
A. Banerjee, O. Danvy, K.-G. Doh, J. Hatcliff (Eds):
David A. Schmidt’s 60th Birthday Festschrift
EPTCS 129, 2013, pp. 1–17, doi:10.4204/EPTCS.129.1

A Swiss Pocket Knife for Computability

Neil D. Jones
Computer Science Department

University of Copenhagen
2100 Copenhagen, Denmark

neil@diku.dk

This research is about operational- and complexity-oriented aspects of classical foundations of com-
putability theory. The approach is to re-examine some classical theorems and constructions, but with
new criteria for success that are natural from a programminglanguage perspective.

Three cornerstones of computability theory are theS-m-ntheorem; Turing’s “universal machine”;
and Kleene’s second recursion theorem. In today’s programming language parlance these are respec-
tively partial evaluation, self-interpretation, and reflection. In retrospect it is fascinating that Kleene’s
1938 proof is constructive; and in essence builds a self-reproducing program.

Computability theory originated in the 1930s, long before the invention of computers and pro-
grams. Its emphasis was on delimiting the boundaries of computability. Some milestones include
1936 (Turing), 1938 (Kleene), 1967 (isomorphism of programming languages), 1985 (partial eval-
uation), 1989 (theory implementation), 1993 (efficient self-interpretation) and 2006 (term register
machines).

The “Swiss pocket knife” of the title is a programming language that allows efficient computer
implementation of all three computability cornerstones, emphasising the third: Kleene’s second re-
cursion theorem. We describe experiments with a tree-basedcomputational model aiming for both
fast program generation and fast execution of the generatedprograms.

1 Introduction

1.1 Context

“The grand confluence” of the 1930s(term due to Gandy [7]) was a first major accomplishment of com-
putability theory: the realisation that the classes of computable problems defined using Turing machines,
lambda calculus, register machines, recursion schemes, rewrite systems,. . . ,are all identical. This led
to a deep mathematical theory (recursive function theory) about the boundary between computable and
uncomputable problems, e.g., by Kleene, Turing, McCarthy,Rogers [18, 17, 21, 22, 27, 30]. Three
cornerstones of computability theory were identified: theS-m-ntheorem; the “universal machine” (as
Turing called it); and Kleene’s second recursion theorem.

What interests computer scientists, though, and what recursive function theory doesnot account for,
is thetime it takes to computea function: thesize and efficiencyof the programs involved.

1.2 Contribution of this paper

Our research program is to re-examine classical computability theory constructions from an efficiency
viewpoint. Some accomplishments so far:partial evaluationhas applied one computability cornerstone,
the S-m-n theorem, to program optimisation. The field of partial evaluation field is now substantial,
e.g., as documented by Jones, Gomard, Sestoft in [15]. This paper focuses on another computability
cornerstone:Kleene’s second recursion theorem[17].

http://dx.doi.org/10.4204/EPTCS.129.1

2 Swiss pocket knife

To study complexity aspects of the classical recursion-theoretic results one needs good models of
computation that take into account programs’ running times, as well as their expressivity. A stimulus
for the current work was the elegant construction by Moss in [26], using the novel1# language to prove
Kleene’s second recursion theorem.

This paper describes computer describes constructions andexperiments with a tree-based computa-
tional model aiming for both fast program generation and fast execution of the generated programs. A
programming language perspective has led to a better problem understanding, and improved asymptotic
efficiency. The net effect is that all three computability cornerstones can be efficiently implemented.

Advances in the first two made by a Copenhagen group and othersincludeconstant-overhead self-
interpretation, documented in [15, 12] and other places. Efficiency improvements over [9, 26, 12] include
aconstant-time implementationof Kleene’s second recursion theorem as by Bonfante and Greenbaum in
[2], and constant-time versions of the constructions by Moss in [26].

2 Fundamentals

2.1 Recursive function theory

Rogers’ axioms: an “acceptable” programming language consists of1

• Two sets,PgmsandD (of programsp,q,e, . . . and datad,s,x,y, . . .), with Pgms⊆ D.

• A semantic function

[[p]]n : Dn
⇀ D

associating with each program and eachn a partialn-ary function. (We omitn in [[p]]n when it is
obvious from context.) The semantic function must have these properties:

1. Turing completeness: a (mathematical partial) functionf : Dn
⇀ D is computableif and only

if f = [[p]]n for some programp.

2. Universal program property2:

∃univ∈ Pgms∀p∈ Pgms∀d ∈ D ([[p]](d) = [[univ]](p,d))

3. S-m-n property (here for m= n= 1):

∃s1
1 ∈ Pgms∀p∈ Pgms∀s,d ∈ D ([[p]](s,d) = [[[[s1

1]](p,s)]](d))

Restated in computer science terms: a universal machineuniv is aself-interpreter; and anS-1-1program
s1
1 is a partial evaluatoror program specialiser. (Remark: Rogers has proven in [27] the remarkable

result that any two acceptable enumerations are computablyisomorphic.)

1We follow the line of Rogers’ definition of anacceptable enumeration of the partial recursive functions[27, 19]. Our
variant: we write[[p]] instead ofφp; and we use programs and data from the two setsPgm,D instead of the natural numbersN.

2 In equations involving program semantics= stands for equality of partial values, soe1 = e2 means that eithere1 ande2
evaluate to the same value, or both are undefined (in practice, meaning: nonterminating).

N.D. Jones 3

2.2 Kleene’s second recursion theorem

Kleene’s second recursion theorem (SRT for short) is an early and very general consequence of the
Rogers axioms for computability. It clearly has a flavor ofself-application, as it in effect asserts the
existence of programs that can refer to their own texts. The statement and proof are short, though the
theorem’s implications are many.

Theorem (Kleene, [17])For any acceptable programming language,

∀p∈ Pgms∃p∗ ∈ Pgms∀d ∈ D . [[p]](p∗,d) = [[p∗]](d).

In effect this is aprogram transformation: it takes a 2-argument programp, and constructs from it a 1-
argument programp∗. Programp∗ is sometimes called a “fixpoint”, though it is not necessarily minimal,
nor unique for the givenp.3

The theorem can be interpreted operationally, but was proven long before the first computers were
built. Applications of Kleene’s theorem are many, and include:

1. A self-reproducingprogram: Suppose[[p]](q,d) = q for anyq. Then for any inputd,

[[p∗]](d) = [[p]](p∗,d) = p∗

Programp∗, when run, will print its own text, regardless of what its input was.

2. A self-recognisingprogram: consider the program4

p = p(q,d) = if d=q then 1 else 0

Then[[p]](p∗,d) = [[p∗]](d) implies: ∀d ∈ D
[[p∗]](d) = 1 if d = p∗

[[p∗]](d) = 0 if d 6= p∗

Programp∗, when run, will print 1 if its input is its own text, and print 0otherwise.

3. Further, Kleene’s theorem has many important applications in recursion theory, e.g., see the exten-
sive overview by Moschovakis [25]. Many applications (perhaps most) require using the universal
machine (a self-interpreter).

4. A major consequence of Kleene’s theorem (and the reason for the theorem’s name) is that it implies
that any programming language satisfying Rogers’ axiomsis closed under recursion.5 This is
not immediately evident for, say, Turing machines since theTuring machine architecture has no
recursive language constructions whatever.

Closure of Turing-machines under recursion follows from Kleene’s theorem, since this computa-
tion model satisfies Rogers’ axioms. The trickiest part is the universal machine property. It was
shown by Turing in [30], using a nonrecursive construction.

3Rogers [27] has an alternative version: that any computabletotal function f from programs to programs has what could be
called a “syntactic fixpoint”: a programp such that[[p]] = [[f (p)]]. It appears that Kleene’s original version is in some sense
more general than Rogers’, cf. [4], so we only consider the Kleene version.

4We enclose program texts in boxes and useteletype font. Reasons: to emphasise their syntactic nature, e.g., to distinguish
a program from the mathematical function it computes. In this paper programs are always imperative or first-order functional.

5Meaning: any function defined by recursion from programmable functions is itself programmable. See Kleene’s Section
66, and the discussion around Theorems XXVI and XXVII [18].

4 Swiss pocket knife

5. Recursion removal: For an example, consider the program

p =
p(q,d) = if d=0 then 1 else d * univ(q, d-1)

univ (program, data) = ... ; universal program

It is immediate that

[[p∗]](0) = [[p]](p∗,0) = 1
[[p∗]](d+1) = [[p]](p∗,d+1) = (d+1)∗ [[p∗]](d)

Thus [[p∗]](d) = d!, the factorial function. Net effect:p∗ computesd!, even thoughp can be
defined completely without recursion(e.g.,univ could be Turing’s universal program).

6. A mind-boggling application involvesinterchanging the role of programs and data.Consider the
program

p =
p(q,d) = univ(d,q)

univ (program, data) = ... ; universal program

Then thep∗ that exists by Kleene’s theorem satisfies:

∀ q∈ Pgms. [[p∗]](q) = [[p]](p∗,q) = [[q]](p∗)

2.3 Kleene’s proof of SRT

The first step, givenp, is to find a program ˜p such that

∀q∈ Pgms∀d ∈ D . [[p̃]](q,d) = [[p]]([[s1
1]](q,q),d)

Function f (q,d) = [[p]]([[s1
1]](q,q),d) is computable sincep ands1

1 are assumed computable. By Turing
completeness, there exists a program ˜p to computef .

Second step: buildp∗ := [[s1
1]](p̃, p̃). Now to show that the constructed program works correctly:

[[p∗]](d) = [[[[s1
1]](p̃, p̃)]](d) = [[p̃]](p̃,d) = [[p]]([[s1

1]](p̃, p̃),d) = [[p]](p∗,d)

End proof.

2.4 The Moss proof of SRT

Lawrence Moss [26] proved SRT (for a specific language1#) by reasoning similar to Kleene’s, but with
2 computation stages and without theS-1-1property. First the reasoning; the1#-specific details are
deferred to Section 3.5.

Moss’ proof of SRT: The first step, givenp, is to construct a program ˆq such that

∀r ∈ Pgms∀d ∈ D . [[[[q̂]](r)]](d) = [[p]]([[r]](r),d)

Section 3.5 shows that ˆq exists in language1#. (Turing completeness is not enough since[[q̂]] is nested.)
Second step: constructp∗ := [[q̂]](q̂). Now we show that the constructed program works correctly:

[[p∗]](d) = [[[[q̂]](q̂)]](d) = [[p]]([[q̂]](q̂),d) = [[p]](p∗,d)

End proof.

N.D. Jones 5

2.5 Remarks on constructing the “fixpoint”

In both constructions only[[]]1 and [[]]2 are used: programs are run with either 1 or 2 arguments. The
only connection between[[]]1 and [[]]2 is theS-1-1function (Kleene), or the construction of ˆq (Moss).
The programs involved in Kleene’s proof haveno recursionandno nested loops. (This is no surprise,
since computers and programming languages had not yet been invented when the SRT was proven.)

Finally, the SRT proofs makeno use of the universal functionat all. (It is only used in applications,
e.g., as in the applications above to show closure under recursion or to interchange data and program.)

3 Towards computer realisations of the SRT proof

The classical Gödel number-based constructions well-known from recursive function theory (Kleene,
Rogers, Gandy[18, 27, 7]) are quite impractical to implement, as the techniques are based on numerical
encoding: prime power exponentiations and factoring. Numerical encoding was reasonable for their
purpose, which was to delineate the boundaries of computability and not to study complexity. We wish,
however, to see how to implement such constructions efficiently on a computer.

A critical step in Kleene’s proof is going from themathematical function fto theprogram p̃. By
appealing to Turing completeness, the Kleene proof avoids being tied to any one programming language.
Our goals are different, and to talk about SRT complexity, wewill need bothmore concrete computation
modelsandexplicit program constructions.

3.1 The “Swiss pocket knife”

The imperative flow chart language of [15] is enough to carry out all the SRT applications above. We
will see, as did Bonfante and Greenbaum in [2], thatthe constructions to prove the SRTcan be done in a
very small subsetTINY of the flow chart language of [15] such thatall programs run in constant time.6

3.2 Programs as data

Programs have been formulated in computability theory in many ways, e.g., as a natural number (a
Gödel number, by Kleene and others [18, 17, 27]); a Turing machine program or set of quintuples [30];
a lambda expression by Church [5]; a set of recursive function definitions (by Kleene and others [18]); a
set of rewrite rules or a register machine (see Minsky in [22]); an S-expression in McCarthy’sLISP [21]),
and many others. In classical recursive function theory a program is a natural number fromN.

A programming language view is that a program isan abstract syntax tree(e.g., an S-expression as
in SCHEMEor LISP). Advantages: abstract syntax trees such as S-expressionsgive more natural versions
of the size|p| or |d| of a programp or a data valued. This is important because the relation between
input size and program running time is central in computer science, cf. theP=NP problem.

More accurately, the semantics ofLISP-like languages are not really based on trees, but rather on
DAGs(directed acyclic graphs), since substructures of data maybe (and usually are) shared. This can be
critical for measuring running times.7

6The TINY language is of course not Turing-complete. In brief, the Turing-complete imperative languages of [12, 13, 15]
are in essenceTINY pluswhile andif commands.

7Tree-based and DAG-based models define the same input-output relations for programs without selective updating such as
set-car!.

6 Swiss pocket knife

Amtoft et al. [9] tried Kleene’s SRT construction in a first-order LISP-like functional programming
language with tree-structured data, encountered problems, and modified the language. See Section 3.4.

3.3 The Kleene SRT proof with tree-structured data

To make Kleene’s construction computationally explicit one can use imperative flow chart programs with
LISP-like data as in [15] Chapter 4. A very small subset suffices for this paper: theTINY language of
Bonfante and Greenbaum [2]. Program format:p = read x1,...,xn; C; write out with n≥ 0.
HereC is a command built from assignmentsx := e, sequencingC1;C2 and expressions with variables,
constants’d, and operatorshd, tl, cons. There are no tests or loops, soevery program will run in
constant time(assuming as usual in DAG-based semantics that operatorshd, tl, cons are constant-
time).

Program specialisation: Let programp = read q, d; C; write out , and letsbe a “static” value
for variableq. The result of specialisation could be

p′ = read d; q := ’s; C; write out

This specialisation getsp′ by removing fromp the input of variableq, and adding assignmentq := ’s.
It inserts the static data values insidethe constant’s. More generally, we need a concrete programs1

1
such that

∀pgm∀s,d . [[pgm]](s,d) = [[[[s1
1]](pgm,s)]](d)

The form of the specialiser is

s1
1 = read pgm, s; Cspec; write outpgm

where commandCspecis the “body” ofs1
1. To proceed further we need to be more specific about the form

of programs as data: concrete tree structures to representp, p′ands1
1. Following the lines of [12, 13, 2]

we can use aLISP-inspiredconcrete syntax, e.g.,

p= ((q d) C out)

whereC is a “Cambridge Polish” representation ofC.8 Representation of specialisation resultp′ above:

p′ = ((d) (; (:= q (QUOTE s)) C) out)

Obtain[[s1
1]](p,s) = p′ by defining the bodyCspecof s1

1 to be (inLISP-like informal syntax9):

Cspec=

inputvar := hd hd pgm; C := hd tl pgm; outputvar := hd tl tl pgm;

initialise := list(’:=, inputvar, list(’QUOTE, s));

body := list(’; ,initialise, C);

outpgm := list(tl hd pgm, body, outputvar);

8 ’d = (QUOTE d), op e = (op e), cons(e,e’) = (cons e e’), x := e = (:= x e), andC1;C2 = (; C1 C2).
9More notation:list(e1, e2,..., en) is short forcons(e1, cons(e2,..., cons(en, ’())...)).

N.D. Jones 7

3.3.1 Program details for the Kleene construction with tree-structured data

1. Let p= read q,d; Cp; write out and lets be the known value forq. Let Cspecbe the body

of specialisers1
1. As above[[s1

1]](p,s) = p′ = read d; q := ’s; Cp; write out .

2. Build p̃=

read q,d;

pgm := q; s := q; Cspec; (* specialise q to q *)

q := outpgm; Cp; (* then run p on the result *)

write out

This clearly satisfies[[p̃]](q,x) = [[p]]([[s1
1]](q,q),x).

3. Let p∗ = [[s1
1]](p̃, p̃) =

read d;

q := ’p̃; (* initialise q to program p̃ *)

pgm := q; s := q; Cspec; (* specialise p̃ to p̃ *)

q := outpgm; Cp; (* run p on the result *)

write out

This satisfies[[p∗]](d) = [[[[s1
1]](p̃, p̃)]](d) = [[p̃]](p̃,d) = [[p]]([[s1

1]](p̃, p̃),d) = [[p]](p∗,d).

Program self-reproduction: The start q := ’p̃; pgm := q; s := q; Cspec; q := outpgm of

the p∗ program assigns toq the value[[s1
1]](p̃, p̃), which equalsp∗. The net effect is that this code

segment inp∗ assigns toq the text of the entire program p∗ that contains it.

3.3.2 Constant time, and the role of shared data-structures

It may be surprising that Kleene’s SRT can be proven by such simple means.TINY is a very limited
language, since aTINY program can only access (by means ofhd, tl) parts of its input that lie a fixed
distance from the root of its input; the program is indifferent to the remainder of its input. This implies
that everyTINY program runs in constant time.

An analysis of the size ofp∗ = [[s1
1]](p̃, p̃): programp∗ contains

• a copy of the bodyCp of programp, and a copy of the bodyCspecof the specialiser; plus

• a copy of program ˜p (in ’p̃= (QUOTE p̃)). This p̃ also contains copiesof bothCp andCspec.

These copies are shared in the natural implementaion: variablespgm ands in programs ˜p andp∗ all refer
to the same DAG node. One effect is that a printed-out versionof p∗ may be considerably larger thanp∗

as a DAG, beause of the shared substructures.

3.4 A reflective extension of the programming language

Amtoft et al [9] observed a practical problem in the Kleene construction in the case that programp calls
the universal programuniv. Implementing recursion as in Application 5 gave a surprise: in order to
computen! the self-interpreter is appliedto interpret itselfatn meta-levels.Consequence: when applied
to computen! the Kleene constructiontakes exponential time, and not linear time as one might expect.
(Remark: the Moss construction would have the same problem.)

8 Swiss pocket knife

A design change: the functional language of [9] was given a “reflective extension”. First, a new
constant* was added to the language. Its value:the text of the program currently being executed. Second,
a new call formuniv p d was added, yielding value[[p]](d). With the aid of these new constructions
it was straightforward to construct a programp∗ as needed for the Kleene result, and without self-
application. The resultingp∗ evaluatedn! in linear time, albeit with a significant interpretation overhead.

The rationale behind this perhaps unexpected language design was that an interpreter was being used
to execute programs. Since the interpreter always has to have the program it is interpreting at hand, the
value of constant* is always available. Further, a source program calluniv p d can be implemented
by a simple recursive call to the currently running interpreter (thus sidestepping the need to interpret an
interpreter, etc.).

Conclusions: the construction of [9] gives a more efficient output program than Kleene’s version; but
the “reflective extension” is somewhat inelegant (even hacky); and an efficiency drawback is thatevery
program executioninvolves a significant interpretation overhead.

3.5 The Moss SRT proof with1#

The Moss approach to construct ˆq from Section 2.4 recapitulated: The language1# is based onterm
register machines(TRM for short): a variant of Shepherdson and Sturgis’ well-known register machines
[22, 28], generalised to work on strings fromD = {1,#}∗ as data instead of natural numbers. A program
operates on a fixed number of registersR1,R2, . . . ,Rk. To compute[[p]]n, the program inputs are in
RegistersR1,R2, . . . ,Rn, and output is in RegisterR1. Language1# is acceptable since it is possible to
construct a universal program and programs for theS-1-1functions.

A 1# program, as well as the data it operates on, is a string from{1,#}∗. For program representation
details, see [26]. A key point is that there exists aprogram composition operation| for 1# such that

∀p,q∈ Pgms∀x∈ D . [[p | q]](x) = [[q]]([[p]](x))

Operation| is just “append”, i.e., string concatenation. Further, there exist terminating programsmovei, j

andwrite, diag as follows. Their1# codes are also in [26], all using 3 or fewer registers.
1. movei, j appends the contents ofRi to the right end ofR j (and emptiesRi in the process).

2. For anyx∈ D, [[[[write]](x)]]() = x.

3. For anyr ∈ Pgm, [[[[diag]](r)]]() = [[r]](r).
Effects: programwrite produces from input stringx a program that, when run, writesx. Programdiag
produces from inputr a program that, when run, computes[[r]](r). Conceptually,write expresses the
essence ofcode generation; anddiag expresses the essence ofself-application.10

The Moss construction explicitly builds a program satisfying the requirements of Kleene’s proof. The
first step in in the Moss SRT construction: givenp, construct

q̂= diag | move1,2 | [[write]](move1,4) | move2,1 | [[write]](move4,2) | [[write]](p)

Program ˆq is terminating since all of its parts are terminating. Giventhe properties of program composi-
tion and thewrite, diag and themovei, j programs, it is easy to see that

[[q̂]](r) = move1,4 | [[diag]](r) | move4,2 | p

which implies[[[[q̂]](r)]](d) = [[p]]([[r]](r),d) as required. The second step is to setp∗ = [[q̂]](q̂).

10An example of a self-reproducing program similar to Application 1 is easy to construct directly: Defineself :=
[[diag]](diag). Then[[self]]() = [[[[diag]](diag)]]() = [[diag]](diag) = self.

N.D. Jones 9

4 Operational questions about theoretical constructions

4.1 Program running times

Write timep(d) for the number of steps to compute[[p]](d) in a suitable computation model, e.g., a
programming language. Assume given a functiontimep(d) that satisfies the Blummachine-independent
complexity axioms[1, 19]:

1. For anyp∈ Pgms,d ∈ D, timep(d) terminates iff[[p]](d) terminates.

2. The propertytimep(d)≤ t is decidable, given programp, input datad and timet.

For instance in an imperative language one could count 1 for each executed assignment:=, operator, and
variable or constant access.

4.2 Some natural questions for a computer scientist

1. What is thecomputational overheadof self-interpretation, i.e., applying a universal machine ?

2. Can specialisation as in theS-1-1axiomspeed a program up? If so, by how much?

3. How hard to constructare the programs that exist by Kleene’s second recursion theorem; andhow
efficientare they (or can they be)?

Questions 1 and 2 were motivated in 1971 by Futamura (reprinted in 1999 [6]); some answers are given
by Jones, Gomard, Sestoft in [15]. For context, first a brief review 1 and 2 from the viewpoint of [15, 6].
Following this, we obtain some new results about question 3 (investigated earlier in [9, 26]).

4.3 Interpretation overhead

By the Rogers axiom,[[p]](d) terminates iff[[univ]](p,d) terminates. By the first Blum complexity axiom

∀ p ∀d (∃t . timep(d)≤ t) iff (∃t ′ . timeuniv(p,d)≤ t ′)

Interpretation overhead is the efficiency slowdown caused by use of a universal machine, i.e., the relation
between (the smallest such)t andt ′. Their existence does not, however, imply there is any simple relation
between them. Some possibilities for interpretation overhead:

1. ∀p ∀d ∃c . timeuniv(p,d)≤ c· timep(d) (always true)

2. ∀p ∃c ∀d . timeuniv(p,d)≤ c· timep(d) (program-dependent overhead)

3. ∃c ∀p ∀d . timeuniv(p,d)≤ c· timep(d) (program-independent overhead)

One might expect Overhead 2 in practice, reasoning that if aninterpreteruniv simulatesp one step at a
time, thent ′ ≤ f (p) · t for some functionf . If so, then the interpretation overhead may depend on the
program being interpreted, but not on the current input datad.

Unfortunately this is not always so. One counterexample is Turing’s original universal machine [30].
Because of the 1-dimensional tape, simulation of the effectof one quintuple in programp may require
that the interpreter scansfrom the tape area wherep’s program code is written,to the area wherep’s
currently scanned data square is found, and thenscans back againto p’s program code. Worst-case:
timeuniv(p,d) is larger thanp’s running time multiplied by the entire size of of its run-time data area.

10 Swiss pocket knife

The same problem appears in most published universal machines, including the TRM model. The
problem is the need to “pack” all the simulated programp’s data values into one ofuniv’s data values.
Applied to TRMs: althoughunivhas only a fixed number of registers, there exists no limit to the number
of registers that an interpreted programp may have. The root of this problem is thata limit is inherited
from the interpreter, e.g., the number of registers. Mogensen describes this problem of inherited limits
in general terms and with many specific instances in [23].

Is this a problem? Yes (from this paper’s viewpoint) since a self-interpreteris needed for most
applications of the recursion theorem (beyond self-reproduction and self-recognition).

Smaller overheads have been obtained for some computation models. Interpretation overhead 2 is typical
for interpreters with tree-structured data and constant-time pointer access, e.g., interpreters expressed
in SCHEME, PROLOG, etc., and theλ -calculus. The partial evaluation literature (overviewedin [15])
contains many such self-interpreters. Mogensen [24] has detailed analyses of the costs ofλ -calculus
self-interpretation under several execution models.

Overhead 3 is seen in [12] for a very limited language (with one-atom trees and one-variable pro-
grams); and for theλ -calculus using some of Mogensen’s models and cost measures[24]. The first
assumes constant-time pointer access, and the second assumes constant-time variable access (or does not
count it). Overhead 3 also holds for the biologically motivated “blob” computation model [10] which
has 2-way bonds, no variables, bounded “fan-in” among data values, and a single 2-way activation bond
between program and data (which must always be adjacent).

4.4 Futamura projections: partial evaluation can remove interpretation overhead

Partial evaluation concernsefficient implementationof theS-m-nproperty. A partial evaluator is simply
an S-1-1programs1

1 as in the Rogers axioms. Supposinguniv is a universal program, the following
properties (due to Futamura 1971 [6]) are easy to verify fromthe definition ofuniv ands1

1. The first
line asserts that a partial evaluator can compile a programsourceinto a semantically equivalent program
target. The second line says that a partial evaluator can generate acompiler; and the third, that a partial
evaluator can generate a compiler generator.

Definitions Properties
1. target := [[s1

1]](univ,source) ∀d . [[target]](d) = [[source]](d)
2. compiler := [[s1

1]](s
1
1,univ) target = [[compiler]](source)

3. cogen := [[s1
1]](s

1
1,s

1
1) compiler = [[cogen]](univ)

The Futamura projections involve program self-application, but in a way different than that used in the
proof of Kleene’s theorem, e.g.,[[s1

1]](s
1
1,univ) rather than[[s1

1]](q,q) or [[q̂]](q̂).
The Futamura projections were first fully realised on the computer in Copenhagen in 1985; see [15]

for details and references. The expensive self-application in the table forcompiler:= [[s1
1]](s

1
1,univ) can

be avoided by doing another computation that only needs doing once:cogen:= [[s1
1]](s

1
1,s

1
1). After that, an

individual compiler can be generated from any interpreterint by the significantly faster runcompiler:=
[[cogen]](int). For details, see [15]. A moral: one deep self-application,to constructcogen:= [[s1

1]](s
1
1,s

1
1),

can be used in place of single self-applicationscompiler:= [[s1
1]](s

1
1, int) that are done repeatedly.

We hope that such analogies will lead to a better complexity-theoretic understanding of Kleene’s
second recursion theorem.

Complexity issues in partial evaluation are fairly well-understood and partial evaluators well-engineered.

N.D. Jones 11

An example “optimality” result from [15], for a simple first-orderSCHEME-like language:

Theorem Partial evaluation can removeall interpretation overhead, meaning

timetarget(d)≤ timesource(d)

for all datad and a natural self-interpreteruniv.

The removal of all interpretation overhead has been achieved in practice as well as in theory.

5 Operational aspects of Kleene’s second recursion theorem

In spite of the theorem’s high impact on theory, it is not easyto reason about its efficiency, e.g., time
usage. To being with, there are two distinct efficiency questions with rather different answers:

• The time it takesto construct p∗ from p; and

• The efficiency of the constructed program p∗, when run ond.

The constructions used to prove Kleene’s theorem are not complex, and do not require the full power of
recursion theory to construct programp∗ from p.11

5.1 Some operational detail

The Moss approach is similar to Kleene’s, but with different“building blocks,” e.g., noS-m-ntheorem is
used. Based on computer experiments:

1. In practice the Moss approach is somewhat faster and simpler than the Kleene approach, but the
transformed programp∗ works in essentially the same way for both constructions.

2. How p∗ works: for a givenp,

• p∗ first computesa copy of itself, including p.

• It then runsp on the copy ofp∗, together with the data inputd.

3. When run, programp∗ has been observed to belarge and slow. Both constructions generate a
rather expensive set-up phase, to make the copy ofp∗, before ever looking atp’s data inputd.

4. The generated programp∗ may containmore than one version of p and s1
1, in plain and code-

generating versions. (This has already been seen in Section3.3.2.)

5.2 Corner cases

Three “corner cases” (a term due to Polya) that may give some insight into operational behavior:

1. First projection:[[p]](e,d) = e. In this casep∗ is a self-reproducing program, as in Application 1.

2. Second projection:[[p]](e,d) = d. By SRT[[p∗]](d) = [[p]](p∗,d) = d, so p∗ computes the identity
function, but slowly. It first constructs a copy of itself andthen runsp, ignoring the copy it made.

3. p= univ. By SRT[[p∗]](d) = [[p]](p∗,d) = [[univ]](p∗,d) = [[p∗]](d), which makes no restriction at
all on p∗. The resulting programp∗ loops infinitely.

11The complexity of runningp∗, i.e.., of computing[[p∗]](d), can, however be high, depending on programp.

12 Swiss pocket knife

5.3 Can more efficient SRT output programs be obtained?

In the special case thatp does not use its first argument p∗, as in in corner case 2, one would expect

• timep(p∗,d) = f (d) for some functionf

• timep∗(d) = c+ f (d) for some constantc (cf. Section 5.1)

These expectations hold in computer experiments, but the constantc is very large.
The unexpected exponential time behavior of the factorial example in application 5 could be circum-

vented as in Section 3.4 and [9], but at considerable cost:interpretive execution of all programs. Can
this effect be achieved more economically, e.g., by a stronger s1

1 algorithm?

5.4 Utility of a more efficient program specialiser.

Kleene’s proof is based on theS-m-nconstruction, so would be natural to expect the Kleene SRT con-
struction to benefit from using a state-of-the-art partial evaluator, e.g., as described in [15].

Bonfante (continuing the line of [2]) added to the end ofs1
1 a simple optimiser: a “dead code” detector

and eliminator. This was enough to eliminate all the unnecessary computation seen in corner case 2. It
is less clear, however, where such optimisations could be put into the Moss construction.

5.5 Relating the1# and TINY SRT constructions

5.5.1 Some experiments with1#.

The results reported by Moss in [26] led this paper’s author to develop a straightforward1# implemen-
tation inSCHEME, with a step counter to evaluate running times. Some comments:

• 1# is a register machine model, so programmovei, j (used to assignRi:=R j) takes timeO(|Rj |).

• Data structures are the main difference between1# andTINY . The linear strings in{1,#}∗ must
be scanned one bit at a time, in contrast toTINY ’s constant-time pointer operations.

• Observed for the Moss SRT construction:

– Computing[[write]](x) takes timeO(|x|), as does[[diag]](x).

– For a smallp, the set-up phase ofp∗ (computing[[q̂]](q̂)) takes between 20,000 and 40,000
steps (depending on implementation choices).

– A significant factor in computing[[q̂]](q̂) was the time[[write]](x) and [[diag]](x) used to
readx, and to compute their output values while scanning several versions of programp.

We also implemented the Kleene version of the SRT construction in 1# (specialising bys1
1 as in [26]).

It ran about twice as slowly as the Moss SRT construction. Further, experiments were done with a1#
variant with constant-time assignments; this is natural for programming languages. The resulting Moss
SRT construction ran roughly twice as fast as the original1#.

5.5.2 The Moss construction in constant time usingTINY .

EveryTINY program runs in constant time independent of the size of its input, including the Kleene SRT
construction seen in Section 3.3 We will not re-do the complete proof of Section 3.5, but just show that
central components of the Moss construction are expressible in TINY .

N.D. Jones 13

First, program composition| : Let p= read x; Cp; write y andq= read y; Cq; write z .
Without loss of generality,p,q have disjoint variables, except fory. TINY has no need for a time-
consuming “append” operation, since program

p | q= read x; (Cp ; Cq); write z

behaves as required, satisfying[[p | q]](x) = [[q]]([[p]](x). Expressed in concrete syntax, the program
composer should transform program inputs((x) Cp y) and((y) Cq z) into ((x) (; Cp Cq) z).
This is straightforward to program inTINY .

Next, we need a program such that[[[[write]](x)]]() = x for any x ∈ D. For example,[[write]](x)
could yield as output theTINY programwx = read; out := ’x; write out . In concrete syntax:

wx = (() (:= out (QUOTE x) out)

A programwrite to generatewx from x:

write=
read x;

out := list(’(), (list ’:=, ’out, list (’QUOTE, x)), ’out);

write out

A programdiag satisfying[[[[diag]](r)]]() = [[r]](r), for r ∈ Pgms. Goal: [[diag]](r) is a programdr such
that[[dr]]() = [[r]](r). Let r = read x; Cr; write out have concrete syntax((x) Cr out). Thendr

could be

dr = read; x := ’r; Cr; write out .

or, in concrete syntax:

dr = (() (; (:= x (QUOTE r)) Cr) out)

A programdiag to generatedr from r:

diag=

read r;

inputvar := hd hd r; C := hd tl r; outputvar := hd tl tl r;

initialise := list(’:=, inputvar, list(’QUOTE, r));

body := list(’; ,initialise, C);

outpgm := list(tl hd pgm, body, outputvar);

write outpgm

Thisdiag is justTINY specialisers1
1, modified to generate code that first copies (a pointer to) static data

inputr, to buildx := ’r; followed by its bodyCr . The generated code’s net effect is to execute program
r on inputr.

We omit the similar but tedious details of building aTINY version of program ˆq. The “append” effect
of movei, j is achieved in constant time byTINY ’s “;”, as used above for|.

6 Related work, future work, and acknowledgements

6.1 Related work

Kleene’s second recursion theorem attracted interest since first published in 1938, shortly after Turing’s
pathbreaking 1936 work that founded computability theory [30]. Kleene’s apparently quite theoretical

14 Swiss pocket knife

result has shown a staying power in areas far beyond its frequent usage by recursion theorists, as well-
documented by Moschovakis in 2010 [25]. One reason for such widespread interest is the way it is
proven: in essence Kleene constructed a self-reproducing program. This is particularly surprising since
Kleene did this in a quite constructive way in the 1930s, longbefore the first computer was built.

Computer scientists have for many years repeatedly re-discovered and re-solved the goal of building
self-reproducing programs, cf. an elegant example by Thompson [29]. John Case applied this fascinating
theorem in both recursive function theory and in computer learning, e.g., see [4]. A group at Nancy led
by Jean-Yves Marion has related Kleene’s theorem to computer viruses [3], and devisedTINY .

Our own early interest in the theory-practice interface ledto a 1989 paper [9]. While that solution
worked, a drawback was that its usage always involved at least one level of interpretation overhead.

Since then the 2006 work by Lawrence Moss [26] brought Kleene’s result strongly to the attention of
computer scientists. Further, Oleg Kiselyov [16] has recently worked on the problem from a functional
programming viewpoint, a starting point being an unusuallyefficient self-interpreter written in theλ -
calculus using a higher order representation of program syntax. The work in this paper involves much
lower-level languages than the ones used by Kiselyov and Mogensen [16, 24].

6.2 Future work

This paper’s results concern mostly the time to producep∗ by the Kleene and Moss constructions, but
very little has been said about the runtime efficiency of computing [[p∗]](d) for Turing-complete lan-
guages (beyond mentioning that this question motivated [9]). Here it becomes interesting, since straight-
forwardly applying the Kleene or Moss constructions often givesunnaturally inefficient solutions, e.g.,
the nested self-interpretations seen in the recursion example of Application 5.

Following are some questions and goals for future work.

1. A question concerning the Moss 2-stage SRT construction:can an efficient specialiser (e.g., as in
[15]) be usefully applied to the result ofdiag from Section 5.5?

2. To what extent can an efficient specialiser be used to produce better fixpoint programsp∗?

3. It is natural to ask whether nested self-interpretation can be avoided without adding an interpretive
overhead to every program execution (as seen in [9]).

4. Investigate the changes to the SRT efficiency results if one supposes the implementation language
has a self-interpreterwith only additive overhead, meaning:

∀p ∃c ∀d . timeuniv(p,d)≤ c+ timep(d)

This can be done if (1) programs are data; and (2) one has an instruction with the effect of “goto
data”. An interpreteruniv could first compile its input programp to the language in which the
interpreter itself is written; and then jump, i.e., transfer control, to this code’s first instruction.
Such effects can be achieved in the von Neumann computation model (although finite), in Marion’s
SRM model extending the Moss1# language [20], and in a planned modest extension of the Blob
model [10].

5. In a Turing-complete language, running times may of course be much larger than the constant-time
bounds ofTINY . If programp may contain control loops, challenging problems include:

• how to find bounds ontimep∗(d) as built by existing constructions; and

• how to achieve better running times by new constructions.

N.D. Jones 15

These questions could be approached pragmatically, or computation-theoretically.

6. A more general problem: find relations between the self-application from Kleene’s SRT, e.g.,
[[s1

1]](q,q) or [[q̂]](q̂); and the self-application used in the Futamura projections, e.g.,

[[s1
1]](s

1
1,univ) or [[s1

1]](s
1
1,s

1
1).

7. Finally, supposep is “extensional”, as in Rice’s Theorem: the output value[[p]](e,x) depends only
on the semantics of argumente, so [[e]] = [[e′]] implies∀x [[p]](e,x) = [[p]](e′,x). Operationally, all
that can be done withp’s program argumente is to run it (perhaps nested, e.g.,[[e]]([[e]](x)).

Somehow this seems close to Kleene’sfirst recursion theorem. Can a precise connection be made?
A gap to be closed is that the first recursion theorem concernscomputable functionals (second-
order), rather than first-order functions.

6.3 Acknowledgements

Thanks to NII (Tokyo), IMDEA Software (Madrid), UTS (Sydney), and the COLA project (University
of Copenhagen) for good environments to do this work. A 2013 visit to LORIA (Nancy, France) to work
with Jean-Yves Marion and Guillaume Bonfante was a great help, both in focusing this paper, and in
thinking about future exciting directions, e.g., self-interpretation with only additive overhead. Thanks
for comments on form and content to anonymous referees and toGeoff Hamilton, Barry Jay, Torben
Mogensen, Lawrence Moss, Jean-Yves Moyen and Jakob Grue Simonsen.

Finally and on a broader plane, I would liketo thank Dave Schmidtfor numerous wide-ranging and deep
discussions of programmming languages and their semanticsand implementation. These have occurred
over many years since our first contact in Kansas in the 1970s and subsequent years in Aarhus and
Copenhagen.

References

[1] Manuel Blum (1967): A Machine-Independent Theory of the Complexity of Recursive Functions.
Journal of the Association for Computing Machinery (JACM)14(2), pp. 322–336. Available at
http://doi.acm.org/10.1145/321386.321395.

[2] Guillaume Bonfante & Benjamin Greenbaum (2013):Immune Systems in Computer Virology (working
notes). Technical Report, Université de Lorraine, Nancy, France.

[3] Guillaume Bonfante, Matthieu Kaczmarek & Jean-Yves Marion (2007):A Classification of Viruses Through
Recursion Theorems. In: Computability in Europe, Lecture Notes in Computer Science4497, Springer, pp.
73–82. Available athttp://dx.doi.org/10.1007/978-3-540-73001-9_8.

[4] John Case & Samuel E. Moelius (2012): Program Self-Reference in Constructive
Scott Subdomains. Theory of Computing Systems51(1), pp. 22–49. Available at
http://dx.doi.org/10.1007/s00224-011-9372-1.

[5] Alonzo Church & J. Barkley Rosser (1936):Some Properties of Conversion. Transactions of the American
Mathematical Society39, pp. 11–21. Available athttp://dx.doi.org/10.2307/1989762.

[6] Yoshiko Futamura (1999): Partial evaluation of computing process – an approach to a
compiler-compiler. Higher-Order and Symbolic Computation12(4), pp. 381–391. Available at
http://dx.doi.org/10.1023/A:1010095604496.

[7] Robin Gandy (1988):The Confluence of Ideas in 1936. In Herken [11], pp. 55–112. Available at
http://dx.doi.org/10.1007/978-3-7091-6597-3_3.

http://doi.acm.org/10.1145/321386.321395
http://dx.doi.org/10.1007/978-3-540-73001-9_8
http://dx.doi.org/10.1007/s00224-011-9372-1
http://dx.doi.org/10.2307/1989762
http://dx.doi.org/10.1023/A:1010095604496
http://dx.doi.org/10.1007/978-3-7091-6597-3_3

16 Swiss pocket knife

[8] Roberto Giacobazzi, Neil D. Jones & Isabella Mastroeni (2012): Obfuscation by partial evaluation of dis-
torted interpreters. In: ACM SIGPLAN 2012 Workshop on Partial Evaluation and ProgramManipulation,
PEPM 2012, pp. 63–72. Available athttp://doi.acm.org/10.1145/2103746.2103761.

[9] Torben Amtoft Hansen, Thomas Nikolajsen, Jesper Larsson Träff & Neil D. Jones (1989):Experiments with
Implementations of Two Theoretical Constructions. In: Logic at Botik, LNCS 363, Springer, pp. 119–133.
Available athttp://dx.doi.org/10.1007/3-540-51237-3_11.

[10] Lars Hartmann, Neil D. Jones, Jakob Grue Simonsen & Søren Bjerregaard Vrist (2011):
Programming in Biomolecular Computation: Programs, Self-Interpretation and Visu-
alisation. Scientific Annals of Computer Science21(1), pp. 73–106. Available at
http://www.infoiasi.ro/bin/Annals/Article?v=XXI1{&}a=9.

[11] Rolf Herken, editor (1988):The Universal Turing Machine. A Half-Century Survey. Oxford University Press.
Available athttp://dx.doi.org/10.1007/978-3-7091-6597-3.

[12] Neil D. Jones (1993):Constant time factors do matter. In: ACM Symposium on Theory of Computing,
STOC 1993, ACM, pp. 602–611. Available athttp://doi.acm.org/10.1145/167088.167244.

[13] Neil D. Jones (1997): Computability and Complexity from a Programming Perspec-
tive, 1 edition. Foundations of Computing, MIT Press, Boston, London. Available at
http://dx.doi.org/10.1016/S1571-0661(04)00019-2.

[14] Neil D. Jones (1999): LOGSPACE and PTIME Characterized by Programming Lan-
guages. Theoretical Computer Science228(1-2), pp. 151–174. Available at
http://dx.doi.org/10.1016/S0304-3975(98)00357-0.

[15] Neil D. Jones, Carsten K. Gomard & Peter Sestoft (1993):Partial Evaluation and Automatic Program Gen-
eration. Prentice-Hall.

[16] Oleg Kiselyov (2011):Investigations into Kleene’s 2nd recursion theorem. Technical Report, Fleet Numeri-
cal Meteorology and Oceanography Center,http://okmij.org/ftp/Haskell/Kleene.hs.

[17] Stephen Cole Kleene (1938):On Notation for Ordinal Numbers. Journal of Symbolic Logic3(4), pp. 150–
155. Available athttp://dx.doi.org/10.2307/2267778.

[18] Stephen Cole Kleene (1952):Introduction to Metamathematics. Van Nostrand. Available at
http://dx.doi.org/10.1007/978-0-8176-4769-8_11.

[19] Michael Machtey & Paul Young (1978):An introduction to the general theory of algorithms. Theory of
computation series, North-Holland, New York.

[20] Jean-Yves Marion (2012):From Turing machines to computer viruses. In: Philosophical transactions of the
Royal Society A, Lecture Notes in Computer Science370.1971, Royal Society publishing, pp. 3319–3339.
Available athttp://dx.doi:10.1098/rsta.2011.0332.

[21] John McCarthy (1960):Recursive Functions of Symbolic Expressions and Their Computation by Machine.
Communications of the Association for Computing Machinery(CACM) 3(4), pp. 184–195. Available at
http://doi.acm.org/10.1145/367177.367199.

[22] Marvin Minsky (1967): Computation: Finite and Infinite Machines. Prentice-Hall Series in Automatic
Computation.

[23] Torben Æ. Mogensen (1996):Evolution of partial evaluators: removing inherited limits. In: Par-
tial Evaluation. Proceedings, LNCS 1110, 303321, Springer-Verlag, pp. 303–321. Available at
http://dx.doi.org/10.1007/3-540-61580-6_15.

[24] Torben Æ. Mogensen (2000): Linear-Time Self-Interpretation of the Pure Lambda Cal-
culus. Higher-Order and Symbolic Computation13(3), pp. 217–237. Available at
http://dx.doi.org/10.1023/A:1010058213619.

[25] Yiannis N. Moschovakis (2010):Kleene’s amazing Second Recursion Theorem. Bulletin of Symbolic Logic
16(2), pp. 189–239. Available athttp://dx.doi.org/10.2178/bsl/1286889124.

http://doi.acm.org/10.1145/2103746.2103761
http://dx.doi.org/10.1007/3-540-51237-3_11
http://www.infoiasi.ro/bin/Annals/Article?v=XXI1{&}a=9
http://dx.doi.org/10.1007/978-3-7091-6597-3
http://doi.acm.org/10.1145/167088.167244
http://dx.doi.org/10.1016/S1571-0661(04)00019-2
http://dx.doi.org/10.1016/S0304-3975(98)00357-0
http://dx.doi.org/10.2307/2267778
http://dx.doi.org/10.1007/978-0-8176-4769-8_11
http://dx.doi: 10.1098/rsta.2011.0332
http://doi.acm.org/10.1145/367177.367199
http://dx.doi.org/10.1007/3-540-61580-6_15
http://dx.doi.org/10.1023/A:1010058213619
http://dx.doi.org/10.2178/bsl/1286889124

N.D. Jones 17

[26] Lawrence S. Moss (2006):Recursion Theorems and Self-Replication Via Text RegisterMachine Programs.
Bulletin of the European Association for Theoretical Computer Science89, pp. 171–182.

[27] Hartley Rogers (1987):Theory of recursive functions and effective computability(Reprint from 1967). MIT
Press. Available athttp://mitpress.mit.edu/catalog/item/default.asp?ttype=2{&}tid=3182.

[28] John C. Shepherdson & Howard E. Sturgis (1961):Computability of Recursive Functions. Jour-
nal of the Association for Computing Machinery (JACM)10, pp. 217–255. Available at
http://dx.doi.org/10.1145/321160.321170.

[29] Ken Thompson (1984):Reflections on trusting trust. Communications of the Association for Computing
Machinery (CACM)27(8), pp. 761–763. Available athttp://doi.acm.org/10.1145/358198.358210.

[30] Alan M. Turing (1936-7):On Computable Numbers with an Application to the Entscheidungsproblem. Pro-
ceedings of the London Mathematical Society42(2), pp. 230–265.

http://mitpress.mit.edu/catalog/item/default.asp?ttype=2{&}tid=3182
http://dx.doi.org/10.1145/321160.3 21170
http://doi.acm.org/10.1145/358198.358210

	1 Introduction
	1.1 Context
	1.2 Contribution of this paper

	2 Fundamentals
	2.1 Recursive function theory
	2.2 Kleene's second recursion theorem
	2.3 Kleene's proof of SRT
	2.4 The Moss proof of SRT
	2.5 Remarks on constructing the ``fixpoint''

	3 Towards computer realisations of the SRT proof
	3.1 The ``Swiss pocket knife''
	3.2 Programs as data
	3.3 The Kleene SRT proof with tree-structured data
	3.3.1 Program details for the Kleene construction with tree-structured data
	3.3.2 Constant time, and the role of shared data-structures

	3.4 A reflective extension of the programming language
	3.5 The Moss SRT proof with 1#

	4 Operational questions about theoretical constructions
	4.1 Program running times
	4.2 Some natural questions for a computer scientist
	4.3 Interpretation overhead
	4.4 Futamura projections: partial evaluation can remove interpretation overhead

	5 Operational aspects of Kleene's second recursion theorem
	5.1 Some operational detail
	5.2 Corner cases
	5.3 Can more efficient SRT output programs be obtained?
	5.4 Utility of a more efficient program specialiser.
	5.5 Relating the 1# and tiny SRT constructions
	5.5.1 Some experiments with 1#.
	5.5.2 The Moss construction in constant time using tiny.

	6 Related work, future work, and acknowledgements
	6.1 Related work
	6.2 Future work
	6.3 Acknowledgements

