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This paper is a short tutorial introduction to online partial evaluation. We show how to write a
simple online partial evaluator for a simple, pure, first-order, functional programming language. In
particular, we show that the partial evaluator can be derived as a variation on a compositionally
defined interpreter. We demonstrate the use of the resulting partial evaluator for program optimization
in the context of model-driven development.

1 Introduction

Partial evaluation is a powerful and general optimization technique [5]. It has applications in model-
driven development, domain-specific language engineering [4], and generic programming [7]. The C++
template system can be understood as a form of partial evaluation [11]. However, partial evaluation has
not been very widely adopted. It has a reputation as an esoteric and complex topic. The challenge, set
forth by Futamura in the 1970s [2]—to create an automatic compiler-compiler by partial evaluation—has
largely been abandoned; a failure that may taint the entire effort.

These notes introduce partial evaluation by converting an interpreter for a functional language into a
simple partial evaluator for the language.1 The conversion relies on a simple basic idea:

Allow undefined variables during evaluation.
Preserve syntactical phrases if they cannot be evaluated completely.

A regular interpreter maintains variable bindings in an environment. Normally, the environment is re-
quired to contain bindings for all variables mentioned in the program—an undefined variable is a fatal
error. For example, the evaluation of the expression xn only succeeds if both x and n are bound to values
of types for which exponentiation is defined. Assuming bindings x= 2 and n= 3, an interpreter evaluates
xn to 8, but it fails if either x or n are not bound.

What would it mean to evaluate xn given a partial environment that only includes n = 3? The result
cannot be a number, because the value of x is not known. If we assume that the value of x will be known
later, then the result can be a new program x3. This is called residual code, because it is the code that is
left over after evaluating parts of the expression. Note that the variable n does not occur in the residual
code. It has been eliminated from the program.

Thus, one way to understand partial evaluation is this: enhance regular evaluation to synthesize resid-
ual code when encountering unbound variables in the partial environment. Partial evaluation becomes
more complicated when it deals with all the different kinds of expressions that can occur in a program.
Consider the following expression:

if x>y then (10+y)/x else y

1A code distribution is available from the paper’s website: http://softlang.uni-koblenz.de/dsl11

http://dx.doi.org/10.4204/EPTCS.66.8
http://softlang.uni-koblenz.de/dsl11
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type Prog = ([FDef], Expr)

type FDef = (String,([String],Expr))

data Val
= IVal { getInt :: Int }
| BVal { getBool :: Bool }

data Expr
= Const { getVal :: Val }
| Var String
| Apply String [Expr]
| Prim Op [Expr]
| If Expr Expr Expr

data Op = Equal | Add | Sub | Mul

Figure 1: Syntax of a simple functional programming language

What does it mean to partially evaluate the given expression in an environment that specifies y = 0 and
with no binding for x? The result is the residual code if x>0 then 10/x else 0. In this case, both
branches of the conditional must be partially evaluated, if y is to be eliminated. This is not the normal
evaluation rule for conditionals. As a result, partial evaluation may diverge where regular evaluation
would terminate—unless extra effort is made. Also, great care must be taken in the presence of side
effects. Consider again the expression given earlier for a partial environment such that x = 0 and with no
binding for y. Partial evaluation is supposed to result in the residual code if 0>y then error else y.
Note that the division-by-zero error must not be raised during partial evaluation, but it must be delayed
so that it is executed at the right point in the residual code—if it is ever exercised. Function calls and
recursive definitions also cause complications, which are discussed in the tutorial.

The style of partial evaluator developed here is called an online partial evaluator, because it makes
decisions about specialization as it goes, based on whatever variables are in the environment at a given
point during evaluation [5]. An offline partial evaluator performs a static analysis of the program to
decide which variables will be considered known and which will be considered unknown. It has been
claimed that offline partial evaluation is simpler than online partial evaluation [10]. It can be more
difficult to ensure termination in an online setting. In this tutorial, we avoid issues of termination, so
this complexity does not arise [9]. Given this restriction, we believe that the online style is simpler to
describe, because the partial evaluator can be derived easily from an existing interpreter.

2 A Simple Language and Evaluator

Fig. 1 lists the abstract syntax for a simple, pure, first-order, functional programming language. A pro-
gram consists of a list of function definitions (see type FDef) and a main expression. A function definition
is tuple of the form ( f ,([a1, ...,an],b)) where f is the function name, ai are formal parameter names, and
b is the body expression of the function. There are the following expression forms: a constant (of type
Val), a variable, a function application, the application of a primitive operator, and a conditional expres-
sion. Evaluation of an expression is supposed to return a value, but it may fail in reply to a dynamic
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type error; it may also diverge. Functions are first-order: functions are neither passed as arguments, nor
returned as results.

As an example, consider the following exponentiation function written in Haskell:

exp(x, n) = if n == 0 then 1 else x * exp(x, n - 1)

This function can be encoded in our simple language as follows:

exp = (
"exp", (["x","n"],
If (Prim Equal [Var "n", Const (IVal 0)])

(Const (IVal 1))
(Prim Mul
[Var "x",
Apply "exp" [Var "x", Prim Sub [Var "n", Const (IVal 1)]]])))

The interpreter is a function eval that takes a program (i.e., a list of function definitions and a main
expression) and returns a value (i.e., a Boolean or an int), or it fails, or it diverges. For instance:

> eval ([exp], Apply "exp" [Const (IVal 2), Const (IVal 3)])
8

Fig. 2 gives the complete interpreter. The main evaluation function eval binds the argument fdefs to
the list of functions and it invokes the expression-level evaluation function eval’ on the main expression.
Since eval’ is defined in the scope of eval, the function list fdefs does not need to be passed on every
recursive call. The helper function does take a environment env that maps variables to values. The
environment is initialized to the empty list.

It must be emphasized that this interpreter is in no way special, unusual, or targeted at partial evalua-
tion. One gets this interpreter naturally when using big-step style of operational semantics or direct style
of denotational semantics (i.e., compositional, functional semantics) as the guiding principle.

3 A Naive Partial Evaluator

Let us start the conversion of the interpreter into a partial evaluator. The partial evaluator should produce
the same result as the interpreter when given a complete environment, but it should compute a residual
expression when given a partial environment. Let us think of the residual expression as the “rest of the
program” that needs to be evaluated once the remaining variables are bound to values. For instance:

> peval ([exp], Apply "exp" [Var "x", Const (IVal 3)])

Prim Mul [Var "x",
Prim Mul [Var "x",

Prim Mul [Var "x", Const (IVal 1)]]]

Thus, the function exp is applied to a specific exponent 3, but the base remains a variable x, and the result
of partial evaluation represents the expression to compute x3 = x∗ x∗ x∗1. The partial evaluator derived
that expression by applying (unfolding) the recursive definition of exp for exponents 3, 2, 1, and 0.

We develop a partial evaluator in two steps. The intermediate version is very simple, but also limited.
In fact, it is essentially a systematic inlining transformation. We start from the insight that the type of the
top-level function must be changed so that expressions are returned instead of values. Please note that
values are trivially embedded into expressions through the constant form of expressions. Thus:
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type Env = [(String, Val)]

eval :: Prog -> Val
eval (fdefs, main) = eval’ main []

where

eval’ :: Expr -> Env -> Val

eval’ (Const v) env = v

eval’ (Var s) env =
case lookup s env of
Just v -> v
Nothing -> error "undefined variable"

eval’ (Prim op es) env =
let rs = [ eval’ e env | e <- es ] in
prim op rs

eval’ (If e0 e1 e2) env =
if getBool (eval’ e0 env)
then eval’ e1 env
else eval’ e2 env

eval’ (Apply f es) env =
eval’ body env’
where
(ss, body) = fromJust (lookup f fdefs)
env’ = zip ss [ eval’ e env | e <- es ]

prim Equal [IVal i1, IVal i2] = BVal (i1 == i2)
prim Add [IVal i1, IVal i2] = IVal (i1 + i2)
prim Sub [IVal i1, IVal i2] = IVal (i1 - i2)
prim Mul [IVal i1, IVal i2] = IVal (i1 * i2)

Figure 2: An evaluator for Fig. 1
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−− Interpreter
eval :: Prog -> Val

−− Partial evaluator
peval :: Prog -> Expr

Also, our initial, naive development uses the idea that function applications should always be inlined,
and hence, we need to be able to apply functions to results of partial evaluation, i.e., to expressions rather
than values. Accordingly, the type of environments changes as follows:

−− Interpreter
type Env = [(String, Val)]

−− Naive, inlining−oriented partial evaluator
type Env = [(String, Expr)]

Fig. 3 gives the complete, naive partial evaluator. Function peval’ generalizes eval’ as follows:

• A constant is partially evaluated to itself (just like in the interpreter).

• A variable is partially evaluated to the value (constant) according to the variable’s binding in the
environment (just like in the interpreter), if there is a binding. Otherwise, the variable is partially
evaluated to itself. (The interpreter failed in this case.)

• A primitive operation is applied to the (partially) evaluated arguments (just like in the interpreter),
if these are all values (constants). Otherwise, a primitive operation form of expression is recon-
structed from the partially evaluated arguments.

• A conditional can be eliminated such that one of the two branches is chosen for recursive (partial)
evaluation (just like in the interpreter), if the condition is (partially) evaluated to a value (constant).
Otherwise, both branches are partially evaluated, and the conditional is reconstructed.

• A function application is partially evaluated just like in the interpreter—modulo the changed envi-
ronment type. (Alpha renaming should be applied to avoid any name confusion but this is omitted
here for brevity.)

The treatment of conditionals and function applications is naive. For example, partial evaluation of a
function application may diverge when compared to regular evaluation. Thus:

> peval ([exp], Apply "exp" [Const (IVal 2), Var "n"])

−− Result shown in regular Haskell notation for clarity
if n == 0
then 1
else 2 * (if n-1 == 0

then 1
else 2 * (if (n-1)-1 == 0 ...))

In this example, the function exp is applied to a specific base 2, but the exponent remains a variable
n. Inlining diverges because the recursive case of exp is continuously exercised for different argument
expressions for the exponent.
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type Env = [(String, Expr)]

peval :: Prog -> Expr
peval (fdefs, main) = peval’ main []

where

peval’ :: Expr -> Env -> Expr

peval’ (Const v) env = Const v

peval’ (Var s) env =
case lookup s env of
Just e -> e
Nothing -> Var s −− return code for variable

peval’ (Prim op es) env =
let rs = [ peval’ e env | e <- es ] in
if all isVal rs
then Const (prim op (map getVal rs))
else Prim op rs −− return code for primitive

peval’ (If e0 e1 e2) env =
let r0 = peval’ e0 env in
if isVal r0
then if getBool (getVal r0)

then peval’ e1 env
else peval’ e2 env

else (If r0
(peval’ e1 env)
(peval’ e2 env)) −− return code for if

peval’ (Apply f es) env =
peval’ body env’
where
(ss, body) = fromJust (lookup f fdefs)
env’ = zip ss [ peval’ e env | e <- es ]

Figure 3: The naive partial evaluator
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4 Proper Program Specialization

Proper treatment of recursive functions requires from us to synthesize residual programs instead of just
residual expressions based on naive inlining. Hence, our more advanced partial evaluator uses the fol-
lowing type:

peval :: Prog -> Prog

Also, we return to the original definition of Env, which binds variables to values rather than expressions.
The idea is here that the incoming function definitions and the main expression are specialized such that
the resulting main expression only refers to specialized function definitions. The same original function
definition may be specialized several times depending on the encountered, statically known argument
values. For instance:

> peval ([exp], Apply "exp" [Var "x", Const (IVal 3)])

([ ("exp’a",(["x"],
Prim Mul [Var "x", Apply "exp’b" [Var "x"]])),

("exp’b",(["x"],
Prim Mul [Var "x", Apply "exp’c" [Var "x"]])),

("exp’c",(["x"],
Prim Mul [Var "x", Apply "exp’d" [Var "x"]])),

("exp’d",(["x"],
Const (IVal 1))),

],
Apply "exp’a" [Var "x"]
)

The names of the specialized functions are fabricated from the original name by some qualification
scheme. For clarity, the list of function definitions are also shown in plain Haskell:

exp’a x = x * exp’b x
exp’b x = x * exp’c x
exp’c x = x * exp’d x
exp’d x = 1

Thus, specialized function definitions were inferred for all the inductively encountered values 3, 2, 1, and
0 for the exponent. Thus, subject to a simple inlining optimization, which is not shown here for brevity,
we obtain the familiar expression for x to the power 3.

Let us apply the more advanced, partial evaluator to the diverging example that we faced at the end
of the previous section. Function specialization carefully tracks argument lists for which specialization
is under way or has been completed. This solves the termination problem.

> peval ([exp], Apply "exp" [Const (IVal 2), Var "n"])

(["exp’", (["n"],
If (Prim Equal [Var "n", Const (IVal 0)])

(Const (IVal 1))
(Prim Mul

[Const (IVal 2),
Apply "exp’" [Prim Sub [Var "n", Const (IVal 1)]]]))],

Apply "exp’" [Var "n"]
)
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type Env = [(String, Val)]

peval :: Prog -> Prog
peval (fdefs, main) = swap (runState (peval’ main []) [])

where

peval’ :: Expr -> Env -> State [FDef] Expr

peval’ (Const v) env = return (Const v)

peval’ (Var s) env =
case lookup s env of
Just v -> return (Const v)
Nothing -> return (Var s)

peval’ (Prim op es) env = do
rs <- mapM (flip peval’ env) es
if all isVal rs
then return (Const (prim op (map getVal rs)))
else return (Prim op rs)

peval’ (If e0 e1 e2) env = do
r0 <- peval’ e0 env
if isVal r0 then
if getBool (getVal r0)
then peval’ e1 env
else peval’ e2 env

else do
r1 <- peval’ e1 env
r2 <- peval’ e2 env
return (If r0 r1 r2)

Figure 4: Monadic partial evaluation

Thus, the original definition of exp was specialized such that the argument position for the statically
known base is eliminated. Please note that the specialized function is recursive.

The partial evaluator needs to aggregate specialized functions along with recursion into expressions.
To this end, we use the state monad in the type of the expression-level function peval’. Thus:

−− Naive inlining transformation
peval’ :: Expr -> Env -> Expr

−− Proper program specialization
peval’ :: Expr -> Env -> State [FDef] Expr

The cases for all constructs but function application can be adopted from the simpler partial evaluator—
except that we need to convert to monadic style, which is a simple, systematic program transformation
in itself [6, 1]. See Fig. 4 for the result. That is, recursive calls to peval’ are not used directly in
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reconstructing terms, but their results are bound in the state monad.
It remains to define the case for partial evaluation of function application. We provide an informal

specification for this case; please refer to Fig. 5 for the actual implementation:

1. The applied function is looked up and the arguments are evaluated—just like in the interpreter.

2. The partially evaluated arguments are partitioned into static and dynamic ones. Static arguments
are values (constants); dynamic arguments leverage other expression forms.

3. The “identity” (the name) of the specialized function derives from the applied function and the
static arguments. Here, we assume that values can be compared for equality. This is essential for
remembering (say, memoizing) previous function specializations.

4. The body of the specialized function is obtained by partially evaluating the original body in the
variable environment of the static variables. The argument list of the specialized function only
includes variables for the dynamic positions.

5. The specialized function is ultimately applied to the dynamic arguments. The expression for that
application serves as the result of partial evaluation.

Close inspection of Fig. 5 reveals additional details. For the special case of an application with static
arguments only (see if null das then ...), we switch to the behavior of the interpreter by (partially)
evaluating the body of the applied function. Also, in order to deal with recursion, it is important that the
specialized function is already added to the state before its body is obtained. To this end, an undefined
body is initially registered as a placeholder to be updated later.

5 Applications of Partial Evaluation

The exponentiation function is used frequently in discussing partial evaluation. Such simple examples
are useful, because they illustrate the basic ideas with as little complication as possible. However, there is
not much benefit in partially evaluating simple numeric functions, like exponentiation. Thus the potential
benefits of the approach are not highlighted.

One promising application area for partial evaluation is in model-driven development. A model is
a description of some desired behavior. While it is common practice to translate models into code that
generates the desired behavior, we consider another approach. A model interpreter takes the model as
an input and performs the behaviors specified in the model. Using partial evaluation, we can specialize a
model interpreter to create a compiled version of a model [2]. To illustrate this technique, we show how
to partially evaluate a state machine interpreter written in our simple language. In what follows, we use
Haskell code to represent the interpreter, although it can be easily translated into our simple language for
interpretation and partial evaluation.

Fig. 6 defines a type for representing state machines, and gives a simple state machine with two
states. (We assume deterministic finite automa here.) A state machine is encoded using two Haskell data
types for the accept states and the transition table. The double circle on state 2 indicates that it is the
accept state.

Fig. 7 gives a Haskell version of a simple interpreter for state machines. The interpreter takes the
current state, the accept states, the transition table, and a sequence of input labels. It returns true if the
machine consumes all input and ends in an accept state.

To translate the interpreter into our simple language, additional data structures and primitive opera-
tors must be added to the language, to represent pairs and lists as well as maybes. These changes are left
as an exercise for the reader. The lookup and elem function must also be written.
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peval’ (Apply s es) env = do

−− Look up function.
let (ss, body) = fromJust (lookup s fdefs)

−− Partially evaluate arguments.
rs <- mapM (flip peval’ env) es

−− Determine static and dynamic arguments.
let z = zip ss rs
let sas = [ (s, getVal r) | (s, r) <- z, isVal r ]
let das = [ (s,v) | (s,v) <- z, not (isVal v) ]

if null das then

−− Inline completely static applications.
peval’ body sas

−− Otherwise these applications make their contexts dynamic.
else do

−− Fabricate name from static variables.
let s’ = s ++ show (hashString (show sas))

−− Specialize each "name" just once.
fdefs <- get
when (isNothing (lookup s’ fdefs)) (do

−− Create placeholder for memoization.
put (fdefs ++ [(s’, undefined)])

−− Partially evaluate function body.
e’ <- peval’ body sas

−− Replace placeholder by actual definition.
modify (update (const (map fst das, e’)) s’))

−− Return application of specialized function.
return (Apply s’ (map snd das))

Figure 5: Partial evaluation of function application
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type State = Int
type Label = Char
type Transitions = [(State, [(Label, State)])]
type Accept = [State]

transitions = [(1, [(’a’, 2)]),
(2, [(’b’, 1)])]

accept = [2]

Figure 6: Types for state machines and example

run :: State -> Accept -> Transitions -> [Label] -> Bool
run current accept transitions [] = current ‘elem‘ accept
run current accept transitions (l:ls) =
case lookup l (fromJust (lookup current transitions)) of
Nothing -> False
Just next -> run next accept transitions ls

Figure 7: Haskell interpreter for state machines

run1 ls = if null ls
then False
else if head ls == ’a’

then run2 (tail ls)
else False

run2 ls = if null ls
then True
else if head ls == ’b’

then run1 (tail ls)
else False

Figure 8: Desired output from partial evaluation

The desired result from partially evaluating the state machine interpreter on the state machine in Fig. 6
is given in Fig. 8. The accept states and the transition table are no longer present as data structures—
thereby promising an aggressive optimization. However, when our partial evaluator is applied to the
program in Fig. 6 (appropriately encoded in our simple language), specialization fails to eliminate the
data structures for accept states and transition table. The problem is this expression:

lookup current transitions
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run :: State -> Accept -> Transitions -> [Label] -> Bool
run s accept transitions ls =
if null ls
then s ‘elem‘ accept
else runNext (lookup s transitions) accept transitions ls

runNext s accept transitions ls =
if null s
then False
else if (head ls) == fst (head s)

then run (snd (head s)) accept transitions (tail ls)
else runNext (tail s) accept transitions ls

Figure 9: State machine interpreter with binding time improvements

In this call, the current variable is dynamic during partial evaluation, although transitions is static.
Given a dynamic input, the result of lookup current transitions is always dynamic (that is, unknown)
even though the result is a list of transitions which is static information in the program. Thus, partial
evaluation stops prematurely.

This is a well-known problem in partial evaluation: when static and dynamic information are tangled
together, the static information is lost and partial evaluation stops. In such cases, it is necessary to rewrite
the program so that it works better with the partial evaluator. Such rewrites are known as “binding time
improvements” [5]. There is a huge body of work on this problem, but our example provides a simple
illustration. The improvement pattern we need can be described with the following pseudo code. Our
current program works by looking up the dynamic key in a static table, then processing the result:

let v = lookup table key in
process v

Instead, we must iterate over the static table, and compare its keys to the dynamic key, and then
process the value, if it matches:

for (k,v) in table do
if k == key then
process v

A partial evaluator can unroll this loop such that v is static in the call process v and partial evaluation
will continue. In our functional language, we do not use any loop construct, but we use recursion instead.
Fig. 9 gives a rewritten version of the state machine interpreter with the binding time improvement. This
version is also more directly translatable to our simple language, because it does not use pattern matching.

6 Further Reading

These tutorial notes are only a quick introduction to the idea of partial evaluation. There are many sources
for further reading. We recommend Jones, Gomard and Sestoft’s book on partial evaluation [5] and John
Hatcliff’s detailed course material [3] as a good place to start. Both are available online.



180 Tutorial on Online Partial Evaluation

7 Conclusion

This introduction merely hints at a number of important questions and issues. For example, our partial
evaluator does not always terminate. Ensuring termination is a complex problem, but it is also possible to
leave it to the programmer to avoid termination problems. Controlling partial evaluation is an important
area of research [8]. A partial evaluator can fail to specialize desired parts of a program (as illustrated in
the last section), or it can generate huge amounts of code without any practical benefit. Is it possible to
automatically refactor programs so that programs will work better with partial evaluation? Dealing with
imperative effects (e.g., mutable variables and input/output) is also a significant problem. We hope that
this tutorial will encourage more researchers to investigate and apply partial evaluation in their work.

References
[1] Martin Erwig & Deling Ren (2004): Monadification of functional programs. Sci. Comput. Program. 52, pp.

101–129, doi:10.1016/j.scico.2004.03.004.
[2] Yoshihiko Futamura (1999): Partial Evaluation of Computation Process — An Approach to a Compiler-

Compiler. Higher Order Symbol. Comput. 12, pp. 381–391, doi:10.1023/A:1010095604496.
[3] John Hatcliff (1999): Foundations of Partial Evaluation and Program Specialization. Available at http:

//people.cis.ksu.edu/~hatcliff/FPEPS/.
[4] P. Hudak (1998): Modular Domain Specific Languages and Tools. In: Proceedings of the 5th International

Conference on Software Reuse, ICSR ’98, IEEE Computer Society, Washington, DC, USA, pp. 134–.
[5] Neil D. Jones, Carsten K. Gomard & Peter Sestoft (1993): Partial evaluation and automatic program gener-

ation. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.
[6] Ralf Lämmel (1999): Reuse by Program Transformation. In: Selected papers from the 1st Scottish Functional

Programming Workshop (SFP 1999), Trends in Functional Programming 1, Intellect, pp. 144–153.
[7] C. Landauer & K.L. Bellman (1999): Generic programming, partial evaluation, and a new programming

paradigm. In: System Sciences, 1999. HICSS-32. Proceedings of the 32nd Annual Hawaii International
Conference on, Track3, p. 10 pp., doi:10.1109/HICSS.1999.772896.

[8] Anne-Françoise Le Meur, Julia L. Lawall & Charles Consel (2002): Towards bridging the gap be-
tween programming languages and partial evaluation. In: Proceedings of the 2002 ACM SIGPLAN
workshop on Partial evaluation and semantics-based program manipulation, PEPM ’02, ACM, pp. 9–18,
doi:10.1145/503032.503033.

[9] Amin Shali & William R. Cook (2011): Hybrid Partial Evaluation. In: Proc. of ACM Conf. on Object-
Oriented Programming, Systems, Languages and Applications. (to appear).

[10] Peter Thiemann & Robert Glück (1995): The Generation of a Higher-Order Online Partial Evaluator. In:
Fuji Workshop on Functional and Logic Programming, pp. 239–253.

[11] Todd L. Veldhuizen (1999): C++ Templates as Partial Evaluation. In: Partial Evaluation and Semantic-
Based Program Manipulation, pp. 13–18.

http://dx.doi.org/10.1016/j.scico.2004.03.004
http://dx.doi.org/10.1023/A:1010095604496
http://people.cis.ksu.edu/~hatcliff/FPEPS/
http://people.cis.ksu.edu/~hatcliff/FPEPS/
http://dx.doi.org/10.1109/HICSS.1999.772896
http://dx.doi.org/10.1145/503032.503033

	1 Introduction
	2 A Simple Language and Evaluator
	3 A Naive Partial Evaluator
	4 Proper Program Specialization
	5 Applications of Partial Evaluation
	6 Further Reading
	7 Conclusion

