, Alan Blackwell & Margaret Burnett (2003): A user-centred approach to functions in
Excel. In: ICFP ’03: Proceedings of the eighth ACM SIGPLAN international conference on Functional
programming, ACM, pp. 165–176, doi:10.1145/944705.944721.

[14] Resolver Systems: Resolver One. Homepage. At http://www.resolversystems.com/ on 9 June 2013.
[15] Erik Ruf (1993): Topics in Online Partial Evaluation. Ph.D. thesis, Stanford University, California. Published

as technical report CSL-TR-93-563.
[16] Erik Ruf & Daniel Weise (1992): Opportunities for Online Partial Evaluation. Technical Report CSL-TR-

92-516, Computer Systems Laboratory, Stanford University, Stanford, CA.
[17] P. Sestoft (2012): Programming Language Concepts. Springer, doi:10.1007/978-1-4471-4156-3.
[18] Peter Sestoft (2012): Spreadsheet Technology. Technical Report ITU-TR-2011-142, IT University of Copen-

hagen. 302 pages.
[19] Peter Sestoft & Jens Zeilund Sørensen (2013): Sheet-defined functions: implementation and initial evalua-

tion. In Y. Dittrich et al., editors: International Symposium on End-User Development, June 2013, Lecture
Notes in Computer Science 7897, pp. 88–103, doi:10.1007/978-3-642-38706-7 8.

[20] Christopher Strachey & Christopher P. Wadsworth (1974): Continuations: a Mathematical se-
mantics for handling full jumps. Higher Order and Symbolic Computation 13, pp. 135–152,
doi:10.1023/A:1010026413531. Reprint of Oxford PRG-11, January 1974.

[21] Jens Zeilund Sørensen (2012): An Evaluation of Sheet-Defined Financial Functions in Funcalc. Master’s
thesis, IT University of Copenhagen.

[22] Valentin F. Turchin (1988): The Algorithm of Generalization in the Supercompiler. In D. Bjørner, A.P. Ershov
& N.D. Jones, editors: Partial Evaluation and Mixed Computation, Amsterdam: North-Holland, pp. 531–549.

[23] Daniel Weise, Roland Conybeare, Erik Ruf & Scott Seligman (1991): Automatic Online Partial Evalua-
tion. In J. Hughes, editor: Functional Programming Languages and Computer Architecture, Cambridge,
Massachusetts, August 1991 (Lecture Notes in Computer Science, vol. 523), Springer-Verlag, pp. 165–191.

http://dx.doi.org/10.1145/944705.944721
http://dx.doi.org/10.1007/978-1-4471-4156-3
http://dx.doi.org/10.1007/978-3-642-38706-7_8
http://dx.doi.org/10.1023/A:1010026413531

	1 Introduction
	2 Sheet-Defined Functions
	3 Dual implementation: Interpretation and compilation
	3.1 Interpretive implementation

	4 Compiled implementation of sheet-defined functions
	4.1 Defining functions and creating closures
	4.2 Overall compilation process
	4.3 Context-dependent compilation
	4.3.1 No value wrapping
	4.3.2 Error propagation
	4.3.3 Compilation of comparisons
	4.3.4 Compilation of conditions
	4.3.5 On-the-fly optimizations

	5 Performance
	6 Partial evaluation of sheet-defined functions
	6.1 Background on partial evaluation
	6.2 Partial evaluation in a spreadsheet context

	7 The partial evaluation process
	7.1 Partial evaluation of CGExpr terms
	7.2 Partial evaluation of function calls
	7.2.1 Principle 1: Residualize all function calls
	7.2.2 Principle 2: Generalizing under dynamic control
	7.2.3 Termination

	7.3 Simplification of arithmetic expressions

	8 Partial evaluation examples
	9 Other features
	10 Related work
	11 Desirable extensions and future work
	12 Conclusion

